Check for
Updates

On the use of LLMs to support the development of
domain-specific modeling languages

Claudio Di Sipio
University of L’Aquila, Italy
claudio.disipio@univagq.it

Davide Di Ruscio
University of L’Aquila, Italy
davide.diruscio@univagq.it

Abstract

In Model-Driven Engineering (MDE), domain-specific modeling
languages (DSMLs) play a key role to model systems within specific
application domains. Creating DSMLs is a complex, iterative process
requiring input from both domain specialists and technical experts.
This process often involves developing language artifacts, including
syntax, semantics, and supporting environments, to gather feedback
and achieve consensus among stakeholders.

To facilitate the interaction between technical experts and do-
main specialists in the creation of new DSMLs, we propose using
large language models for the specific task of supporting the re-
quirement elicitation of language semantics. Our approach aims
to reduce the time needed to develop proof-of-concept implemen-
tations, facilitating quicker agreement on the language’s intended
functions. Once consensus is reached, traditional technologies can
be employed to develop the semantics of the agreed language. This
method aims to mitigate potential misunderstandings that can arise
during interactions between technical specialists and domain ex-
perts. As an initial investigation of this idea, we explore the model
mutation problem as a case study. We developed a custom GPT
model, named MuTaGENe, designed to support the definition of
model mutations and tested it against the existing Wodel language.

CCS Concepts

« Software and its engineering; - Computing methodologies
— Artificial intelligence;

Keywords

Large Language Models, Model Driven Engineering, Domain-specific
languages

ACM Reference Format:
Claudio Di Sipio, Riccardo Rubeti, Juri Di Rocco, Davide Di Ruscio, and Lu-
dovico Iovino. 2024. On the use of LLMs to support the development of

This work is licensed under a Creative Commons Attribution International 4.0 License.
MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687808

Riccardo Rubei
University of L’Aquila, Italy
riccardo.rubei@univaq.it

Juri Di Rocco
University of L’Aquila, Italy
juri.dirocco@univagq.it

Ludovico Iovino
GSSI, L’Aquila, Italy
ludovico.iovino@gssi.it

domain-specific modeling languages. In ACM/IEEE 27th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS Com-
panion 24), September 22-27, 2024, Linz, Austria. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3652620.3687808

1 Introduction

In Model-Driven Engineering (MDE) [5] software models are con-
sidered as first-class entities throughout the entire life-cycle of com-
plex systems. The specification of models is supported by domain-
specific modeling languages (DSML) that allow modelers to repre-
sent real-world concepts in a given application domain [13]. Mod-
eling languages are built on top of three main components [6], i.e.,
abstract syntax, concrete syntax, and semantics. The abstract syntax
is typically defined as metamodels encoding concepts, relationships,
and rules related to the application domain of interest. Metamodels
underpin the development of textual or graphical concrete syntaxes
that target users exploit to define models. Semantics refers to the
meaning and behavior of the language elements.

Developing DSMLs can be a complex activity, encompassing an
iterative process requiring input from domain specialists. In con-
trast, technical experts develop the syntaxes and the semantics of
the language of interest and refine them to accommodate gathered
feedback until a consensus among the stakeholders is achieved.
Even though advanced techniques and tools are nowadays avail-
able for developing language syntaxes and corresponding facilities
(like graphical or textual editors endowed with syntax highlight-
ing, completion, etc.), developing language semantics still requires
advanced expertise.

