
Prompt engineering and its implications on the
energy consumption of Large Language Models

Riccardo Rubei
University of L’Aquila

L’Aquila, Italy
riccardo.rubei@univaq.it

Aicha Moussaid
University of L’Aquila

L’Aquila, Italy
aicha.moussaid@student.univaq.it

Claudio Di Sipio
University of L’Aquila

L’Aquila, Italy
claudio.disipio@univaq.it

Davide Di Ruscio
University of L’Aquila

L’Aquila, Italy
davide.diruscio@univaq.it

Abstract—Reducing the environmental impact of AI-based
software systems has become critical. The intensive use of large
language models (LLMs) in software engineering poses severe
challenges regarding computational resources, data centers, and
carbon emissions. In this paper, we investigate how prompt
engineering techniques (PETs) can impact the carbon emission of
the Llama 3 model for the code generation task. We experimented
with the CodeXGLUE benchmark to evaluate both energy
consumption and the accuracy of the generated code using an
isolated testing environment. Our initial results show that the
energy consumption of LLMs can be reduced by using specific
tags that distinguish different prompt parts. Even though a
more in-depth evaluation is needed to confirm our findings, this
work suggests that prompt engineering can reduce LLMs’ energy
consumption during the inference phase without compromising
performance, paving the way for further investigations.

Index Terms—LLMs, Generative AI, Prompt Engineering,
Energy Consumption.

I. INTRODUCTION

The environmental impact of software systems has been
a growing concern in recent years [1], [2], thus fostering
the development of green software engineering (GSE) [3] by
proposing dedicated methodologies [4], frameworks [5], [6],
and guidelines [7]. Nevertheless, the rise of AI-intensive sys-
tems has posed new challenges regarding energy consumption
and carbon emissions [8].

In particular, both training and querying large language
models (LLMs) to outperform traditional techniques in code-
related tasks [9]–[11] is computationally expensive and re-
quires large amounts of resources and has a significant carbon
footprint [12]. Moreover, assessing them is challenging due
to i) higher variability in the generated code and ii) the
lack of standardized guidelines and information for measur-
ing carbon emissions even in dedicated model repositories
[12]. While a plethora of approaches have been proposed to
measure the impact on the hardware [13], we focus on the
usage of prompt engineering techniques (PETs) to mitigate
the energy consumption of LLMs during the inference phase
while supporting the code completion task. By relying on
the CodeXGLUE [14] dataset, we first devise a dedicated
component that selects and tests different prompts on Llama
3 [15] to assess their impact on the energy consumption using
the CodeCarbon tool [16]. Concretely, we used traditional
PETs as baselines and devise four additional configurations

using additional tags and explanations to enhance the baseline
prompts. In particular, we aim to answer the following research
questions:
➢ RQ1: To what extent does the usage of custom tags
in prompts improve the energy efficiency of Llama 3 while
performing code completion tasks? We explore the effects of
specifically introduced custom tags on the energy consump-
tion of LLMs during the inference phase to support code
completion tasks. To this end, we first calculate the energy
consumption of three well-known PETs, i.e., zero-shot, one-
shot, and few-shots, without any modifications. Afterward, we
compare these baseline prompts with an enhanced version
using additional tags that we introduced to help the inference
phase of the model. In addition, we also measure the overall
time required to perform the assigned task.
➢ RQ2: How do custom tags influence predictive accuracy of
Llama 3 while performing code completion tasks? We aim
to analyze the impact of custom tags on the performance
of Llama 3, focusing on well-established accuracy metrics,
i.e., exact matches and edit distance. We chose to use these
metrics because they have been successfully applied in the
CodeXGLUE benchmark and are recognized as effective tools
for evaluating code completion when using LLMs [17].

Our findings reveal that the energy consumption of LLMs
for the inference phase can be reduced by using the introduced
custom tags. Moreover, we show that the energy consumption
of LLMs is highly dependent on the used PETs. Although
further experimentation involving additional tasks and LLMs
is needed, the presented work suggests that prompt engineering
can play a key role in reducing the energy consumption of
LLMs without compromising their performance.

The main contributions of this work are as follows:
• We investigate the effects of several prompt engineering

techniques and custom tags on the energy consumption
of LLMs while performing code completion tasks;

• Our research examines the trade-offs between energy
consumption in terms of carbon emission, execution time,
and generated code accuracy to investigate the balance
between energy efficiency and model accuracy;

• We provide a replication package1 to foster further re-
search on the topic.

1https://github.com/riccardoRubei/Greens-2025-Replication-Package

ar
X

iv
:2

50
1.

05
89

9v
1 

 [
cs

.S
E

] 
 1

0 
Ja

n 
20

25

https://github.com/riccardoRubei/Greens-2025-Replication-Package


Fig. 1: Carbon emissions of GPT-3 models as reported in [18].

