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Abstract—IoT systems’ complexity and susceptibility to
failures pose significant challenges in ensuring their reliable
operation. Failures can be internally generated or caused by
external factors, impacting both the system’s correctness and
its surrounding environment. To investigate these complexities,
various modeling approaches have been proposed to raise
the level of abstraction, facilitating automation and analysis.
Failure-Logic Analysis (FLA) is a technique that helps predict
potential failure scenarios by defining how a component’s failure
logic behaves and spreads throughout the system. However,
manually specifying FLA rules can be arduous and error-prone,
leading to incomplete or inaccurate specifications. In this paper,
we propose adopting testing methodologies to improve the
completeness and correctness of these rules. How failures may
propagate within an IoT system can be observed by systematically
injecting failures, while running test cases to collect evidence
useful to add, complete and refine FLA rules.

Index Terms—Internet of Things, Software Analysis,
Model-Driven Engineering, Model-Based Testing

I. INTRODUCTION

IoT systems may experience different failures, either

internally generated or caused by the surrounding

environment [1]. Such failures may affect not only the

correctness of the system, but also the environment in which

it operates. Consider, for instance, Smart Irrigation Systems:

they monitor parameters related to weather and soil to irrigate

crop fields based on the data collected automatically. A

failure affecting the behaviour of those IoT systems may

cause a waste of water or loss to the farm’s production.

Since IoT systems are composed of components of different

natures (e.g., temperature/humidity sensors, cloud servers,

and irrigation units), studying how failures (e.g., caused by a

malfunctioning component) may propagate within a system

and impact its behaviour can be highly challenging, further

than being of high importance [2], [3].

Developing IoT systems is complex due to several reasons.

The integration of diverse components, the need to handle

real-time data, and the distributed nature of IoT systems are

just a few factors contributing to this complexity. Several

modeling approaches have been proposed over the last few

years to raise the level of abstraction (e.g., [1], [4]–[6]),

promoting the adoption of models for increasing automation

and easing analysis. These models help understanding systems

behaviour, performance, and potential failure scenarios [7].

Failure-Logic Analysis (FLA) [8] is one of the analyses that

can be applied to IoT systems. By using FLA, it is possible to

define how a component’s failure logic shall behave, which can

help analyze how failures could potentially spread throughout

a system and predict any potential issue. For FLA to work

correctly, it is important to have accurate information about

how failures may occur within each component and propagate

between components. FLA relies on the manual specification

of rules, that rigorously indicate the different kinds of failures

that might occur and how they can propagate throughout

the components. Specifying such rules is a strenuous and

error-prone process, as identifying all possible fault scenarios

and formulating accurate rules is challenging, possibly leading

to incomplete or incorrect specifications.

In this paper, we propose to adopt testing methodologies to

mitigate the issues related to the completeness and correctness
of the manually specified FLA rules. By systematically

introducing failures into an IoT system and running test cases,

it is possible to observe how failures propagate. The collected

evidence is then used to add, refine, and eliminate FLA rules,

better capturing the behavior of the system in failure scenarios.

520

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00089

20
23

 A
CM

/I
EE

E 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
od

el
 D

riv
en

 E
ng

in
ee

rin
g 

La
ng

ua
ge

s a
nd

 S
ys

te
m

s C
om

pa
ni

on
 (M

O
DE

LS
-C

) |
 9

79
-8

-3
50

3-
24

98
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
O

DE
LS

-C
59

19
8.

20
23

.0
00

89

Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 14:01:32 UTC from IEEE Xplore.  Restrictions apply. 



Physical
 gateway

Cloud server

Mobile phone

Temp/Hum

Moisture 

Computing
board

Temp/Hum

Moisture

Computing
board

RED Led

/H

Green LED

Green LED

RED Led

Battery

SR

Irrigation
unit

SR

Irrigation
unit

Fig. 1. The Smart Irrigation System use case.

The paper is organized as follows: In Section II we provide

motivation for this work and present an explanatory example.

We describe our approach in Section III. Section IV reports a

preliminary evaluation of the proposed approach. In Section V,

we discuss related work. Finally, Section VI concludes the

paper and outlines future work.

II. MOTIVATION AND BACKGROUND

Figure 1 represents a Smart Irrigation System (SIS) that

includes all the building blocks of a typical IoT system,

i.e., actuators, monitors, and sensors. The system analyzes

the environmental conditions to automatically irrigate the

soil using the classical MAPE-K control loop [9], [10]. In

particular, each node (represented by the dashed line in Figure

1) is composed of different types of sensors, i.e., Moisture,

Temperature, and Humidity.