Over the last decades, MDE and Software Engineering in general
have been revolutionized by the increasing adoption of Machine
Learning (ML) and Deep Learning (DL) approaches to support dif-
ferent SE activities including intelligent modeling assistants [19]
that have been adopted to automatize several MDE tasks [11, 20, 23].
To facilitate the interaction between technical experts and domain
specialists in creating new DSMLs, in this paper, we propose using
Large Language Models (LLMs) to support the requirement elicita-
tion of language semantics. Our approach aims to reduce the effort
needed to develop proof-of-concept language implementations, fa-
cilitating quicker agreement on the language’s intended functions.
Once consensus is reached, technical experts can employ traditional
technologies to develop the semantics of the agreed language. This
method mitigates potential misunderstandings between technical
and domain experts during interactions.

https://doi.org/10.1145/3652620.3687808
https://doi.org/10.1145/3652620.3687808
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687808&domain=pdf&date_stamp=2024-10-31

MODELS Companion "24, September 22-27, 2024, Linz, Austria

As an initial investigation of this idea, we explore the model
mutation problem as a case study. We developed a custom GPT-4
model, named MuTaGENe, to support the definition of a DSML for
specifying and applying model mutations [3], resembling the syntax
and the semantics of the existing Wodel language [15]. In particular,
we use GPTBuilder utilities provided by OpenAl to customize the
general-purpose GPT model, motivated by the need to have AI
agents specialized in a set of tasks [16]. To build MuTaGENe, we first
create a knowledge base composed of Wodel artifacts, including the
language’s grammar and the GitHub supporting pages containing
the description of publicly available mutation programs. In addition,
we conceived a set of helper functions to assist MuTaGENe in
understanding the crafted knowledge. Afterward, we perform the
mutation phase using the Chain-of-Thoughts (CoT) strategy to
mimic human reasoning to support model mutations using the
specified DSML. By running initial experiments, we show that
MuTaGENe is capable of understanding and implementing model
mutations. Even though the proposed methodology needs an in-
depth evaluation to be generalized, it represents a stepping stone
to foster further research in the domain.

2 Motivation and Background
2.1 Development of DSMLs

DSMLs are specialized modeling languages tailored to a specific
application domain, designed to express the concepts and rules
inherent to that domain more precisely than general-purpose lan-
guages [14]. While the syntax of a DSML defines the set of rules
and structures used to create models within a specific domain, the
semantics of a DSML define the meaning of its constructs and how
they interact.

DSML development is based on the close collaboration between
technical and domain experts. This collaboration is essential for
ensuring that the DSML accurately captures domain concepts and
meets the needs of its users [7]. In particular, domain experts
provide insights into the domain concepts, workflows, and con-
straints. Technical experts translate these insights into language
constructs, ensuring that the language can express the necessary
domain-specific operations and rules.

A key challenge in this process is developing the semantics of
the language, which is inherently complex and requires a precise
definition of the meaning and behavior of language constructs [12].
Thus, an agile and lightweight approach, characterized by rapid
prototyping, continuous feedback, and lightweight tools, is essential
for effectively managing the complexity of semantics development
in the early stages of the process. In this respect, we propose the
adoption of LLMs to support the development of proof-of-concept
implementations of DSMLs with the aim of providing early feedback
to technical and domain experts during the early stages of the
language design.

2.2 Usage of LLMs in MDE

The MDE community recently investigated the LLM usage, reveal-
ing limitations in understanding domain models [8], automating the
model completion [9], and specifying OCL constraints [2]. Overall,
there is a need to devise specialized knowledge to support specific
tasks. In this respect, OpenAl recently released the GPT Builder

Di Sipio et al.

[21] feature, a dedicated service that offers a specific interface to
create custom GPT models. First, the developers can specify the
role, the application domain, and the main objectives to specialize
the agent. In addition, the system allows the creation of an internal
knowledge base that can include different files, e.g., project sam-
ples or code snippets. The custom agent can use such knowledge
during the generation phase, thus equipping the general-purpose
GPT model with the knowledge of the application domain of in-
terest. The overall GPT accuracy can be enhanced by employing
three leading prompt engineering (PE) strategies [22], i.e., zero-shot,
few-shots, and Chain-of-Thoughts. In the zero-shot setting [22], the
underpinning LLM operates without examples of the expected out-
comes. Contrariwise, few-shot prompting involves using a limited
number of labeled examples, allowing it to quickly generalize and
learn the task with minimal supervision [18].