II. BACKGROUND

While measuring traditional software impact in terms of
emissions is well-established [1], [7], assessing LLMs con-
sumption is still challenging, as High-Performance Computing
(HPC) clusters are often required to run the training process,
which can last for weeks or even months. Therefore, measuring
the energy consumption in terms of carbon emissions is
particularly challenging in those environments due to several
factors, e.g., parallel jobs or the non-exclusive use of the
cluster.

Moreover, even well-maintained LLMs leaderboard bench-
marks [19]–[21] do not report energy consumption, focusing
instead on accuracy metrics. Figure 1 shows the carbon
emissions of the GPT-3 model in different server regions for
three big IT players, i.e., Google, Amazon, and Microsoft. For
instance, some models emit carbon that is equivalent to the
average of five cars over their lifetimes [22], thus underlining
significant sustainability concerns, especially when consider-
ing the growing scope of LLM-based implementations and
their integration into everyday life. This highlights the need
to reduce the carbon footprint of LLMs and to examine the
details that contribute to the reported figures.

To address the environmental impact of software, a range of
energy monitoring tools [5], [6] has been recently developed to
measure the carbon emissions associated with code execution.
Among these, the CodeCarbon tool [16] is a widely adopted
Python library that estimates the energy consumption of code
executions. It can also calculate the carbon footprint by
measuring the electricity power consumption of the underlying
hardware architecture, i.e., GPU, CPU, and RAM. In addition,

it can estimate the carbon intensity of the region where
the computing is done. This study focuses on the energy
consumption related to GPU usage without considering the
carbon emission.

Concerning the inference phase of LLMs, prompt engineer-
ing is pivotal to enhancing LLMs’ generation capabilities. The
most basic PET is zero-shot, in which the LLM is given a
query without any example of outputs, which are expected
from the given inputs [23]. In contrast, one-shot prompting
provides the model with a single example, offering a minimal
context to guide responses. The few-shots prompting [24]
involves multiple examples, allowing the model to generalize
more effectively with limited supervision [25]. In the scope of
this paper, we focus on different shot techniques i.e., zero-shot,
one-shot, and few-shots given their efficiency and success in
improving the performance of LLMs in source code-related
tasks.

Quantization [26] is a technique that reduces the compu-
tational and memory requirements of LLMs by lowering the
precision of their numerical representations (e.g., from 32-bit
to 8-bit). This compression speeds up inference, making LLMs
more efficient with minimal impact on accuracy. In this paper,
we leverage quantization alongside PETs to minimize the
computational cost while maintaining performance in code-
related tasks.

While developing a comprehensive methodology for mea-
suring LLM energy consumption is beyond this paper’s scope,
we focus on reducing these emissions through efficient PETs.
By utilizing custom tags, we aim to lower energy consumption
in LLMs used for code-related tasks, offering an approach that
balances sustainability with performance.



CodeXGlue
Dataset

1

Llama 3PET Selector Prompt Augmenter

2 3 4

Code Carbon 
Energy Measurer

5
Monitors

LLM Answers

Energy Measurements

6

7
Prompt Creator

Produces

GeneratesSnippets PET Query

Fig. 2: Workflow of the performed experiments.

III. PERFORMED EXPERIMENTS

Figure 2 depicts the workflow of the experiments we per-
formed to answer the two research questions. Starting from the
CodeXGLUE dataset [14] 1 , prompt creator 2 translates
input prompts into a format that Llama 3 can understand,
before augmenting them with tags that we specifically in-
troduced 3 . Afterward, the crafted prompts are used to
query the LLM locally deployed 4 . For each snippet, we
executed 75 queries.2 Each Llama run is monitored 5 by the
CodeCarbon energy monitoring tool. For each execution, we
store three artifacts (question, answer 6 , and measurement

7 ), to enable both efficiency and accuracy analysis.

A. Dataset

Among different benchmarks, we select CodeXGLUE as it
is tailored for supporting and evaluating LLMs in code-related
tasks [27], [28]. In this paper, we consider the code completion
task as it is widely supported by LLMs as recently investigated
[29], [30]. This task leverages established evaluation method-
ologies in the literature, enabling straightforward comparisons
with ground truth data.

B. Prompt Creator

This component is responsible for defining and augmenting
prompts that have been used to query the model under analysis.
In particular, we use standard PETs, i.e., zero-shot, one-shot,
and few-shots, as a baseline to evaluate the effect of custom
tags in terms of energy impact. The Llama 3 model card3

defines several tokens which form the model’s input. We aim to
investigate the impact of custom tags on energy consumption
and performance metrics for Llama 3. To this end, we define
five distinct prompt configurations. Each prompt comprises
two key components: a role attribute and content speci-
fication, as illustrated in Listing 1. The role attribute can be
assigned as either system or user. In the case of system,
the accompanying content attribute specifies the task to be

2Three prompting techniques (i.e., zero-shot, one-shot, and few-shots) ×
five prompt configurations × five repetitions to mitigate possible energy
measurement inaccuracies.