Such sensors collect data at a given node and continuously

feed it to the Computing board. Based on sensor data, the

board decides whether to send a signal straight to the Irrigation
unit actuator to start or stop the watering process. When

the irrigation phase is ended, the LED indicators switch

from green to red. The Physical gateway connects each

irrigation node to the Cloud server, allowing users to remotely

control, via Mobile phone, the irrigation nodes and analyze

sensor data. Even though the presented system is simple, it

represents a real-world application composed of miscellaneous

IoT components that can be prone to critical malfunctioning.

For instance, the Moisture sensor can send the wrong value,

thus causing a waste of water or loss to the farm’s production.

Similarly, the user can erroneously decide to irrigate the field

if the LED is malfunctioning. Therefore, failure propagation

analysis plays an important role in understanding the system’s

behavior when it suffers from those faults.

An early-safety analysis approach has been proposed by

Ihirwe [2], by relying on Failure-Logic Analysis (FLA) [11]

mechanisms. FLA allows modelers to specify a component’s

failure logic behavior to help analyze how failures propagate

within a system to anticipate possible misbehaviors. To be

effective, FLA requires accurate knowledge about how failure

IoT System
Specification

Safety
analysis

System
model

Analysis
results

Fig. 2. Traditional failure analysis workflow.

may behave within the individual components. This can

either be by means of propagation or transformation across

components.

Figure 2 depicts the failure analysis workflow underpinning

the approach proposed by Ihirwe [2]. First, the system

is modeled by identifying all the needed components and

communication channels. Afterward, the user has to check the

system’s safety by performing a proper failure propagation

analysis. It is worth noting that the two phases are typically

conducted manually with no or limited degree of automation

[12], [13].

However, detecting those faults is a daunting task since

thoroughly exercising an IoT system requires considering

both the system and its environment. Therefore, a task of

paramount importance is to detect how failures may propagate

using early-safety analysis strategies. Even though several

frameworks and techniques are in place [14]–[16], there is

a need to verify the correctness of such rules at design time.

Thus, the main challenges that need to be addressed when

modeling IoT systems while supporting early-safety analysis

are as follows:

• CH1: Detecting fault propagation in IoT systems
While fault analysis has been studied in generic software

systems [11], detecting failures in IoT systems has to

consider real-time data that may introduce variability in the

conducted analysis. Furthermore, failures that occur at the

circuits-level should be considered in the analysis as they

cause bugs that impact the source code [17], [18];

• CH2: Verifying the completeness and correctness of fault
propagation rules: Even though fault propagation rules

can be specified at the design time, their completeness and

correctness cannot be granted a priori.

III. PROPOSED APPROACH

To detect fault propagation (CH1) and verify FLA rules

(CH2), we propose a Model-Based Test-Driven Safety Analysis
approach that allows engineers to identify potential failures

and their propagation across components. The proposed

approach implements and extends the one shown in Figure 2

and consists of the three main phases shown in Figure 3. The

IoT System Modeling phase proposes tool-supported modeling

of the IoT system-level architecture and the modeling of

the system failure logic behavior. The Fault-Tree Generation
and Analysis supports the analysis of failure propagation,

with reference to the available rules. Finally, the IoT System
Testing phase exploits the information in the model to execute
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Fig. 3. Model-Based Test-Driven Safety Analysis.

the individual components while injecting failures on input

ports and checking how they propagate to output ports. This

phase can confirm or disprove the defined failure logic rules

(correctness check) and discover new ones (completeness

check). The outcome of both analysis and testing can be used

to refine the system, and its model, to finally achieve a more

reliable IoT system.

In the following, the three phases of the process shown in

Figure 3 are described in details.

A. IoT System Modeling

In this phase, modelers specify the architecture of the IoT

system and the failure-logic behaviour, as detailed below.

1) IoT system-level architecture: The proposed modeling

approach runs on top of CHESSIoT [2], a model-driven

environment to support the design and analysis of IoT systems.

CHESSIoT provides a UML/SysML profile extension to reflect

the constructs and semantics present in IoT system-level

architectures. The CHESSIoT system-level modeling language

was designed to satisfy the high-level specifications of a

typical IoT system, supporting a multi-layered specification

from the low-level edge layer to the fog layer and the cloud.

The language extends the SysML modeling language in

terms of new IoT-specific stereotypes and their interrelations.

