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Abstract—The growing adoption of model-driven engineering
raised the need for techniques and tools supporting modeling
artifacts’ reusability. In this respect, several model repositories
have been proposed by academia and industry so that modelers
can exploit advanced searching facilities to identify reusable
artifacts that might fit the particular problem at hand. Despite the
enduring quest for the right ways to search and retrieve modeling
artifacts, satisfactory solutions are still missing. This paper
investigates the adoption of general-purpose indexing and search
features provided by Apache Lucene to support the classification
and clustering of metamodel repositories. In particular, we show
that Apache Lucene allows us to get accurate results whenever the
mandatory requirements of more appropriate techniques, such
as hierarchical clustering or neural networks, cannot be met.

Index Terms—Model-Driven Engineering; Classification; Clus-
tering; Apache Lucene

I. INTRODUCTION

Over the last few years, both academia and industry pro-

posed several model repositories to foster the reusability of

modelling artefacts [1], [2], [3], [4]. Modelers can interact

with such systems by exploiting advanced searching and

browsing facilities so that users can identify sets of reusable el-

ements for the problem at hand, instead of e.g., developing new

metamodels and model transformation from scratch. Getting

insights from software artefacts is a challenging task, which

represents 60% of the effort spent on software comprehension

[5]. Similarly, in MDE the exploration of datasets consisting of

e.g., metamodels and models is challenging because items are

typically not labeled and properly organized. For instance, a

recent work [6] introduced a dataset consisting of ≈90,000

models, which are made available without any additional

information or metadata. A labeled metamodel dataset has

been made available by Babur [7], even though its population

is limited to 555 metamodels. The reduced availability of

labeled artifacts can be explained by the fact that manual

annotation is generally tedious and inapplicable in the case

of a large amount of data.

To mitigate the problems related to the lack of labeled

data on the one hand and to provide model repositories with

advanced searching and browsing functionalities, on the other

hand, automated classification [8] and clustering [9], [10]

techniques have been recently proposed. Even though a good

accuracy characterizes such methods, their applications are not

always possible since they are enabled only if some constraints

are satisfied. In particular, in the case of classification through

machine learning techniques, it is mandatory to perform

training phases by consuming labeled datasets, which are not

always available. Typically, datasets are created by crawling

items from heterogeneous sources, and labeling them is a

strenuous process, which is not always possible to perform.

Concerning clustering approaches, they are shown to suffer

performance issues, especially for large datasets: the time

needed to automatically group objects according to a given

similarity function increases exponentially with the number of

elements of the considered dataset.

This paper investigates the adoption of general-purpose

indexing and search features provided by Apache Lucene to

support the automated classification and clustering of meta-

models. The final goal is to examine to what extent it is

possible to discard the structural characteristics of metamodels

to perform such operations and when instead, it is advisable

to use dedicated tools. The proposed approach consists of

the following phases: (i) Lucene indexes the available un-

labelled metamodel dataset; (ii) given an input metamodel,

a corresponding query is automatically created by exploiting

Lucene boosting facilities; (iii) the tool automatically retrieves

a ranked list of metamodels that are similar to the one given in

input. We show that the produced output consists of a group

of metamodels, which coincides with a given extent with the

cluster, which dedicated clustering techniques would produce.

Moreover, we show that the first element of the ranked list

can be used to classify the metamodel in input, i.e., to suggest

the label be assigned to the metamodel of interest.

We evaluated the accuracy of the proposed approach on a

dataset consisting of 551 metamodels by comparing it with

two existing baselines [10], [8]. Interestingly, the proposed

Lucene-based approach has similar accuracy to the considered

baselines. However, it is worth noting that our proposed

approach is unsupervised, and consequently, no data pre-

processing stages are needed. Moreover, the proposed tech-

nique outperforms both approaches in the considered baselines

in terms of execution time.

II. BACKGROUND

Data analysis procedures have the goal of supporting ex-
plorations of available datasets or confirming some hypothesis

about phenomena of interest. In any case, data analysis tasks

rely on the capability of constructing or recognizing groups of

similar objects with respect to given definitions of similarity
[11]. Clustering and classification are two important methods,

which are used to analyse data under disposal [11]. The former
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Clustering

c1

c2

c3Input dataset

Fig. 1. Explanatory clustering example.

aims to identify similarities among objects in the considered

data and thus construct groups of objects with characteristics

in common. Thus, employing clustering techniques, the given

collection of unlabelled data is automatically organized in

different groups. Each group is assigned a distinguishing label.