3www.llama.com/docs/model-cards-and-prompt-formats/meta-llama-3/

performed, thus clarifying the expected contribution from the
model. For example, in Listing 1, the system role is configured
to instruct the model on a code completion task for given code
fragments. The user role, on the other hand, introduces the
input code snippet that the model is expected to complete.

According to the different configurations, the content can
be enhanced with custom tags or explanations related to the
task. The configurations are defined as follows:

C0 - default: We define the model’s role and provide the
incomplete snippet without any customization. In the case of
one-shot and few-shots, we describe one and five examples,
respectively. We fix the number of examples equal to five for
the few-shots technique since it obtains adequate accuracy with
limited token size [31]. Nonetheless, we acknowledge that
a deep study concerning the different shot sizes is needed.
Listing 1 depicts an example of prompt in its default repre-
sentation.

Listing 1: Example of a zero-shot prompt.
1{
2"role": "system",
3"content" : "You are an AI assistant

specialized in code completion for Java.
Your task is to complete the provided Java
code segment with one line. Give only the
code completion.",

4},{
5"role": "user",
6"content": "package com.lmax.disruptor.support

; import java.util.concurrent.
ThreadFactory; public final"

7}

C1 - use of custom tags without explanation: We augment
prompts by using custom tags i.e., <code> and <incomplete>
to support the inference phase to distinguish the input source
code, and the fragment that needs to be completed. We do not
provide any explanation of what is the meaning of such custom
tags. Therefore, we aim to explore the LLM’s capability to
understand the customization. Listing 2 is an example of a
code fragment augmented with custom tags.



Listing 2: Fragment of a prompt including custom tags.
1 {
2 "role": "user",
3 "content" :"<code> package com.lmax.disruptor.

support; import java.util.concurrent.
ThreadFactory; </code> <incomplete> public
final </incomplete>"

4 }

C2 - use of custom tags with explanation: We embed the
meaning of the custom tags in the prompt as shown in
Listing 3.

Listing 3: Fragment of a prompt including custom tags expla-
nation.

1 {
2 "role": "user",
3 "content" :"The code to analyze is marked by

the <code> tag and the line to be
completed is marked by the <incomplete>
tag. <code> package com.lmax.disruptor.
support; import java.util.concurrent.
ThreadFactory;</code><incomplete> public
final </incomplete>"

4 }

C3 - custom prompt explained in the system: Differently from
configuration C2, the explanation of custom tags is given in
the system role part of the input prompt as shown in Listing
4.

Listing 4: Example of a zero-shot prompt including the defi-
nition of custom tags.

1 {
2 "role": "system",
3 "content" : "You are an AI assistant

specialized in code completion for Java.
Your task is to complete the provided Java
code segment with one line. Give only the
code completion. The code to analyze is

marked by the <code> tag and the line to
be completed is marked by the <incomplete>
tag.",

4 },{
5 "role": "user",
6 "content": "<code> package com.lmax.disruptor.

support; import java.util.concurrent.
ThreadFactory;</code><incomplete> public
final </incomplete>"

7 }

C4 - no system definition: With this configuration, we want to
assess the effect of the complete absence of the system role
definition. Therefore, we provide only the incomplete input
snippet and a task definition directly in the prompt without
any customization as illustrated in Listing 5.

Listing 5: Fragment of a prompt including custom tags.
1{
2"role": "system",
3"content" : "",
4},{

5"role": "user",
6"content" :"Hi, complete the following snippet

adding one line please: package com.lmax.
disruptor.support; import java.util.
concurrent.ThreadFactory; public final"

7}

The process ends with the generation of three different arti-
facts, i.e., questions, answers, and measurements. A question
is a copy of the query given to the LLM and it is stored
for subsequent analysis. The measurement is the outcome of
the Llama 3 process monitored by CodeCarbon to solve the
code completion task. Meanwhile, an answer is just a sequence
of Java statements to complete the input snippet. In some
cases, the LLM answer is verbose. Therefore, we can notice
a sequence of several lines of code.

C. Metrics

Concerning the metrics, we rely on CodeCarbon predefined
format4 to avoid any bias in the comparison. Since our study
focuses on the energy effects on the GPU, we rely on the
gpu energy value to support the evaluation.