Unlike traditional question-answering tasks, where each ques-
tion is independent, Chain-of-Thoughts (CoT) [24] requires the
model to understand and maintain context from previous interac-
tions throughout the entire conversation. The goal is to evaluate the
model’s ability to engage in coherent, multi-turn dialogue and in-
fer relationships and dependencies by introducing reasoning steps
across the conversation. In this paper, we adopted the CoT prompt
strategy, as it outperforms other Prompt Engineering techniques in
MDE tasks [10]. In addition, introducing semantic reasoning can
improve the LLM capabilities in providing early feedback during
DSML specification.

3 Proof of concept

This section describes the essential components of the envisioned
approach to support the development of early implementations of
DSMLs. To this end, the Wodel mutation language is considered as
playground giving us the opportunity to concretely discuss issues
and how MuTaGENe can address them.

Wodel and its capabilities are described in Sec. 3.1. Afterward,
we describe MuTaGENe and its two constituting phases (see Fig. 1),
i.e., i) knowledge creation, which serves to set up MuTaGENe and
establish its foundational knowledge base enabling the usage of
GPT (see Sec. 3.2), and ii) mutation, which is achieved through the
utilization of CoT prompt engineering, leveraging Wodel rules (see
Sec. 3.3). Finally, we present an explanatory output of the approach
and its main limitations in Section 3.4.

3.1 Wodel DSML

A model mutation is a kind of model manipulation that creates a set
of variants (or mutants) of an input model, namely the seed model,
by the application of one or more mutation operators [4]. In the
scope of the paper, we selected Wodel [15] because i) it provides a
dedicated DSML to express model mutations and ii) it offers publicly
available materials for fostering mining and reproducibility.

Listing 1: Explanatory Wodel program

generate 2 mutants

in "data/out/"

from "data/model/"
metamodel "Families.ecore"

create Member with { firstName = random-string (1,10)}[1..5]

f = select one Family

10
11

On the use of LLMs to support the development of domain-specific modeling languages

>
k)

CoT PE Wodel Program

Metar:hodel

@
Instruction phase GPTBuilder
|

® 5 @

Github pages|
MuTaGENe

J H
1;- (T —®

Samples
Helpers Mutants Post-processing

Tl S

i Model seed
MuTaGENe Knowledge

conforms to

Wodel artifacts

Grammar

(a) Knowledge creation phase (b) Mutation phase

Figure 1: MuTaGENe overview

daugther = select one Member where {familyDaughter<> null}
modify f with {daughters= daugther}

remove all Member where {familySon<> null}

Listing 1 shows an example of Wodel program consisting of dif-
ferent mutators. Specifically, the mutator defined at line 6 with
the create command specifies the creation of new model elements
conforming to the Member metaclass of the input metamodel. The
mutators specify also that the attribute firstName should be as-
signed with a random string whose length falls within the range
of 1 to 10 characters. Creation commands may be annotated with
an integer interval indicating the minimum and maximum number
of new elements to be generated (as seen in the interval [1..5] at
line 6). The execution engine determines the specific number by
selecting a value within the specified interval.

The modify command is employed to specify mutators altering
the content of selected elements. For example, in lines 8-10, the
first step is to select one instance of the Family metaclass. Sub-
sequently, a Member instance with the reference familyDaughter
not null is randomly chosen. Finally, this selected Member instance
is assigned to the reference daughters of the previously selected
Family instance.

The remove command is employed to define deletions of in-
stances that meet specific criteria. For example, the mutator at line
12 is intended to remove all instances of the Member class that have
at least one reference to a son instance.

3.2 Knowledge creation phase

As previously discussed, GPT Builder permits users to create cus-
tom GPT models by leveraging a knowledge base, which must be
appropriately curated for the particular tasks the model should
support. Being MuTaGENe a tool for supporting the creation of
Wodel specifications and their execution, we created a knowledge
base by ingesting Wodel artifacts, Python Helpers, and following an
Instruction phase to configure the role of MuTaGENe, by relying on
mechanisms provided by GPT Builder. The main ingredients of the
knowledge creation phase are shown in Fig. 1a and detailed below.