Ports enable interactions among components and are

fundamental for determining error propagation paths. Figure 4

presents the CHESSIoT system-level meta-model. It permits

to specify IoT systems as a collection of physical devices and

entities connected to collect, process, send, receive, and store

data. The IoTElement represents physical entities, ranging

from microcontrollers at the thing layer to cloud servers. The

modeling layers can be grouped into edge, fog, and cloud.

OnDeviceElements are low-level IoT devices that contribute

to the system’s functional behavior, while PhysicalBoard
represents hardware controllers and PhysicalEntity is any

physical object or environment. Fog devices perform

preliminary computations and convey results to on-device

Fig. 4. CHESSIoT System-level meta-model [2].

elements, with storage and processing capacities varying

depending on the use case and hardware and software features.

On the cloud layer, devices operate at the cloud level

and contribute to the overall functionality of the system.

Consumer entities can be active or passive, with active

consumer entities being computer-running software to monitor

and control sensors remotely, and passive consumer entities

being traffic light actuators.

2) Failure-Logic behavior modeling and analysis: Once

the IoT system model is defined, the safety engineer

derives and annotates the failure behavior rules for each

modeled component by following the Failure Propagation

Transformation Calculus (FPTC) [19] notation. Based on its

nature, a component can propagate a failure (carrying a failure

from input to output), transform a failure (changing the nature

of a failure from input to output), act as a source of failure

(creating a failure despite no failure in input), or act as a sink

(avoiding the failure to be either propagated or transformed).

The following three abstract categories of failure types are

assessed: service provision failures, such as the omission or

commission of the output; timing failures, such as the early or

late delivery of the output; and value domain failures, such as

the output value being out of a valid range, stuck, or exhibiting

erratic behavior. In addition, a noFailure annotation is used

to indicate a no-failure type at the input port. Table I shows

different failure types and their descriptions.

TABLE I
FAILURE TYPES.

Failure type Description
Early Output provided too early
Late Output provided too late

ValueCoarse Output out of range
ValueSubtle Output in-range but erroneous
Omission Output expected but not provided

Commission Output provided but not expected

As previously mentioned, component failures can be

propagated or transformed:

• Failure propagation: It occurs in a component when a

single input port failure condition is directly transferred
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to its output ports without changing its nature. For

instance, Equation 1 shows a simple example of a failure

propagation of failure1 from port p(in) to port p(out)
of a simple component. Propagation also occurs between

two connected components when a failure condition at

the output port of the preceding component is transferred

to the input port of the following component.

p(in).failure1 → p(out).failure1; (1)

As an example from our specific scenario, this can happen

when a board gets erroneous data from the sensors (i.e.,

ValueCoarse) and sends it directly to its output ports.

This scenario would be expressed as in Equation 2, where

Bd(in) and Bd(out) are the input and the output ports of

the board, respectively.

Bd(in).valueCoarse → Bd(out).valueCoarse; (2)

• Failure transformation: It occurs within a component

when a failure condition at the input port is converted into

another type before reaching the output port. An example

is shown in Equation 3. A failure transformation can also

occur when more than one failure expression of any type,

except a NoFailure or wildcard at multiple input ports,

is transmitted on a single output port (see Equation 4).

Even if the failure has the same type, the fact that the

component converts two failures at its input ports to a

single failure at the output port is regarded as a failure

transformation.

p(in).failure(in) → p(out).failure(out); (3)

p(in1).failure1, .., p(inN ).failureN →
p(out).failure(out); (4)

To make an example of failure propagations and

transformations, let us consider the explanatory irrigation

system with two motors controlled by a relay driver. The

relay driver enables them to turn on and off depending on

the location to be irrigated. To control the relay driver, the

computer board sends the analog signal through two relay

driver-controlling ports. To define the failure behavior of the

irrigation unit, we must first understand the variety of failure

scenarios that can occur with an irrigation unit. For example,

two input ports may not get a signal from the board, causing

the relay driver to be unable to switch on and off the motors.

Another example is when the signal arrives at the input port

later or earlier than anticipated. As a result, the relay will

unexpectedly turn on and off the motors.
Table II shows a sample of the failure rules that specify the

number of failure situations for the irrigation unit, including

the ones described above. Note, Irr(in1) and Irr(in2) are

defined as input ports, while Irr(out1) and Irr(out2) are

defined as output ports.
When modeling the IoT system’s Failure-Logic behavior

is finished, the FLA analysis can be executed. This analysis

Fig. 5. FLA meta-model [2].

considers the annotated CHESSIoT model and transforms

it into an FLA model [8]. The transformation calculates a

complete system’s failure behavior starting from the failure

behavior rules of the system’s composite components and

their interconnections. This, in turn, means that the failure

behaviors of composite elements are also determined by the

failure behaviors of their individual simple components.