As shown in Fig. 1, the set of labels used to characterize the

dataset elements is not given as input since it is part of the

outcome of the clustering phase. In the case of classification

instead, as shown in Fig. 2, a set of predefined labels is given

as input together with the elements to be labelled; the goal is

to assign each object in the dataset of interest to one of the

available groups.

Different research communities have adopted clustering and

classification techniques for grouping unlabelled data. The

increasing availability of reusable items like models, metamod-

els, and model transformations fostered the MDE community

to propose techniques and tools to support the exploration

and the analysis of extensive collections of reusable modeling

artefacts. The reasons behind such efforts are manifold. For

instance, in [12], [13] the authors mine metamodel datasets

employing dedicated metrics to characterize the complexity

of metamodels. Hierarchical clustering approaches have been

conceptualized [10], [9] to automatically group metamodels

and support the graphical exploration of metamodel reposi-

tories by employing different similarity functions, including

the complexity similarity of the stored items. AURORA [8]

is a neural network to support the automated classification

of metamodels. Once being adequately trained, AURORA is

able to predict the category to be assigned to a new metamodel

given as input with reasonable accuracy.

By focusing on the application of clustering and classifica-

tion to mine metamodel datasets, appropriate approaches like

those presented in [10], [9], [8] cannot always be adopted. In

particular, hierarchical clustering techniques have been shown

to suffer performance issues: given the dataset of interest, a

corresponding similarity matrix must be produced. To this end,

it is necessary to calculate the similarity of all metamodel

pairs in the dataset. Thus, when a new metamodel has to be

added to the considered dataset, the whole similarity matrix

must be recalculated by making the approach not appropriate

when the content of the considered dataset is supposed to

Classification

Input dataset

Input labels

Fig. 2. Explanatory classification example.
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Fig. 3. Overview of the proposed approach.

change frequently. The adoption of AURORA with acceptable

prediction accuracy is instead enabled when large and labeled

datasets are available. Unfortunately, this is not always the case

because labeling datasets is a strenuous and time-consuming

task, which cannot always be performed.

III. PROPOSED APPROACH

In this section, we present an approach based on general-

purpose indexing and searching facilities provided by Apache

Lucene 1 to support both the classification and clustering of

metamodels. Lucene is a powerful and open-source Java li-

brary to add search facilities to any application. It is a general-

purpose technology, which can index and search any text.

Even though there exist search engines specifically designed

for models, e.g., [14], [15], [16], to mention a few, we want

to investigate if it is still possible to employ general-purpose

technologies to get good clustering and classification accura-

cies without deep model-specific customizations. Adopting the

proposed approach is recommended when it is impossible to

satisfy the requirements related to the adoption of appropriate

approaches like hierarchical clustering and neural networks. In

particular, users can adopt the Lucene-based approach when

(i) there is no way to label the available metamodels manually;

and (ii) it is not possible to accept the performance costs

related to the calculation of similarity matrixes, especially

when the available dataset is supposed to change frequently.

As shown in Fig. 3 the proposed approach relies on four

components, i.e., metamodel indexing, query creation, cluster
definition, and label retrieval as described in the following.2

Metamodel indexing: At this stage, the system pre-processes

the metamodel dataset under disposal and creates correspond-

ing indexes. It is important to remark that no training activities

are needed, and the typical adoption of the proposed technol-

ogy is intended to feed the system with data collected from

different sources without any manual curation. The operation

is performed for any newly added metamodel. Only the lexical

information presents in the metamodels, i.e., names of the

classes, attributes, and references, is used by the indexing;

the process does not consider additional structural information

1https://lucene.apache.org/
2We already made available at https://bit.ly/2Qkxb5J the replication pack-

age of the conceived tool to allow for future research.
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Fig. 4. A simple Ecore metamodel.

like cardinalities, containments, and hierarchies by making the

indexing process simple. The metamodels are parsed, and their

structural information is excerpted by means of EMF core.3

These metamodels and the extracted elements are essentially

considered as textual files. Despite such a simplification, the

performed experiments (as shown in the following sections)

confirm that the currently considered elements for indexing

are enough for achieving a good accuracy of the proposed

approach. Figure 4 shows a simple Ecore metamodel defining

MongoDB databases. According to the defined metaclasses,

each Database consists of Collection elements, which in turn

contain Documents. Each Field in the document has a corre-

sponding value, which can be of type Value, SubDocument,
or ValueList. Table I shows the corresponding elements that

are extracted and filled to the index being created. For each

metaclass in the metamodel, the index contains its name, and

the name of all the contained structural features.
TABLE I

ELEMENTS THAT ARE EXTRACTED TO INDEX THE METAMODEL IN FIG. 4

Class Reference Attribute
Field value key

IValue - -

ValueList values -

Database collections name

Value - value, type

Collection documents name

SubDocument fields -

Document fields id

Query creation: Given an input metamodel, the system

automatically creates a corresponding query to search the

previously created index and get a ranked list of similar

metamodels. For explanatory reasons, we consider the same

metamodel shown in Fig. 4 to show the corresponding query

that would be created. In particular, the query given in Fig.