Wodel artifacts. Three different kinds of Wodel artifacts have been
mined to create the MuTaGENe knowledge, i.e., the Xtext grammar
of the Wodel DSL,! information retrieved from the GitHub pages of
the approach,? with special treatment for sample projects featured
on the official website [1].

!https://github.com/gomezabajo/Wodel/blob/master/wodel.dsls.wodel/src/wodel/
dsls/Wodel.xtext
Zhttps://gomezabajo.github.io/Wodel/

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Table 1: Overview of the projects in the knowledge

Domain # of projects # of mutator files # of seeds
BPEL 22 22 18
UMLDiagrams 62 62 62
DFASamples 14 14 56

Concerning the Wodel grammar, we loaded the original Xtext
file without any modification to avoid any bias. Regarding Wodel
GitHub pages, they contain several explanatory Wodel mutators
that we opted to encode and include in the knowledge base. Figure
2 displays a fragment of a Wodel program?® and the corresponding
text encoding that we devised to add to the MuTaGENe knowledge
the mutation rule for adding a redundant constraint to a given class
diagram. For this purpose, we utilized the Beautiful Soup Python
library* for data extraction. Subsequently, we enriched the context
obtained from GitHub by annotating the aforementioned set of
rules using the special tag #USER, as illustrated in the lower section
of Figure 2. In addition, we appended the corresponding #ECORE
file, a #SEED model, the mutations #RULES, and the #GENERATED
MUTANT (s) to the text file (not shown in Fig. 2 for the sake of space,
but available online).’

Adds a redundant constraint to the CD [uco1]:

Wodel content

cd = select one Classbiagram where {~constraints <> null}
c = select one Constraint in cd->Aconstraints

deep clone ¢ in cd->Aconstraints

Adds a redundant constraint to the CD [ucol]:

cd = select one ClassDiagram
where {Aconstraints <> null}
c = select one Constraint in cd->Aconstraints

deep clone c in cd->*constraints (Encoded content

Figure 2: Fragment of an encoded Wodel GitHub page content

Concerning the sample projects, we mined 98 Wodel projects,
consisting of 98 program files, and 136 seed models as shown in
Tab. 1. For each project, we performed a pre-processing step on the
original folder by extracting the metamodel, the seed models, and
the Wodel programs. The remaining files, e.g., Eclipse configuration
files or the outputs of Wodel commands, have been filtered out to
avoid noisy data in the knowledge.

Helpers. After loading the above-mentioned static files related to
Wodel, we enhanced the knowledge base with Python functions
devoted to improving the reasoning of MuTaGENe as detailed in
the Instructions phase discussed below. In particular, we defined the
following helpers:

> grammar_utils.py: This file contains a set of tailored functions
employed to parse the Wodel grammar syntax. In particular, we de-
vise a function that reads a Wodel program file content and extracts
the DSL keywords to understand the mutation logic. Notably, the
introduction of those helper functions enables the understanding
of Wodel syntax. Furthermore, this enrichment of the GPT local
knowledge reduces the failures in generating mutants;

Shttps://gomezabajo.github.io/Wodel/umlcd html
*https://pypi.org/project/beautifulsoup4/
Shttps://github.com/MDEGroup/ModelMutator-Replication-Package/blob/main/
GPT_KB/umlcd.htmltxt

https://github.com/gomezabajo/Wodel/blob/master/wodel.dsls.wodel/src/wodel/dsls/Wodel.xtext
https://github.com/gomezabajo/Wodel/blob/master/wodel.dsls.wodel/src/wodel/dsls/Wodel.xtext
https://gomezabajo.github.io/Wodel/
https://gomezabajo.github.io/Wodel/umlcd.html
https://pypi.org/project/beautifulsoup4/
https://github.com/MDEGroup/ModelMutator-Replication-Package/blob/main/GPT_KB/umlcd.htmltxt
https://github.com/MDEGroup/ModelMutator-Replication-Package/blob/main/GPT_KB/umlcd.htmltxt

MODELS Companion "24, September 22-27, 2024, Linz, Austria

> parse_documentation.py: This function is used to analyze the
parsed GitHub documentation depicted in Figure 2, thus helping
MuTaGENe during the reasoning phase.