As shown in the FLA meta-model in Figure 5, FLA models

consist of composite components, representing sub-systems

containing one or more sub-components. These components do

not possess failure behavior by themselves; instead, they rely

on their sub-components to determine their failure conditions.

On the other hand, a simple component represents a functional

component whose failure may contribute to a system failure.

Each component contains input and output ports with their

corresponding failure rules.

B. Fault-Tree Generation and Analysis

The Fault-Tree Analysis (FTA) [11] aims to graphically

analyze the system’s final failure behavior based on the FLA

input. Fault trees depict the system failure logic outcomes in a

tree structure, making it simple to navigate and trace influences

from a system-level danger to specific failures from system

components and sub-components. In addition to that, it is also

possible to perform analyses on it to determine minimal failure

events that are required to trigger such hazards

The Fault-Tree generation is performed through a series

of model-to-model transformations from the FLA model to

a series of Fault-Tree (FT) models. An FT is generated for

each of the failures that propagate to the targeted output port

of the system, and contains logical networks of events and

corresponding gates that together form a failure representation

tree, reflecting the system’s failure behavior set by the user

and the system’s functional architecture. Each FT event has

its own unique identity in the tree and can be of type basic,

intermediate, external, or undeveloped, depending on the stage

at which it manifests.

In the FT generation process, each FT is built recursively. A

top event is initially generated due to the failure’s propagation

to the system output port. In terms of logical gates used in

the FT, only AND and OR gates are adopted. The events gate
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TABLE II
SAMPLE FLA RULES OF THE IRRIGATION UNIT.

Rule Description
Irr(in1).omission, Irr(in2).omission → Irr(out1).omission, Irr(out2).omission The input ports receive no signal, causing the relay driver to be unable

to turn on/off the motors.

Irr(in1).early, Irr(in2).early → Irr(out1).commission, Irr(out2).commission The input ports receive the signal earlier than expected, causing the
relay driver to unexpectedly turn on/off the motors.

Irr(in1).late, Irr(in2).late → Irr(out1).commission, Irr(out2).commission The input ports receive the signal later than expected, causing the relay
driver to unexpectedly turn on/off the motors.

Irr(in1).valueSubtle, Irr(in2).valueSubtle → Irr(out1).early, Irr(out2).early The input ports receive an erroneous but in-range signal, causing the
relay driver to turn on/off the motors earlier than expected.

Irr(in1).valueSubtle, Irr(in2).valueSubtle → Irr(out1).late, Irr(out2).late The input ports receive an erroneous but in-range signal, causing the
relay driver to turn on/off the motors later than expected.

is created systematically. An AND gate is used to indicate

a failure transformation from an input to an output port of

a component. On the other hand, an OR gate is used to

depict a failure propagation case. The OR gate can also

depict a scenario in which one or more failure outputs from

distinct components are passed to the input of the following

component.

The intermediate events are created and populated into

the FT based on the failure expressions and the components

they are assigned to. The FT population involves a recursive

transformation process in which components, ports, and

their corresponding rules are recursively parsed. So, at this

stage, the only crucial stopping case is reached when the

transformation hits a condition matching a basic failure, an

underdeveloped failure (i.e., an insufficient source failure), or

an externally injected failure. For instance, Figure 6 depicts

a simple transformation example with indications showing a

transformation mapping of Equation 4. From the example,

each of the output expressions is mapped to an output event

of a logical combination of the input expressions. Each input

expression is mapped to an event, and the type of such event

is determined by the expression condition. In addition to

that, the logical gates are defined based on the nature of

the input expressions to satisfy the failure propagation and

transformation concepts.

As the system gets bigger and more complex, which

Fig. 6. FT corresponding to Equation 4.

in turn requires a large number of rules to better cover

all possible failure scenarios, the generated FTs inevitably

become even bigger and harder to grasp. To tackle such

a challenge, different analysis mechanisms are used to

systematically extract meaningful insight from the generated

tree. CHESSIoT supports “Qualitative” fault tree analysis

mechanisms in which only the essential FT representations are

kept. This process involves the removal of internal component

failure propagations, external component-to-component failure

propagations, and basic event redundancies. In addition,

CHESSIoT also supports “Quantitative” analysis that

automatically calculates the failure probabilities of an entire

system from its constituent parts’ failure probabilities.