5 is defined as a sequence of <elementType:elementName>
pairs where elementType is the type of the element of interest

that can be of type class, reference, or attribute; elementName
is a string representing the name of the considered element

e.g., the class Field or the attribute value. All the pairs in

the sequence are in OR. Moreover, the boosting mechanism

provided by Lucene is exploited to give different importance

3The Eclipse Modeling Framework https://www.eclipse.org/modeling/emf/

class:Field∧2 OR reference:value∧1.5 OR attributes:key OR

class:IValue∧2 OR class:ValueList∧2 OR reference:values∧1.5 OR

class:Database∧2 OR reference:collections∧1.5 OR attributes:name OR

class:Value∧2 OR attributes:value OR attributes:type OR

class:Collection∧2 OR reference:documents∧1.5 OR attributes:name OR

class:SubDocument∧2 OR reference:fields∧1.5 OR

class:Document∧2 OR reference:fields∧1.5 OR attributes: id

Fig. 5. Example of a boosted query.

to the elements being queried. As shown in the example,

elements of type class are of higher importance than reference

elements, which in turn, have higher relevance than attributes.

Boosting values have been empirically identified to get the best

performance, and they are 2 for classes and 1.5 for references.

Various studies [17], [18] have shown that the adoption of

boosting brings in a better retrieval performance.

Cluster definition: Once the query is executed, Lucene re-

trieves the top n similar metamodels. Such metamodels are

always structured as a set, i.e., a group of metamodels being

similar to the one given as input. The system needs to know

how many results should be retrieved; this number is called

hits. Among the hits obtained item, the system will retrieve the

top n of them. Since we are interested in providing a cluster

of items similar to the one given as input, deciding how many

items are part of the same group is crucial. Lucene orders these

items by similarity; this means that the similarity decreases

progressively from the top similar metamodel with the one

given as input.

Label retrieval: As discussed in Sect. II, classification is

performed to assign predefined labels to unlabelled objects.

Thus, in metamodeling contexts, classification is performed

when input metamodels need to be labeled to assign them

to predefined groups. For instance, let us imagine that we

are keeping organized a dataset of metamodels according to

their intended goals e.g., for behavior specification or data

definition. When adding new metamodels to the considered

dataset, it is essential to keep the wanted organization by

assigning the new metamodel to the right group. To this end,

the proposed Lucene-based approach can be used by querying

the available dataset to retrieve the metamodels that are similar

to the one given in input. The first element in the retrieved

ranked list is used to retrieve its corresponding group, which

is assigned to the metamodel given as input. In this respect,

it is necessary to have a dataset manually labeled by humans.

IV. EVALUATION

In this section we evaluate the ability of the system to

provide meaningful clusters of metamodels as well as to

classify an incoming metamodel, we compare it with two

state-of-the-art tools, i.e., HC [10] and AURORA [8]. The

former is an unsupervised learning tool that works based on

a hierarchical clustering technique. Meanwhile, the latter is

a supervised learning approach, and it makes use of a feed-

forward neural network to classify metamodels. To compare

and evaluate the systems, we rely on three quality metrics, i.e.,

success rate, precision, and execution time.

Dataset: For our evaluation, we adopted an existing

dataset [19], which has been used to evaluate AURORA [8].
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TABLE II
DATASET COMPOSITIONS.

Cluster D1 (138) D2 (276) D3 (551)
1 14 28 56

2 2 4 7

3 10 20 37

4 6 12 24

5 25 50 100

6 13 26 54

7 19 38 76

8 40 80 159

9 9 18 38

The dataset consists of 555 metamodels, manually inspected

and classified into nine categories [7]. By carefully check-

ing the dataset, we encountered some loading errors with

four metamodels; thus, we decided to remove these from

the dataset. Table II shows the precise composition of the

considered dataset. In order to understand the capability of our

approach, we tried different dataset sub-sets. In particular, we

randomly excluded elements from the dataset of 551 elements,

and we came out eventually with two additional datasets of

138 and 276 metamodels. By creating such datasets, we kept

the original cluster distribution.