> mapping_models.py: This file contains a dedicated set of functions
that exploits the PyEcore library® to parse the modeling artifacts,
i.e., the metamodel and the seed model expressed in .ecore and .xmi
format, respectively.

& Given this #ECORE @ Giventhis | _[@Given :‘:SE;“‘“W"
L metamodel #SEED model
] 2
in "data/out/"
from "data/model/"
-Analyze the metamodel
to understand the domain

metamodel "Families.ecore”
create one Member

Export the generated
mutants in a .zip file

EREY

Figure 3: CoT prompt

Analyze the seed
model to d
the structure

Results of the |

#SEED analysis

@ Results of the
#ECORE analysis

Instructions. Employing the “Instructions” mechanism of GPT Builder,
it is possible to configure the model by offering structured guide-
lines and examples so that the Al understands the task to be sup-
ported. Thus, we configured MuTaGENe by following an iterative
process, where we used the instruction prompting technique [25]
to enable the AI to understand Wodel commands and apply them
to input seed models. During the first iteration of the process, the
Al model could not parse the input Wodel commands or correctly
execute them on the given seed model. Then we decided to de-
fine the helpers previously presented, add them to the knowledge
base, and refer them to the specified instructions, including the
following one: "The GPT references local files for producing mod-
els tailored to software engineering and MDE needs, utilizing the
"grammar_utils.py" file for understanding the Wodel grammar", thus
ensuring that MuTaGENe has access to the defined helpers.”

It is worth mentioning that all the steps outlined in this section,
such as loading Wodel artifacts and helpers, followed by the instruc-
tion phase, are preparatory and executed only once. However, we
anticipate a maintenance phase where we consistently update the
defined knowledge to enhance the quality of the models generated
by MuTaGENe.

3.3 Mutation phase

After the configuration phase detailed in the previous section, Mu-
TaGENe can execute a Wodel program for mutating input models
according to the process depicted in Fig. 1b. The user’s request
comprises the seed model, the corresponding metamodel, and the
mutation programs specified in Wodel. Regarding the prompt en-
gineering strategy, we have chosen the Chain-of-Thoughts (CoT)
strategy outlined in Section 2. This decision stems from the im-
practicality of employing zero-shot techniques for larger modeling
artifacts, given the limitation on input tokens for each query. Ad-
ditionally, prior research demonstrates that CoT can outperform
both zero-shot and few-shot strategies for MDE tasks [10].

Shttps://pyecore.readthedocs.io/en/latest/
"https://chatgpt.com/g/g-7GQpuc3wx-mutagene

Di Sipio et al.

The employed CoT strategy is illustrated in Fig. 3. Initially, we
present the metamodel and the seed model in two separate prompts
to address token limitation issues. Afterward, the Wodel program
to be executed is given. Following each artifact, a dedicated prompt
asks the model to analyze it.

Artifacts are annotated with the tags #ECORE, #SEED, and #RULES
to enhance the reasoning phase of the model. The final prompt re-
quests the model to generate mutants, which are then returned in
a package file that can be downloaded. We acknowledge that not
all the mutants are syntactically valid, e.g., we report minor issues
in the model structure or incorrect model URIs. Therefore, a man-
ual post-processing phase is needed to fix and adapt the produced
mutants to the selected model environment. For instance, Chen et
al. [10] used a similar strategy to validate the generation of domain
models.