C. IoT System Testing

The third phase of the approach shown in Figure 3 concerns

testing the modeled IoT system to confirm or disprove the

defined failure logic rules (correctness check) and discover

new ones (completeness check). This phase is guided by the

information collected from the system’s model and consists

of three main activities: the Isolation of the components to

be exercised, the Testing of the isolated components to collect

observations about how failures are propagated from inputs to

outputs, and the Rules Generation from the observations, as

shown in Figure 7.

The Isolation activity isolates the component under test

from the rest of the system using stubs and probes. The

stubs are connected to the input ports of the component

while removing the original connections. The probes are

connected to the output ports of the components, again

removing the original connections. In this configuration, the

stubs generate the input values in a controlled and coordinated

way, whereas monitoring probes capture and record the output

values produced by the component under test. Figure 8 shows

how the explanatory component Irrigation unit is isolated to

support the discovery of failure propagation patterns. Isolation

is a simple activity performed visually on the model.

The Testing activity consists of exercising the isolated

component through the stubs to log evidence about how

failures are propagated through the probes. Since the inputs

of an isolated component are fully controllable and its outputs

can be fully observed, it is possible to systematically generate

tests that include failures in the inputs and observe how and

if they propagate to the outputs.
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Fig. 7. IoT System’s testing process.

Fig. 8. Irrigation unit component isolated.

The strategy to observe how failures propagate is based

on a variant of differential testing [20], [21]. In differential

testing, the same inputs are executed on two comparable

implementations (e.g., two compilers for the same language),

and the outputs are directly compared to discover possible

faults. In this case, we start from a base execution t=(I,O),

where I is a set of time series values, each one representing

a sequence of input values for an input port, and O is a set

of time series values, each one representing a sequence of

output values observed for an output port. Figure 9 shows an

example of a base execution of the Irrigation Unit component.

The time series provided by the stub in input activates the

component from second 15.00001 to second 30.00001, by

sending 5 Volts to the circuits to turn on the water fans and

the LED associated with that input port; instead, when the

value is set to 0, the component is not active as not stimulated

by any Volt. The time series in output reflects the behavior

instrumented in input, as the component results active, for

each output port, from second 15.00004 to second 30.00007

(differences with respect to input are minimal and depend on

the precision of Proteus tool1, which is used for this work as

1https://www.labcenter.com/iotbuilder/

�������	
�
���������
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����������
�
����������
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�������
��
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Fig. 9. Input & output time series of Irrigation unit component.

design and simulation environment).

To discover how failures propagate, our approach

automatically modifies the inputs I used in a base execution

t by systematically injecting failures of the given types on

the inputs. The approach then executes the modified inputs

I ′ and collects the outputs, namely O′. The comparison of

the output produced by the base execution O and the output

generated by the mutated execution O′ reveals if and how the

input failure(s) propagated to the output.

We need two main elements for each supported failure type

to execute this process: a failure injector and a failure detector.

The failure injector is a function that, given an input time

series, modifies its values to obtain a minimally modified time

series that includes the failure of the given type. The failure
detector is a function that, given two time series, one obtained

from the base execution and another obtained from a mutated

execution, can tell if the failure of the given type is present in

the output.

Table III summarizes the failure injectors and the failure

detectors defined for the fault types currently supported by

our implementation for IoT systems. Note that both injectors
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and detectors can be parameterized with respect to the actual

use case, to reflect the characteristics and volatility of the

signals. TS and TS
′

represent base and mutated time series,

respectively, εt and εv determine the tolerance on timing and

values variations, and [vmin, vmax] are the range of accepted

values for the considered use case. As an example, an Early
failure injector may mutate the base execution of Figure 9, by

changing the component activation time from second 15.00001

to 12.00001, whereas an Early detector may compare base

and mutated executions to determine how this propagates in

output.

These elements are combined into a fully automated testing

process that repeatedly instantiates the isolated component,

generates the mutated execution (using the failure injectors),

runs the component with the mutated execution, collects

observations checking for the presence of failures (using the

failure detectors), and destroys the instance of the isolated

component. This process is repeated multiple times for all the

combinations of failures to be investigated.

Additional data can be collected by considering multiple

base executions. In particular, we envision the possibility to

start from a set of base executions that cover the various

possible states of the components under test, so that the

propagation of failures can be studied in multiple contests (i.e.,

states). For the moment, we assume the user of the approach

shall define the states that must be used in this process, and

thus provide a set of base executions that cover the relevant

states. In the future, we would like to explore the automatic

generation of the base executions.

At the end of this process, for each combination of input

failures p(in1).failure
i1
(in1), .., p(inN).failure

iN
(inN), a set of

observations Obsi where Obsi ∈ {failure1 . . . failurek} ∪
NoFailure, are available.