Methodology: The validation has been assessed by employing

the Leave-one-out cross-validation technique [20]. Thus, only

one element is removed as test and the whole dataset is used

as training. The process is repeated n times where n is the size

of the dataset. For instance, in the case of the dataset D3, the

process of indexing and testing occurred 551 times. For each

execution, 550 metamodels have been indexed, and only one is

used as a test to query the system. For each testing metamodel

m, we retrieved an ordered list of H similar metamodels. We

evaluated the performance of the approach by considering

different cut-off values, i.e., by considering the first element,

the top 5% and the top 10% of the considered dataset size,

and the whole result. To evaluate the clustering capability of

the approach, for each testing metamodel m, we compared

the list of Hc retrieved metamodels (up to the cut-off value c
of interest) with the ground-true, i.e., the content of the real

cluster in the dataset under investigation (see Table II), where

the input metamodel m is supposed to belong. To evaluate the

classification capability of the proposed technique, for each

testing metamodel m, we consider the label of the first element

in the retrieved metamodel list. Such a label is assigned to m
and we check the correctness of such an assignment with the

ground-truth data.

Evaluation metrics: To assess the conceived approach, we

make use of Success rate and Precision as they have been

widely used to evaluate information retrieval systems [21], and

Execution time. First, we consider the following definitions:

� True positive (Tp): concerning the classification evaluation,

Tp means that the category for the input metamodel is correctly

identified. In the case of the clustering problem, given the

calculated cluster related to the input metamodel, a metamodel

therein is Tp if it belongs to the same cluster of the input

metamodel according to the ground-true;

� False positive (Fp): in the case of classification, Fp means

that the retrieved category for the input metamodel is not

the correct one. Given the calculated cluster related to the

input metamodel, a metamodel therein is Fp if it is wrongly

calculated as belonging to the same cluster of the input

metamodel according to the ground-truth data.

Success rate: Given a set of H resulting metamodels, this

metric measures the rate at which the proposed approach can

return at least 1 correct metamodel belonging to the same

cluster of the input metamodel for each metamodel m in H.

Success rate =
countm∈H(Tp > 0)

|H| × 100% (1)

where the function count() is a Boolean function that returns

1 for each true positive.

Precision: the metric measures the rate of correct items over
the entire set of retrieved items:

Precision =
Tp

Tp+ Fp
(2)

All these metrics are applied for all tests according to

the leave-one-out method, and then the average values are

calculated. As an example, let us assume we use as a query a

metamodel belonging to Cluster 1, and the system returns as

output a set of five metamodels as follows: three metamodels

to Cluster 1, one to Cluster 3, and one to Cluster 7. The

proposed cluster has three correctly identified metamodels over

5; the resulting precision is 60%. The total clustering precision
is calculated as the mean of the precision values obtained for

all the metamodels in the dataset. Similarly, the classification
precision is calculated as the mean of the correctly identified

categories over the total number of queried metamodels.

� Recommendation time: The time needed for the systems to

generate predictions is measured using a laptop with Intel i5-

8250U CPU @ 1.60GHz, 16GB RAM, and Ubuntu 18.04.

V. EXPERIMENTAL RESULTS

This section discusses the results obtained by the evaluation

strategy explained in Sect. IV. Figure 7 shows the classifica-

tion precision for Lucene and AURORA calculated on three

different datasets. As expected, AURORA performs better than

Lucene with the increasing size of the considered dataset. This

explains the importance of having big datasets to train the

underpinning neural network. However, it is worth noting the

good precision of Lucene in top-ranking the right metamodel

for all three datasets. In particular, for D1 Lucene gets the

same precision of AURORA. For bigger datasets AURORA

outperforms Lucene even though for D3 Lucene gets 92%

of precision. This confirms our intuition, i.e., Lucene can

support classification tasks when it is not possible to have

big labeled datasets. Even in such cases, Lucene can be seen

as a lightweight approach to support exploration activities for

the datasets at hand. Lucene performs much better to support

clustering activities, as shown in Fig. 6. Both Lucene top-
5% and top-10% outperforms hierarchical clustering for all

the three considered datasets. For instance, for the smaller

dataset (i.e., D1), Lucene top-5% precision is 71%. In contrast,

the corresponding HC top-5% is 55.2%.4 For top-10% the

4It is worth noting that to retrieve the top-5% and top-10% elements
from the unordered sets produced by the hierarchical clustering, we ordered
metamodel pairs according to their similarity values, and then retrieved the
wanted metamodel subsets by following the induced ranking.
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(a) D1 (b) D2 (c) D3

Fig. 6. Clustering Precision for Lucene and HC.