3.4 Explanatory example

As a motivating example, we rely on an existing Wodel project that
applies mutations Probabilistic Finite State Machine (PFSM).8 It is
worth noting that this project is not part of the proposed knowledge
base described in Section 3.2. Figure 4a and Figure 4b show the XMI
representation of the mutants obtained by Wodel and MuTaGENe,
respectively.” Created elements are highlighted in green, and in
blue are the modified ones. The applied Wodel program comprises
mutators designed to select two transitions from the seed model
and decrement their probabilities by a random integer value. It is
essential to note that custom GPT models are integrated with Bing
browsing functionality, enabling them to retrieve artifacts from the
Web to respond to user queries without executing the mutators.
To prevent this scenario and avoid bias in the evaluation, we ad-
justed the original Wodel programs found in GitHub repositories,
i.e., introducing the element states name="class-control-alp".
Concerning the limitations, we acknowledge that the selection of
files to be included in the KB could introduce bias in the generation
phase. To address this, we pre-processed the Wodel sample projects
by removing unnecessary data for the mutation process. As for
the mutation phase, the created mutants may include irrelevant
information due to incorrect program encodings. We tackled this
by adopting the CoT strategy combined with self-consistency eval-
uation, which involves repeating the mutation process ten times for
each testing project to reduce imprecise content. Another limitation
is the generalizability to support other DSMLs apart from the Wodel
one. We anticipate that additional strategies can be more effective
in employing LLMs in practice. For instance, retrieval augmented
generation (RAG) [17] can be seen as an alternative method to
increase the effectiveness of LLMs to support the development of
DSMLs.

4 Conclusion and future works

During the definition of a domain-specific modeling language (DSML),
developers need to interact with domain experts to specify the
necessary modeling artifacts, including the development of the
language semantics. This paper envisions using large language

8https://gomezabajo.github.io/Wodel/pfsm.html
Due to the page limitation, we omitted the elements of the model that are not affected
by the rules

https://pyecore.readthedocs.io/en/latest/
https://chatgpt.com/g/g-7GQpuc3wx-mutagene
https://gomezabajo.github.io/Wodel/pfsm.html

On the use of LLMs to support the development of domain-specific modeling languages

MODELS Companion "24, September 22-27, 2024, Linz, Austria

<?xml version="1.0"
<PFSM:PFSM>

encoding="UTF-8"7>

<states name="class-control-alp"/>

<transitions ... probability="-0.07"/>
<transitions probability=0.25"/>
<transitions ... probability="1.07"/>
<transitions probability="1.0"/>
<transitions probability="1.0"/>
<transitions probability="0.75"/>

</PFSM:PFSM>

<?xml version="1.0"
<PFSM:PFSM>

encoding="UTF-8"7>

<states name="class-control-alp"/>
<transitions ... probability="0.78"/>
<transitions probability="0.25"/>
<transitions probability="1.0"/>
<transitions probability="1.0"/>
<transitions probability="1.0"/>
<transitions ... probability="0.96"/>

</PFSM:PFSM>

(a) Wodel output

(b) MuTaGENe output

Figure 4: Modify and Create mutators applied to the seed model of the PFSM project

models (LLMs) to provide early feedback during the DSML specifi-
cation phase. Built on top of a specific DSML for model mutation,
we create a custom GPT model called MuTaGENe that can resem-
ble the expected outputs, understanding the concepts and rules
expressed with the Wodel language. Although an in-depth evalua-
tion is needed to confirm our intuition, LLMs can help articulate
language semantics in natural language, enabling stakeholders to
validate language alignment with user requirements. In future work,
we plan to extend the application of the custom GPT to additional
DSMLs and experiment with open-source LLMs and techniques
such as fine-tuning or RAG to improve support during the entire
DSML specification process.

Acknowledgments

This work has been partially supported by the EMELIOT national
research project, which has been funded by the MUR under the
PRIN 2020 program grant n. 2020W3A5FY. The work has been also
partially supported by the European Union-NextGenerationEU
through the Italian Ministry of University and Research, Projects
PRIN 2022 PNRR “FRINGE: context-aware FaiRness engineerING in
complex software systEms” grant n. P2022553SL. We acknowledge
the Italian “PRIN 2022” project “TRex-SE: Trustworthy Recommenders
for Software Engineers,” grant n. 2022LKJWHC, and the research
project “RASTA: Realtd Aumentata e Story-Telling Automatizzato per
la valorizzazione di Beni Culturali ed Itinerari”; Italian MUR PON
Proj. ARS01 00540.