This testing phase can be configured to work in two different

modes: (i) validation of existing failure propagation rules

(validation mode) or (ii) discovery of new failure propagation

rules (discovery mode).

The validation mode provides a cost-effective targeted

exploration of the combinations of failures, and their

propagation. In particular, for each failure propagation

rule p(in1).failure(in1), .., p(inN).failure(inN) →
p(out).failure(out), the validation mode investigates how

failures propagate to the output when the failures in the input

ports are consistent with the left-hand side of the rule, i.e.,

failure(in1), .., failure(inN). The final set of derived rules

will either confirm or disprove the existing rules.

The discovery mode is a more expensive but systematic

exploration of the possibile combinations of failures

to derive rules about their propagation. Given a set

of k failure types failure1 . . . failurek and N input

ports, this mode investigates how, and if, failures

propagate for every combination of input failures

p(in1).failure
i1
(in1), .., p(inN).failure

iN
(inN), where each tuple

indicates the failures present in the input ports, and failurei

is any of the considered failure types or NoFailure. For

instance, if the Late (L), and Early (E) failure types

are investigated for two input ports, six combinations of

inputs failures (〈L,−〉, 〈−, L〉, 〈R,−〉, 〈−, R〉, 〈L,R〉, 〈R,L〉,
where − represents NoFailure), obtained by every possible

permutation of the considered failures, are considered. The

final set of rules will provide a comprehensive view about

how failures are propagated by the considered component.

In practice, the validation mode constraints the discovery to

the subset of failures used in the rules to be validated, while

the discovery mode considers every possible combination of

failures.

Finally, the Rules Generation activity of Figure 7

consists of the generation of the actual set of failure

propagation rules. This is done by extracting the

set of failures types f1, . . . fp present in a set of

observations Obsi associated with a same pattern of failures

p(in1).failure
i1
(in1), .., p(inN).failure

iN
(inN) and generating

the rule p(in1).failure
i1
(in1), .., p(inN).failure

iN
(inN) →

f1or . . . orfp, which is finally encoded in the failure

analysis tool as a set of p non-deterministc rules

p(in1).failure
i1
(in1), .., p(inN).failure

iN
(inN) → fi, where

i = 1 . . . p.

The discovered rules may confirm or disprove the existing

failure propagation rules and discover new ones. This phase

may thus trigger an evolution of the system’s model by

refining the system failure logic behaviour definition. From

this evolution, the whole process may be re-triggered to

achieve satisfactory reliability for the candidate IoT system.

IV. EVALUATION

To evaluate our approach, we selected the Irrigation unit

component, introduced in Figure 7 and shown in more details

in Figure 8. The component, designed with Proteus, comprises

two main circuit streams that decide the activation of two

water fans and two LEDs (each circuit controls a water

fan and a LED). Once isolated, the input signals of the

circuit are generated by the GEN IRRIGATION stub (red

circle in Figure 8), while the output signals are linked to the

PROBE IRRIGATION probes that record the data produced

by the circuits (blue circles in Figure 8).

We use the base execution described in Figure 9 as a

basis to study failure propagation. In this scenario, both
the water fans and LEDs start as turned off, then they
are turned on for a fixed timespan by an external request,
and finally they are turned off again. As mutated scenarios,

we considered every possible combination of the currently

supported failure types (i.e., Early, Late, ValueCoarse,

and ValueSubtle, from Table I) for the two input ports

available in the component. Every combination was repeated

3 times, in order to capture variations in the executions, for

a total of 48 different mutated scenarios produced by our

injectors. We injected each combination separately, ran the

mutated scenario, and compared the results via detectors to

discover how failures propagate.

The experiment’s results are summarized in Table IV. The

column labeled IN Failures shows the combinations of failures
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TABLE III
FAILURE INJECTORS & DETECTORS.

Type Injectors Detectors

Early (ti, vi) ∈ TS → (ti − x, vi) ∈ TS
′
, where (x > εt) (ti, vi) ∈ TS, (tj , vj) ∈ TS

′ → true, if (vi = vj) ∧ (tj < ti − εt)

Late (ti, vi) ∈ TS → (ti + x, vi) ∈ TS
′
, where (x > εt) (ti, vi) ∈ TS, (tj , vj) ∈ TS

′ → true, if (vi = vj) ∧ (tj > ti + εt)

ValueCoarse (ti, vi) ∈ TS → (ti, vi ± x) ∈ TS
′
, where (x > εv) ∧

((vi − x < vmin) ∨ (vi + x > vmax))
(ti, vi) ∈ TS, (tj , vj) ∈ TS

′ → true, if (ti = tj) ∧ ((vj < vmin) ∨ (vj >
vmax))