During our investigation, we evaluate the effects of prompt-
ing techniques and customization of the prompts. Therefore,
we employ the following metrics:
➤ Energy Consumption: This metric quantifies the energy
consumed during the inference phase of Llama excluding the
model loading. We rely on the calculation provided by Code-
Carbon. In its report, we focus on the value of gpu energy
which calculates the energy consumed during in the inference,
expressed in kWh. To reduce biases related to unprecise mon-
itoring, we repeated the tests 5 times, calculating eventually
the average.
➤ Execution Time: The execution time calculates the du-
ration needed by Llama 3 to perform the inference. The
monitoring is limited only on the inference phase, excluding
the model loading time. The time is excerpted from the
CodeCarbon report similarly for the energy value.
➤ Edit Distance: The edit distance metric calculates how
similar the proposed answer is to the ground truth, by counting
the number of characters that need to be substituted, inserted,
or deleted to transform an input string into a target one. We
used the nltk edit distance, which implements the well-known
Levenshtein Distance [32].
➤ Exact Match The exact match metric measures whether
the answer of the LLM has an edit distance of 0, meaning
that the ground truth and answer are the same. Since LLMs
are generally verbose, we fixed the exact match threshold to
edit distance less or equal to 2. The rationale is that Llama
produces the results by adding several random characters
to the answer, e.g. extra spaces, single and double quotes,
semicolons.

D. Execution process

The experiments have been performed by considering the
settings shown in Table I. In particular, we tested 1,000 random

4https://mlco2.github.io/codecarbon/output.html



TABLE I: Summary of the Experimental Settings

Model Llama3 8B - Instruct
Snippets 1,000
PETs 3
Custom Prompts 5
Repetitions 5
Pause 10 seconds
Metrics (Performance) Energy Consumption, Execution Time
Metrics (Accuracy) Exact Match, Edit Distance

incomplete Java snippets retrieved from the code-completion
dataset of CodeXGLUE. As discussed in Section IV the overall
execution requires more than 250 hours. We calculated an
average test time per snippet of about 900 seconds. Therefore,
we limit ourselves to 1,000 snippets. with the abovementioned
PETs

As discussed in Section III-B, we defined five distinct
configurations for each query. Consequently, we tested every
combination of prompting techniques and the use of custom
tags. To ensure experimental reliability, each test is repeated
five times [33], [34], with a ten-second pause between each test
to mitigate potential tail effects [34], [35]. We use two metrics
to evaluate energy consumption and execution time, and two
primary metrics (exact match and edit distance) to assess the
impact of different configurations on accuracy. These metrics
align with those used in the original evaluation of the code
completion benchmark suite by the authors of CodeXGLUE.

All the experiments have been conducted on an isolated
desktop equipped with an AMD Ryzen 7 5800X 3.8GHz CPU
and an Nvidia Geforce RTX 4060 TI (8 GB VRAM).5 The
operating system is Xubuntu 23.04. Since the GPU provided
only 8GB of RAM, we used the quantized version of the
Llama model i.e., we used 16-bit float rather than the default
32-bit.

IV. EXPERIMENTAL RESULTS

Answering RQ1: Figure 3a shows the energy consumption
of the three prompt techniques applied to the five different
configurations. In particular, with the default configuration C0,
zero-shot is the most energy-efficient, with an average cost of
about 0.000016 kWh. one-shot and a few-shots consumed an
average of 0.000035 kWh and 0.000054 kWh, respectively.

Custom tags can contribute to reducing the energy consump-
tion of the video card. As shown in Fig. 3a, the best config-
uration is the C2 (explanation in prompts). While the zero-
shot technique passed from 0.0000157 (of C0) to 0.0000146
(-7%), one-shot and few-shots reduced the consumption from
0.0000347 to 0.0000174 (-99%) and from 0.0000537 to
0.0000293 (-83%) comparing with the default configuration
C0, respectively. It is also interesting to see the results of C4,
in which we do not specify any role in the system token. The
consumption increased from 0.0000157 to 0.000189 kWh for
zero-shot and from 0.0000347 to 0.000181 kWh for one-shot.

5https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4060-
4060ti/

The reason is that the model started to generate completely
new code snippets when asked to finalize the code given as
input. The few-shots technique seems to be less affected by
this problem. The sequence of example questions and answers
instructed the model on the behaviour despite the lack of the
system role specification.

Concerning the execution time, Figure 3b reports the results
obtained for all the prompt configurations. Similar to energy
consumption, the usage of custom tags provides a general
improvement in performance. In particular, the one-shot and
few-shots reduced the average time from 1.54 seconds of
configuration C0 to 0.74 (-52%) and from 2.1 to 1.09 (-48%),
respectively, using configuration C2. The zero-shot technique
performed better using C1, reporting an improvement from
0.74 seconds to 0.63 (-14.8%). Similarly, for the energy
consumption, in the case of C4, we can notice a remarkable
increase in execution time for zero-shot and one-shot.

Answer to RQ1: Our study reveals that custom tags
can reduce the energy consumption of LLMs across the
three prompt engineering techniques tested for source
code completion tasks.

