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ABSTRACT
Background: Model transformations play a crucial role in Model-Driven Engineering (MDE), with the ATLAS Transformation
Language (ATL) being a powerful technology for developing model-to-model transformations.
Methods: This paper presents a comprehensive investigation into the energy consumption of ATL transformations, aiming to
identify possible correlations among transformation rules, model size, and metamodel structural characteristics. We conducted
experiments on 52 ATL transformations, analyzing power usage and extending our inquiry to understand the impact of mutations
on both models and transformations.
Results: The experimental findings reveal relationships between the energy utilization of ATL transformations and the struc-
tural characteristics of metamodels. Furthermore, we establish a connection between energy consumption, model size, and the
complexity of transformation processes.
Conclusion: The insights gained from this research lay the groundwork for devising future energy-efficient strategies while
developing model transformations.

1 | Introduction

The concept of Model-to-Model (M2M) transformation holds
a pivotal role within the context of Model-Driven Engineering
(MDE). The widespread adoption of MDE techniques in vari-
ous industries is well-documented [1–4]. As MDE continues to
gain popularity, the accessibility of big data becomes increas-
ingly prevalent, making it an unavoidable aspect of considera-
tion [5]. In certain domains, the utilization of very large mod-
els (VLMs) [6], comprised of millions of elements, introduces
unique challenges related to performance. Empirical estimates
from industrial contexts highlight the potential threat and lim-
itation posed by the limited support for handling large models,
thereby hindering the widespread adoption of MDE in indus-
trial processes [1]. Furthermore, the presence of large models can
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adversely impact runtime execution [7], leading to unacceptable
delays in the case of model transformations [8]. To address these
challenges, significant efforts have been invested in recent years.
Numerous studies, notably those focusing on scalability [9, 10],
have contributed to the development of solutions. Gremlin [11],
for instance, is a framework specifically designed to tackle scala-
bility issues. Additionally, a recent study [12] highlights the per-
formance and scalability issues associated with model transfor-
mations, prompting researchers to explore directions for enhanc-
ing efficiency through static analysis [13]. Unfortunately, the fac-
tor of energy consumption has largely been overlooked in existing
considerations. Recent studies project that by 2030, data centers
alone will account for 10% of the planet’s electricity consumption’
[14]. The significance of energy-related concerns is increasingly
recognized by both industry and academia [15].
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In this paper, our objective is to contribute to filling the gap
in the existing literature by thoroughly investigating the energy
consumption associated with model-to-model transformations
by focusing on ATL transformations. Our paper delves into an
in-depth analysis of the energy consumption during the execu-
tion of model transformations. This analysis encompasses both
energy consumption and artifact metrics. The energy consump-
tion is quantified in Joules, while the artifact metrics include
a well-established set tailored for ATL transformations and
metamodels. More specifically, we aim to establish correlations
between the energy consumption of a model transformation and
the structural metrics of the transformation itself, as well as the
structural metrics of its input and output metamodels. In partic-
ular, studying several aspects such as input model navigation and
searches, calls of rules and helpers, target object resolution, and tar-
get object creation and initialisation, we aim to identify patterns
and practices that contribute to energy consumption, thereby
providing insights into understanding the energy demands of
model transformations and their contributing factors. To achieve
this, we selected 52 transformations from the Eclipse ATL Zoo1

and measured the power consumption of their executions by
applying them to models of different sizes. Our investigation
seeks to elucidate the interplay between these measurements, the
structural characteristics of meta-models, and the ATL transfor-
mations themselves.

We conducted our experiments in a controlled environment to
establish a first analytical step toward a generalizable construct.
The industrial transformations available are scarce, and the ones
usable in the ATL Zoo are generally old and relatively simple.
Therefore, it is difficult to predict to which extent the analy-
sis could be mapped in a real-case scenario. Nonetheless, we
employed several metrics and strategies to mitigate the biases
related to the inner characteristics of the ATL Zoo. A crucial
aspect under consideration involves examining the impact of
input model complexity. To address this, we curated a test set
comprising six ATL transformations, introducing mutations to
the models associated with these transformations. The resulting
sets manifest as three distinct groupings, each consisting of 100
mutants. To this end, we employed a model mutation tool named
Wodel [16]. An expected result is the observable increase in exe-
cution time accompanying an augmented dataset size. However,
it is noteworthy that despite the amplified dataset dimensions,
the energy consumption remains modest for certain transforma-
tions. In addition, we have examined the change of Object Con-
straint Language (OCL) helpers that are integral to ATL trans-
formations. Different studies discussed the importance of effi-
cient OCL expressions [13, 17]. Complex transformations gen-
erally retain several OCL statements and helpers. Some of these
expressions are conceived to navigate the collections and perform
operations throughout the whole input model. Therefore, ineffi-
cient OCL statements can lead to a degradation of the transforma-
tion, mainly using collection operations. Changes of OCL helpers
can have an impact on the transformation consumption and exe-
cution time. This may seem obvious, but it suggests an important
idea: customized simplification of OCL helpers can result in a
substantial improvement in power consumption metrics. Lastly,
we have created a comprehensive online repository that contains
the replication package of our experiments.2