ValueSubtle (ti, vi) ∈ TS → (ti, vi ± x) ∈ TS
′
, where (x > εv) ∧

(vmin ≤ |vi ± x| ≤ vmax)
(ti, vi) ∈ TS, (tj , vj) ∈ TS

′ → true, if (ti = tj)∧(|vi−vj | > εv)∧(vmin ≤
vj ≤ vmax)

that were injected into the two input ports, while the column

labeled OUT Failures displays the combination of failures that

were observed on the two output ports. As each combination

of input failures was executed multiple times, it was possible

to observe various combinations of failures on the output.

For example, when the first and second unit ports were

given the failures Early and ValueSubtle, respectively,

two possible combinations of output failures were identified:

Early-Late and Early-NoFailure.

The green color highlights a failure type that

propagates unchanged from the input to the output. The red
color indicates a failure type that is transformed as a failure

of a different type. Finally, the blue color determines

failures that are masked by the implementation and thus do

not propagate to the output.

Notably, Early and Late failures are always propagated

to output ports, whereas ValueSubtle and ValueCoarse
produce different outcomes depending either on the position

within the time series of the value affected by the mutation

or the magnitude of the mutation. In fact, when a wrong

voltage value, injected as either a ValueSubtle or a

ValueCoarse, occurs at the beginning of the time series,

changing the original value to a value near or below 0, the

component responsible for turning on the water fans and

the LEDs is markedly delayed, resulting in the detection of

a Late failure on output ports. Instead, when the mutated

voltage value is set close to 5 Volts, i.e., the maximum

accepted value provided by the injector in input according to

the use case, or even higher, no notable changes are detected,

resulting in a NoFailure. This is because the Irrigation unit

component in Proteus is configured to flatten voltage values

up to 5 Volts. Interestingly, depending on the context of the

failure and the specific value, it may either mask the failure

or transform the failure into a failure of a different kind.

These results contributed to improving the knowledge of

the engineers about the fault tolerance of the system. In

fact, the engineers’ supposed failures would only propagate

unchanged through the component, while failure propagation

rules show more complicated, sometimes context-dependent,

patterns. Further, the component could sometime mask the

effect of the same failures. For instance, by referring to Table

II, just one of the sample FLA rules (last row) was actually

confirmed by our testing techniques. This is primarily because

our testing approach has yet to cover the Commission and

Omission failure types, which appear in the prior three

rules in Table II. Please note that not all the recommended

tests listed in Table IV will necessarily be used in the FLA

analysis. However, having these results can provide the user

with greater clarity regarding potential failure combinations,

which can improve the accuracy and comprehensiveness of the

FLA rules and generated fault trees.

V. RELATED WORK

In this section, we review i) the most relevant Model-Driven

Engineering (MDE) approaches applied in the context of IoT

ii) applications of mutation testing in fault analysis, and, iii)
specification mining in software verification.

A. MDE for IoT development

Ciccozzi et al. [22] exploits the MDE paradigm to enable

the abstraction of IoT systems. They propose exploiting the

MDE paradigm to enable the abstraction of IoT systems, the

easy handling of the various degrees of automation in software

development, and the performance analysis of the system from

different perspectives.

Thramboulidis et al. [23] developed an MDE approach

to face the complexity of IoT-based cyber-physical

manufacturing systems. The conceived language allows

domain experts to integrate IoT protocols during the system

specification.

ThingML [24] is an IoT engineering platform that combines

well-proven textual software-modeling constructs aligned with

UML, such as statecharts and components, with an imperative

platform-independent action language for developing IoT

applications.

Fortas et al. [25] exploit MDE techniques to build an

approach supporting the development and testing of IoT

applications. In particular, they use ThingML [24] in the

modeling process and Proteus for simulation.

Monitor-IoT et al. [6] is a graphical designer based

on the Obeo Designer Community and Eclipse Sirius

tools. The framework allows developers to model IoT

multi-layer monitoring architectures. The tool enables the

definition of computing nodes and their resources that support

the monitoring processes, i.e., data collection, transport,

processing, and storage. Monitor-IoT is flexible enough to

support the modeling at the edge, fog, and cloud layers.

B. Mutation testing in fault analysis

Praphamontripong et al. [26] present an approach to

testing Web applications by applying mutation analysis to

the connections among Web application software components.

The authors showed the effectiveness of mutation analyses in
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TABLE IV
FAILURES PROPAGATION IN IRRIGATION UNIT EXPERIMENT.