Answering RQ2: Figure 4 depicts the obtained results in
terms of accuracy metrics. In particular, Figure 4a shows the
effects of custom tags on exact match performance across
different prompt engineering techniques. Overall, we observe
an increase in exact matches for configuration C1-C3 in com-
parison with the default configuration C0. Notably, zero-shot
shows the greatest improvement with C1, where exact matches
rise from 63 to 82, reflecting a 23% increase. Both one-
shot and few-shots see substantial gains with C3, achieving
approximately a 44% improvement. Interestingly, with C4,
zero-shot fails to achieve any exact matches.

Figure 4b shows the impact of custom tags on edit distance
metrics, where an edit distance of 0 indicates a perfect result.
Overall, custom tags contributed to a reduction in edit distance,
with C2 emerging as the most effective configuration across all
prompt engineering techniques. Specifically, zero-shot showed
a 24% improvement, one-shot achieved a 64% reduction, and
few-shots improved by 70%. Results for zero-shot and one-
shot are omitted for C4 because, with this configuration,
the LLM produced uncontrolled responses. As a result, it
was impossible to calculate edit distance accurately, as the
outputs included both code and explanatory text. Despite
lacking explicit role definitions, few-shots continued to yield
satisfactory results.

Answer to RQ2: Prompt customizations enhanced
the accuracy of the tested PETs, showing a positive
trend with increased exact matches and reduced edit
distances.



C0 C1 C2 C3 C4

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175
En

er
gy

 C
on

su
m

pt
io

n 
(K

W
h)

PET
ZeroShot
OneShot
FewShot

(a) Energy Consumption in (kWh).

C0 C1 C2 C3 C4

0

2

4

6

8

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

PET
ZeroShot
OneShot
FewShot

(b) Execution Time.

Fig. 3: Energy consumption with different prompt configurations.

C0 C1 C2 C3 C4

0

20

40

60

80

100

120

140

Ex
at

ch
 M

at
ch

 A
bs

ol
ut

e 
Nu

m
be

r

PET
ZeroShot
OneShot
FewShot

(a) Exact Match.

C0 C1 C2 C3 C4

0

20

40

60

80

100

120

Ed
it 

Di
st

an
ce

PET
ZeroShot
OneShot
FewShot

(b) Edit Distance.

Fig. 4: LLMs accuracy with different prompt configurations.

V. RELATED WORK

Assessing LLMs energy consumption: Jagannadharao et al.
[36] investigate the usage of time-shifting technique to reduce
the energy consumption of LLMs during long-running training
sessions. Concretely, the authors estimates the consumption
of Llama model by pausing and resuming the training when
the carbon emission is below a certain threshold. The results
shows that the proposed approach succeed in reducing the
carbon emission even though the region may impact the ob-
tained results. Liu and Yin [37] investigate how to reduce and
measure the consumption of pre-trained models by combining
fine-tuning and efficient tokenizers. In particular, BERT, Distil-
BERT, and T5 models are compared using SQuAD benchmark

[38] in terms of accuracy and carbon emissions. The experi-
mental results reveal that both the T5 and BERT models emit-
ted considerably more CO2 compared to DistilBERT and the
T4 GPU contributes in reducing the overall carbon emissions.
Samsi et al. [13] compare the inference performance in terms
of watts of different Llama models, i.e., evaluating smaller
models (7B, 13B) against the largest available version (65B) at
the time of writing. In addition, the authors consider different
GPUs, i.e., V100 and A100. The study reveals that 8 V100
GPUs each with 32 GB of RAM or 4 A100 GPUs each with
80GB of memory are required for any meaningful inferences
with the 65B LLaMA model, thus making small models a
suitable choice for energy-efficient applications. Cursaro et al.



[39] conduct a controlled experiment in which code generated
by CodeLlama is compared with the human one considering
different languages, i.e., C++, Java, and Python, tested on a
dedicated platform. The results show that explicitly asking to
generate energy-efficient code results in an equal or worse
energy efficiency. In our work, we focus on reducing energy
consumption of Llama by customizing the prompt and using
a dedicated GPU.

Prompt customization: Fagadau et al. [40] explored the
influence of eight prompt features on Copilot’s code outputs,
analyzing 124,800 prompts designed to implement 200 Java
methods. The findings indicate that prompts including concise
method summaries and examples lead to higher accuracy in
generated code while additional details as boundary cases
have a negative impact. Reynolds and McDonell [41] ex-
plored example-free strategies in prompt engineering, aiming
to enhance results by refining prompt structure. In particular,
they embody analogies and synonyms during task specifica-
tion and limit undesired outputs with negative prompting. Li
et al. [42] investigate prompt modifications using metamorphic
testing. Using Copilot as baseline model, code fragments are
injected in the prompts instead of natural language. Then,
semantic mutations are introducted to modify the prompts.
Similar to our approach, Wang et al. [28] proposes prompt
tuning, a novel PET executed during the fine-tuning process.
This technique involves the soft prompting in which task-
related knowledge are tagged using virtual tokens instead of
using fixed annotation, i.e., hard prompting. The empirical
evaluation conducted on CodeBERT and CodeT5 shows that
prompt tuning consistently outperforms fine-tuning in three
code-related tasks, i.e., defect prediction, code summarization,
and code translation. Compared to those works, we introduce
explanations in prompts to reduce the energy consumption of
Llama 3 model in code generation task.