Fig. 7. Classification precision for Lucene and AURORA.

difference between Lucene and HC precision values is smaller,

even though the Lucene one is still higher than that of

hierarchical clustering, i.e., 58% compared to 55.1%.

Overall, Lucene shows good performance in clustering

metamodels independently from the size of the considered

datasets. In all the considered configurations, both Lucene

precision and recall values are higher than that of the con-

sidered hierarchical clustering technique. For classification

tasks, Lucene yields a comparable performance with that

of AURORA for smaller datasets. Whenever newly labeled

metamodels are added, the difference of the precision values

increases at the advantage of AURORA; however, with the

biggest considered dataset, Lucene can still get good precision

(92%) compared with that of AURORA (95%).

Timing performance: We measured the efficiency concern-

ing the time employed to prepare the data and to execute the

query. For the most extensive considered dataset, for preparing

the data and performing a query, Lucene, AURORA, and HC

take ≈30 seconds, ≈67 seconds, and ≈2.8 hours, respectively.

The results demonstrate the effectiveness of our approach, i.e.,

it can provide accurate prediction within short time.

VI. RELATED WORK

The problem of grouping metamodels has been investigated

over the last few years. Basciani et al. [10] proposed an

approach based on a hierarchical clustering technique. They

explored several similarity measures to establish the corre-

lation between metamodels. Besides the well-known cosine
similarity and Dice’s coefficient metrics, the authors conceived

two other algorithms which specifically work with metamod-

els. In a similar work [9], VSM (vector space model) has

been used to represent metamodels, which are then clustered

with hierarchical clustering. The process makes use also of

NLP techniques and weight schemas to augment the employed

VSM, and cosine similarity was utilized as the distance metric.

Strüber et al. [22] proposed a clustering technique based

on a graph-based representation. The authors generated a

meaningful group of sub-metamodels starting from a single

monolithic metamodel. In this work, users are expected to

interact with the system during the clustering process.

A tool to classify UML stereotypes has been proposed [23],

with the ultimate aim of helping modelers design stereotypes,

as domain knowledge is typically needed. The contribution

is a mechanism that classifies stereotypes according to their

capability to alter the syntax and semantics of the base

language. The adoption of Machine Learning techniques is

a common way to deal with classification. Nguyen et al. [24]

employed a convolutional neural network (CNN) to classify

a set of metamodels. A CNN is a particular neural network

developed to overcome the complexity problem related to

the connections among perceptrons, leading to an exponential

number of weights and biases.

Moogle [16] is a model search engine that supports textual

queries and relies on metamodels elements for creating in-

dexes. Moogle can search for models conforming to different

languages. The indexing mechanism relies on the Apache

SOLR search engine. MAR [14] is a search engine for models

based on a query-by-example approach. Apart from searching,

MAR was tested to see if it is suitable as a classification tool,

achieving good results. However, MAR has not been used for

clustering metamodels. At the time of writing this paper, unfor-

tunately, there are no publicly available replication packages

and deployable tools that we might use for performing a proper

comparison of MAR with the proposed approach. We plan to

do this as a short-term plan.

VII. CONCLUSION AND FUTURE WORK

This paper presented a Lucene-based approach to support

the clustering and classification of metamodels. The technique

has been devised to enable the exploration of metamodel

repositories when more specialized techniques cannot be easily

adopted due to the lack of labeled data or when the size of

the available dataset is so significant to make the adoption

of hierarchical clustering techniques prohibitive. Thus, the

proposed approach meets demands for metamodel explorations

that prefer quick responses and accept some inaccuracies.

However, the proposed approach has been compared with

HC and AURORA, two existing state-of-the-art techniques

for clustering and classifying metamodels, and it has shown

promising results, especially for clustering.
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As future work, we plan to compare the proposed technique

with the MAR search engine. Unfortunately, at the time

of writing this paper, MAR cannot be locally deployed to

support experiment replications and comparisons. However,

our interest is to investigate to what extent it is still possible to

get good accuracy without employing model-specific aspects.

For instance, in MAR, the structural complexity of models is

adequately encoded and indexed. Similarly, in HC, different

similarity functions were devised, including those measuring

metamodel distances in terms of their structural complexity. As

shown in this paper, considering structural metamodel charac-

teristics is not crucial. The Lucene-based approach has shown

good precision by considering only the terms of metamodel

elements. A proper comparison of the proposed approach with

MAR would help continue such an investigation. Last but not

least, we are going to test our approach on larger datasets,

aiming to study its applicability in real-world settings.
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