IN Failures OUT Failures
Early - Early Early - Early
Early - Late Early - Late
Early - ValueCoarse Early - Late, Early - NoFailure
Early - ValueSubtle Early - Late, Early - NoFailure
Late - Early Late - Early
Late - Late Late - Late
Late - ValueCoarse Late - Late, Late - NoFailure
Late - ValueSubtle Late - Late, Late - NoFailure
ValueCoarse - Early Late - Early, NoFailure - Early
ValueCoarse - Late Late - Late, NoFailure - Late
ValueCoarse - ValueCoarse NoFailure - Late, Late - NoFailure, Late - Late, NoFailure - NoFailure
ValueCoarse - ValueSubtle NoFailure - Late, Late - NoFailure, Late - Late, NoFailure - NoFailure
ValueSubtle - Early Late - Early, NoFailure - Early
ValueSubtle - Late Late - Late, NoFailure - Late
ValueSubtle - ValueCoarse NoFailure - Late, NoFailure - NoFailure, Late - Late, Late - NoFailure
ValueSubtle - ValueSubtle NoFailure - Late, NoFailure - NoFailure, Late - Late, Late - NoFailure

creating tests supporting fault detection. The proposed type of

analysis is able to discover also new mutation operators.

Similarly, Moran et al. [27] applied mutation testing

in the context of mobile Android applications. Besides

the application of empirically derived operations, the

proposed tool supports the automation of the process of

detecting potential mutant locations, generating mutants, and

discovering new operations.

Humbatova et al. [28] present an approach for testing

Deep Learning (DL) solutions. The authors extracted

mutation operators from existing fault taxonomies. Then, they

assessed the mutation operators to understand whether they

produce killable, but not trivial, mutations. Eventually, they

evaluated the approach by comparing it with the existing

DeepMutation++ DL mutation tool. The results showed that

their operators can discriminate more effectively between a

weaker from a more robust test set.

Belli et al. [29] propose a model-based mutation testing

approach for industrial systems based on directed graphs.

The approach generates mutants and injects faults at the

model level. In such a way, the mutation testing strategy can

be applied even when the source code is unavailable. They

only use two mutation operators, omission and insertion, by

means of directed graphs. Then, these graphs are semantically

enriched and exemplified using a collection of graph-based

models to generate other operators.

C. Specification Mining

Concerning the understanding of system behaviour,

specification mining, intended as the extraction of high-level

specifications from existing code, may play a key role.

Approaches exploiting mined specifications can be used for

program understanding but also for formal verification.

Dallmeier et al. [30] propose TAUTOKO, a typestate miner

that combines systematic test case generation and typestate

mining. Using those strategies. the approach systematically

extends the execution space and enriches the final specification

by increasing true positives.

The need for good specifications for effective system

verification is also highlighted by Cao et al. [31]. They adopted

a rule-based specification mining approach that explores the

search space of all possible rules and uses interestingness

measures to differentiate specifications from false positives.

Then, the authors propose a learning-to-rank-based approach

to consider 38 available interestingness measures together and

investigate their combinations. Their experiment results show

that the learning-to-rank-based approach can improve the best

ranking performance using a single measure by up to 66%.

ARTINALI++ [32] tool dynamically mines specifications of

Complex Cyber-Physical Systems (CPS) to manage security

issues. The approach generates a multi-dimensional model

that is capable of embodying time, data, and events into the

specifications. ARTINALI++ has been validated using three

CPS platforms for intrusion detection. The results showed an

average of 97.7% detection accuracy across platforms while

incurring reasonable performance and memory overheads.

VI. CONCLUSION AND FUTURE WORK

This paper discussed the challenges and importance of

supporting early safety analysis of IoT systems, which

are susceptible to various failures that can impact their

functionality and the environment they operate in. Failure

propagation within these systems is complex due to their

diverse components and distributed nature. To address this,

the paper discusses using Failure-Logic Analysis (FLA) to

understand how component failures may propagate and affect

the system’s behavior. However, FLA relies on manually

specified rules, which can be error-prone and incomplete. The

paper proposes adopting testing methodologies to mitigate

the issues with manually specified FLA rules. Potential faults

can be observed and identified by subjecting the IoT system

to various test cases. By means of the proposed testing

techniques, it is possible to support the validation of the

correctness of the system’s behavior and the effectiveness of

the specified rules in capturing fault scenarios. Future plans

include the support of all the fault types that can be specified

at the level of IoT system modeling. Moreover, we intend to

investigate the generalizability of the proposed technique by

considering different execution environments than Proteus.
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