VI. THREATS TO VALIDITY

This section discusses threats that may hamper the results
of our study and corresponding mitigation strategies.

Internal validity concerns factors that may impact the
measurements, i.e., noise interference, background processes,
and voltage fluctuations. To mitigate these issues, all the
experiments have been conducted in an isolated Linux-based
system without parallel or background tasks running on the
GPU. In addition, we repeated each experiment five times and
a 10-second pause between each query execution to prevent
potential performance degradation and statistical anomalies,
thus increasing the reliability of measurements.

Threats to external validity are related to the generalizability
of the performed experiments, i.e., the obtained results in terms
of energy consumption and accuracy may vary considering
different tasks and LLMs. Concerning the data, we employed
CodeXGLUE, a well-known dataset exploited in several stud-
ies. We were forced to cap our dataset to 1,000 snippets, since
the time needed to test one snippet has been evaluated to 900
seconds. Finally, the measurements calculated on the inference
without any customization are strictly related to the particular

task that we decided to study, thus code generation or text
summarization might require different energy resources. We
mitigated this threat focusing on the effects of the customiza-
tion.

VII. CONCLUSION AND FUTURE WORK

Motivated by the increasing carbon emissions of LLMs, we
proposed a preliminary investigation on the effects of prompt
customizations on Llama 3 model for the specific task of code
completion. Our results show that augmenting prompts with
dedicated custom tags and explanations succeed in reducing
the energy consumption yet preserving adequate accuracy.
In particular, with the best configuration, zero-shot reduced
the consumption of about 7%, whereas one-shot and few-
shots decreased their consumption of about 99% and 83%,
respectively. For future work, we plan to extend the study
to additional LLMs and code-related tasks. In addition, we
will investigate advanced techniques, e.g., retrieval augmented
generation (RAG) or fine-tuning, to further reduce the carbon
emissions of LLMs. Finally, we plan to investigate the effects
of custom prompts in different software engineering tasks.

ACKNOWLEDGMENTS

This work has been partially supported by the EMELIOT
national research project, which has been funded by the MUR
under the PRIN 2020 program grant n. 2020W3A5FY, the
European Union–NextGenerationEU through the Italian Min-
istry of University and Research, Projects PRIN 2022 PNRR
“FRINGE: context-aware FaiRness engineerING in complex
software systEms” grant n. P2022553SL, and the Italian
“PRIN 2022” project “TRex-SE: Trustworthy Recommenders
for Software Engineers,” grant n. 2022LKJWHC.

REFERENCES

[1] R. Verdecchia, P. Lago, C. Ebert et al., “Green it and green software,”
IEEE Software, vol. 38, no. 6, pp. 7–15, 2021.

[2] S. Georgiou, M. Kechagia, and D. Spinellis, “Analyzing programming
languages’ energy consumption: An empirical study,” in Proceedings of
the 21st Pan-Hellenic Conference on Informatics, 2017, pp. 1–6.

[3] C. Calero and M. Piattini, Eds., Green in Software Engineering.
Cham: Springer International Publishing, 2015. [Online]. Available:
https://link.springer.com/10.1007/978-3-319-08581-4

[4] A. Guldner, R. Bender, C. Calero et al., “Development and evaluation
of a reference measurement model for assessing the resource
and energy efficiency of software products and components—green
software measurement model (gsmm),” Future Generation Computer
Systems, vol. 155, pp. 402–418, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X24000384

[5] PowerAPI, “pyrapl: A python library for measuring energy
consumption,” 2023, accessed: 2024-03-05. [Online]. Available:
https://github.com/powerapi-ng/pyRAPL/tree/master

[6] A. Noureddine, “Powerjoular and joularjx: Multi-platform software
power monitoring tools,” in 18th International Conference on Intelligent
Environments (IE2022), Biarritz, France, Jun 2022.