References

[1] Gomez Abajo. 2024. Wodel Samples. https://gomezabajo.github.io/Wodel/samples.
html. Last Accessed:22-03-2024.

Seif Abukhalaf, Mohammad Hamdaqa, and Foutse Khomh. 2023. On Codex
Prompt Engineering for OCL Generation: An Empirical Study. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 148-157.
https://doi.org/10.1109/MSR59073.2023.00033

[3] Bakr Al-Batran, Bernhard Schitz, and Benjamin Hummel. 2011. Semantic Clone
Detection for Model-Based Development of Embedded Systems. In Model Driven
Engineering Languages and Systems (Lecture Notes in Computer Science), Jon
Whittle, Tony Clark, and Thomas Kithne (Eds.). Springer, Berlin, Heidelberg,
258-272. https://doi.org/10.1007/978-3-642-24485-8_19

Manar H. Alalfi, James R. Cordy, Thomas R. Dean, Matthew Stephan, and Andrew
Stevenson. 2012. Models are code too: Near-miss clone detection for Simulink
models. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, Trento, Italy, 295-304. https://doi.org/10.1109/ICSM.2012.6405285
[5] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software
Engineering in Practice. Springer International Publishing, Cham. https://doi.
0rg/10.1007/978-3-031-02549-5

Antonio Bucchiarone, Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pieran-
tonio (Eds.). 2021. Domain-Specific Languages in Practice: with JetBrains MPS.

[2

i~
flaat

=

Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-
73758-0
Loli Burgueiio, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers,
Sebastien Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick
Salay, Gabriele Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2019. Contents
for a Model-Based Software Engineering Body of Knowledge. Software and
Systems Modeling 18, 6 (Dec. 2019), 3193-3205. https://doi.org/10.1007/s10270-
019-00746-9
[8] Javier Camara, Javier Troya, Lola Burgueiio, and Antonio Vallecillo. 2023. On
the assessment of generative Al in modeling tasks: an experience report with
ChatGPT and UML. Software and Systems Modeling 22, 3 (June 2023), 781-793.
https://doi.org/10.1007/s10270-023-01105-5
[9] Meriem Ben Chaaben, Lola Burguefio, and Houari Sahraoui. 2023. Towards Using
Few-Shot Prompt Learning for Automating Model Completion. In Proceedings of
the 45th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER °23). IEEE, IEEE Press, Melbourne, Australia, 7-12. https:
//doi.org/10.1109/ICSE-NIER58687.2023.00008
Kua Chen, Yujing Yang, Bogi Chen, José Antonio Hernandez Lopez, Gunter
Mussbacher, et al. 2023. Automated Domain Modeling with Large Language
Models: A Comparative Study. In 2023 ACM/IEEE 26th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 162-172. https:
//doi.org/10.1109/MODELS58315.2023.00037
Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong T Nguyen. 2023.
MORGAN: a modeling recommender system based on graph kernel. Software and
Systems Modeling (April 2023), 1-23. https://doi.org/10.1007/s10270-023-01102-8
Sebastian Erdweg, Tijs van der Storm, Markus Vélter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido H. Wachsmuth, and Jimi van der Woning. 2013. The state of
the art in language workbenches. In Software language engineering, Martin Erwig,
Richard F. Paige, and Eric Van Wyk (Eds.). Springer International Publishing,
197-217.
Martin Fowler. 2010. Domain-specific languages. Pearson Education.
Ulrich Frank. 2013. Domain-specific modeling languages: Requirements analysis
and design guidelines. Springer Berlin Heidelberg, Berlin, Heidelberg, 133-157.
https://doi.org/10.1007/978-3-642-36654-3_6
Pablo Gémez-Abajo, Esther Guerra, and Juan De Lara. 2016. Wodel: a domain-
specific language for model mutation. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing. ACM, Pisa Italy, 1968-1973. https://doi.org/
10.1145/2851613.2851751
Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, et al.
2023. MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework.
arXiv:2308.00352 [cs.Al]
Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459-9474.
Xuan Li, Shuai Yuan, Xiaodong Gu, Yuting Chen, and Beijun Shen. 2024. Few-
shot code translation via task-adapted prompt learning. Journal of Systems and
Software 212 (2024), 112002. https://doi.org/10.1016/j.jss.2024.112002
Gunter Mussbacher, Benoit Combemale, Jérg Kienzle, Silvia Mara Abrahao, Hy-
acinth Ali, Nelly Bencomo, Marton Bur, Loli Burguefio, Gregor Engels, Pierre Jean-
jean, Jean-Marc Jézéquel, Thomas Kithn, Sébastien Mosser, Houari A. Sahraoui,
Eugene Syriani, Daniel Varr6, and Martin Weyssow. 2020. Opportunities in intel-
ligent modeling assistance. Software and Systems Modeling 19 (2020), 1045-1053.
Phuong T Nguyen, Juri Di Rocco, Ludovico Iovino, Davide Di Ruscio, and Alfonso
Pierantonio. 2021. Evaluation of a machine learning classifier for metamodels.
Software and Systems Modeling 20, 6 (2021), 1797-1821.
openAl 2024. Creating a GPT | OpenAl Help Center. https://help.openai.com/
en/articles/8554397-creating-a-gpt