[7] J. Mancebo, C. Calero, F. Garcia et al., “Feetings: Framework
for energy efficiency testing to improve environmental goal of the
software,” Sustainable Computing: Informatics and Systems, vol. 30,
p. 100558, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2210537921000494

[8] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for modern deep learning research,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 09,
pp. 13 693–13 696, Apr. 2020. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/7123

https://link.springer.com/10.1007/978-3-319-08581-4
https://www.sciencedirect.com/science/article/pii/S0167739X24000384
https://www.sciencedirect.com/science/article/pii/S0167739X24000384
https://github.com/powerapi-ng/pyRAPL/tree/master
https://www.sciencedirect.com/science/article/pii/S2210537921000494
https://www.sciencedirect.com/science/article/pii/S2210537921000494
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://ojs.aaai.org/index.php/AAAI/article/view/7123


[9] R. Tufano, S. Masiero, A. Mastropaolo et al., “Using pre-trained
models to boost code review automation,” in Proceedings of
the 44th International Conference on Software Engineering, ser.
ICSE ’22. New York, NY, USA: Association for Computing
Machinery, Jul. 2022, pp. 2291–2302. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3510003.3510621

[10] A. Mastropaolo, S. Scalabrino, N. Cooper et al., “Studying the
Usage of Text-To-Text Transfer Transformer to Support Code-Related
Tasks,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). Madrid, ES: IEEE, May 2021, pp. 336–347.
[Online]. Available: https://ieeexplore.ieee.org/document/9401982/

[11] D. Wang, Z. Jia, S. Li et al., “Bridging pre-trained models and
downstream tasks for source code understanding,” in Proceedings
of the 44th International Conference on Software Engineering, ser.
ICSE ’22. New York, NY, USA: Association for Computing
Machinery, Jul. 2022, pp. 287–298. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3510003.3510062

[12] J. Castaño, S. Martı́nez-Fernández, X. Franch et al., “Exploring
the Carbon Footprint of Hugging Face’s ML Models: A Repository
Mining Study,” in 2023 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), Oct.
2023, pp. 1–12, arXiv:2305.11164 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/2305.11164

[13] S. Samsi, D. Zhao, J. McDonald, B. Li, A. Michaleas, M. Jones,
W. Bergeron, J. Kepner, D. Tiwari, and V. Gadepally, “From words
to watts: Benchmarking the energy costs of large language model
inference,” in IEEE High Performance Extreme Computing Conference,
HPEC 2023, Boston, MA, USA, September 25-29, 2023. IEEE, 2023,
pp. 1–9. [Online]. Available: https://doi.org/10.1109/HPEC58863.2023.
10363447

[14] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

[15] A. Dubey, A. Jauhri, A. Pandey et al., “The llama 3 herd of models,”
2024. [Online]. Available: https://arxiv.org/abs/2407.21783

[16] M. C. Impact, “Codecarbon: A tool to estimate the carbon emissions
of machine learning models,” 2024, accessed: 2024-03-05. [Online].
Available: https://mlco2.github.io/codecarbon/

[17] R. A. Husein, H. Aburajouh, and C. Catal, “Large language
models for code completion: A systematic literature review,” Comput.
Stand. Interfaces, vol. 92, p. 103917, 2025. [Online]. Available:
https://doi.org/10.1016/j.csi.2024.103917

[18] S. T. Footprint, “Carbon footprint of training gpt-
3 and large language models,” 2023, accessed:
2024-07-22. [Online]. Available: https://shrinkthatfootprint.com/
carbon-footprint-of-training-gpt-3-and-large-language-models/

[19] Trustbit, “Llm benchmarks,” 2024, accessed: 2024-07-22. [Online].
Available: https://www.trustbit.tech/en/llm-benchmarks

[20] L. Arena, “Lm arena leaderboard,” 2024, accessed: 2024-07-22.
[Online]. Available: https://lmarena.ai/?leaderboard

[21] Oobabooga, “Oobabooga benchmark,” 2024, accessed: 2024-07-22.
[Online]. Available: https://oobabooga.github.io/benchmark.html

[22] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in nlp,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.02243

[23] B. Romera-Paredes and P. H. S. Torr, “An embarrassingly simple
approach to zero-shot learning,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15. JMLR.org, 2015, p. 2152–2161.

[24] R. L. L. I. au2, I. Balažević, E. Wallace, F. Petroni, S. Singh,
and S. Riedel, “Cutting down on prompts and parameters: Simple
few-shot learning with language models,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.13353

[25] X. Li, S. Yuan, X. Gu et al., “Few-shot code translation via
task-adapted prompt learning,” Journal of Systems and Software, vol.
212, p. 112002, 2024. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121224000451

[26] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network
inference,” 2021. [Online]. Available: https://arxiv.org/abs/2103.13630

[27] A. Faiz, S. Kaneda, R. Wang, R. Osi, P. Sharma, F. Chen, and L. Jiang,
“Llmcarbon: Modeling the end-to-end carbon footprint of large language
models,” arXiv preprint arXiv:2309.14393, 2023.

[28] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu,
“No more fine-tuning? an experimental evaluation of prompt tuning in
code intelligence,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 382–394. [Online].
Available: https://doi.org/10.1145/3540250.3549113

[29] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo,
D. Lo, J. Grundy, and H. Wang, “Large language models for
software engineering: A systematic literature review,” ACM Trans.
Softw. Eng. Methodol., Sep. 2024, just Accepted. [Online]. Available:
https://doi.org/10.1145/3695988

[30] C. Di Sipio, R. Rubei, J. Di Rocco, D. Di Ruscio, and P. T.
Nguyen, “Automated categorization of pre-trained models in software
engineering: A case study with a hugging face dataset,” in Proceedings
of the 28th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 351–356. [Online].
Available: https://doi.org/10.1145/3661167.3661215

[31] T. Ahmed and P. Devanbu, “Few-shot training llms for project-
specific code-summarization,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’22. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3551349.3559555

[32] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[33] S. Georgiou, M. Kechagia, T. Sharma, F. Sarro, and Y. Zou, “Green
ai: Do deep learning frameworks have different costs?” in Proceedings
of the 44th International Conference on Software Engineering,
ser. ICSE ’22, Springer. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1082–1094. [Online]. Available:
https://doi.org/10.1145/3510003.3510221

[34] S. Shanbhag and S. Chimalakonda, “An exploratory study on energy
consumption of dataframe processing libraries,” in 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR).
Springer, 2023, pp. 284–295.

[35] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “The model is not
enough: Understanding energy consumption in mobile devices,” in 2012
IEEE Hot Chips 24 Symposium (HCS). IEEE, 2012, pp. 1–3.

[36] A. Jagannadharao, N. Beckage, D. Nafus, and S. Chamberlin,
“Timeshifting strategies for carbon-efficient long-running large language
model training,” Innovations in Systems and Software Engineering, Dec.
2023. [Online]. Available: https://doi.org/10.1007/s11334-023-00546-x

[37] V. Liu and Y. Yin, “Green AI: exploring carbon footprints, mitigation
strategies, and trade offs in large language model training,” Discover
Artificial Intelligence, vol. 4, no. 1, p. 49, Jul. 2024. [Online]. Available:
https://doi.org/10.1007/s44163-024-00149-w

[38] P. Rajpurkar, J. Zhang, K. Lopyrev et al., “Squad: 100,000+ questions
for machine comprehension of text,” arXiv preprint arXiv:1606.05250,
2016.

[39] V.-A. Cursaru, L. Duits, J. Milligan, D. Ural, B. R. Sanchez, V. Stoico,
and I. Malavolta, “A controlled experiment on the energy efficiency
of the source code generated by code llama,” in Quality of Information
and Communications Technology, A. Bertolino, J. Pascoal Faria, P. Lago,
and L. Semini, Eds. Cham: Springer Nature Switzerland, 2024, pp.
161–176.

[40] I. D. Fagadau, L. Mariani, D. Micucci, and O. Riganelli, “Analyzing
prompt influence on automated method generation: An empirical study
with copilot,” in Proceedings of the 32nd IEEE/ACM International
Conference on Program Comprehension, ser. ICPC ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 24–34.
[Online]. Available: https://doi.org/10.1145/3643916.3644409

[41] L. Reynolds and K. McDonell, “Prompt programming for large
language models: Beyond the few-shot paradigm,” in Extended
Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, ser. CHI EA ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411763.3451760

[42] Z. Li, C. Wang, Z. Liu, H. Wang, D. Chen, S. Wang, and C. Gao,
“Cctest: Testing and repairing code completion systems,” 2023.
[Online]. Available: https://arxiv.org/abs/2208.08289

https://dl.acm.org/doi/10.1145/3510003.3510621
https://dl.acm.org/doi/10.1145/3510003.3510621
https://ieeexplore.ieee.org/document/9401982/
https://dl.acm.org/doi/10.1145/3510003.3510062
https://dl.acm.org/doi/10.1145/3510003.3510062
http://arxiv.org/abs/2305.11164
https://doi.org/10.1109/HPEC58863.2023.10363447
https://doi.org/10.1109/HPEC58863.2023.10363447
https://arxiv.org/abs/2407.21783
https://mlco2.github.io/codecarbon/
https://doi.org/10.1016/j.csi.2024.103917
https://shrinkthatfootprint.com/carbon-footprint-of-training-gpt-3-and-large-language-models/
https://shrinkthatfootprint.com/carbon-footprint-of-training-gpt-3-and-large-language-models/
https://www.trustbit.tech/en/llm-benchmarks
https://lmarena.ai/?leaderboard
https://oobabooga.github.io/benchmark.html
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/2106.13353
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://arxiv.org/abs/2103.13630
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3661167.3661215
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1007/s11334-023-00546-x
https://doi.org/10.1007/s44163-024-00149-w
https://doi.org/10.1145/3643916.3644409
https://doi.org/10.1145/3411763.3451760
https://arxiv.org/abs/2208.08289

	Introduction
	Background
	Performed experiments
	Dataset
	Prompt Creator
	Metrics
	Execution process

	Experimental Results
	Related work
	Threats to validity
	Conclusion and future work
	References