—
)

(10]

[11

[12

=
L)

[15]

=
&

(17

[18

[19

)
=

[21

https://gomezabajo.github.io/Wodel/samples.html
https://gomezabajo.github.io/Wodel/samples.html
https://doi.org/10.1109/MSR59073.2023.00033
https://doi.org/10.1007/978-3-642-24485-8_19
https://doi.org/10.1109/ICSM.2012.6405285
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-030-73758-0
https://doi.org/10.1007/978-3-030-73758-0
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.1007/s10270-023-01102-8
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1145/2851613.2851751
https://doi.org/10.1145/2851613.2851751
https://arxiv.org/abs/2308.00352
https://doi.org/10.1016/j.jss.2024.112002
https://help.openai.com/en/articles/8554397-creating-a-gpt
https://help.openai.com/en/articles/8554397-creating-a-gpt

MODELS Companion "24, September 22-27, 2024, Linz, Austria

[22] Bernardino Romera-Paredes and Philip H. S. Torr. 2015. An embarrassingly

[23

simple approach to zero-shot learning. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37 (Lille,
France) (ICML’15). JMLR.org, 2152-2161.

Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jorg Kienzle. 2020. DoMoBOT:
A Bot for Automated and Interactive Domain Modelling. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems: Companion Proceedings (Virtual Event, Canada) (MODELS °20).
Association for Computing Machinery, New York, NY, USA, Article 45, 10 pages.

https://doi.org/10.1145/3417990.3421385

Di Sipio et al.

[24] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei

[25

Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abcad- Abstract-Conference.html

Xuansheng Wu, Wenlin Yao, Jianshu Chen, Xiaoman Pan, Xiaoyang Wang,
Ninghao Liu, and Dong Yu. 2024. From Language Modeling to Instruction Fol-
lowing: Understanding the Behavior Shift in LLMs after Instruction Tuning.
arXiv:2310.00492 [cs.CL]

https://doi.org/10.1145/3417990.3421385
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2310.00492

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Development of DSMLs
	2.2 Usage of LLMs in MDE

	3 Proof of concept
	3.1 Wodel DSML
	3.2 Knowledge creation phase
	3.3 Mutation phase
	3.4 Explanatory example

	4 Conclusion and future works
	Acknowledgments
	References