The paper is structured as follows: Section 2 motivates the work
and makes an overview of existing approaches focusing on the
problem of measuring the energy consumption of software sys-
tems. Section 3 presents the methodology of this study. The
results of the performed experiments are presented in Section 4.
In Section 5, we report the threats to the validity of the study and
the strategies we adopted to mitigate them. Section 6 concludes
the paper and discusses possible future research directions.

2 | Background and Related Work

2.1 | ATL transformations

ATL is a model transformation language that incorporates
both declarative and imperative elements for developing
model-to-model transformations. It enables the definition
of transformations between source and target metamodels,
which serve as the abstract syntax definitions for the models
being transformed. By specifying these transformations, source
models, which conform to the source metamodels, are system-
atically transformed into target models, adhering to the target
metamodels.

Listing 1 presents an excerpt of JavaSource2Table included in
the ATL Zoo. This transformation generates a table indicating
how many times each method in a given piece of Java code is
invoked within any defined method. The transformation is out-
lined through a module specification, which includes a header
section (lines 1 and 2), helper functions (lines 4-7), and transfor-
mation rules (lines 9–23). The header defines both the source and
target models of the transformation, along with their correspond-
ing meta-models. As a result, the JavaSource2Table mod-
ule performs a one-to-one transformation that produces a target
model adhering to a Table meta-model from a source Java-
Source model (see line 2).

1 module J a v a S o u r c e 2 T a b l e ;
2 create OUT : Table from IN : J a v a S o u r c e ;
3
4 helper context JavaSource ! MethodDef in i t ion
5 def : computeContent ( c o l : J av aS ou rc e ! MethodDef in i t ion ) :

S t r i n g =
6 s e l f . i n v o c a t i o n s −> s e l e c t ( i | i . method . name = c o l . name
7 and i . method . c l a s s . name = c o l . c l a s s . name )−> s i z e ( ) .

t o S t r i n g ( ) ;
8
9 rule Table {

10 from s : J av aS ou rc e ! C l a s s D e c l a r a t i o n
11 to t : Table ! Table ( rows <− s . methods )
12 }
13 rule MethodDef in i t ion {
14 from m : JavaSource ! MethodDef in i t ion
15 to row : Table ! Row (
16 c e l l s <− Sequence { J avaSource ! MethodDef in i t ion .

a l l I n s t a n c e s ( )
17 −> c o l l e c t (md | thisModule . D a t a C e l l s (md, m) ) }
18 )
19 }
20 l a z y rule D a t a C e l l s {
21 from md: J av aS ou rc e ! MethodDef ini t ion , m: J av aS ou rc e !

MethodDef in i t ion
22 to c e l l : Table ! C e l l ( c o n t e n t <− m. computeContent (md) )
23 }

LISTING 1: Fragment of a sample ATL transformation

Helpers and rules are key components of ATL that determine
the transformation’s behavior. The source pattern of rules (for
instance, line 10) comprises types from the source meta-model.
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Therefore, a rule is applied to any instance of the specified source
types that meet the optional OCL rule guard. Additionally, rules
outline a target pattern (e.g., line 11) that specifies the target
objects generated by the rule and includes bindings to set their
features (attributes and references). For example, the binding
rows ← s.methods (line 11) sets the rows feature of the tar-
get type Table with elements created by the rules applied to the
input elements denoted by s.methods.

The rule MethodDefinition (lines 13–19) generates a target
Row for each source MethodDefinition. Within this rule, the
binding assigns a sequence of elements to the reference cells
using an OCL expression that selects all source MethodDefi-
nition objects and applies the lazy rule DataCells. In con-
trast to matched rules (like Table and MethodDefinition),
lazy rules are triggered only upon explicit invocation and utilize
the arguments provided.

The DataCell rule takes two MethodDefinition objects as
inputs and produces a target Cell containing a value computed
using the helper functions defined in lines 4–7. Helpers serve
as auxiliary operations that allow the creation of complex model
queries with OCL. Specifically, the helper computeContent
returns a string representing the number of occurrences of the
given MethodDefinition object.

2.2 | Related Work

Energy consumption is a concern of paramount importance for
its financial and environmental implications, and consequently,
over the last years, the energy concern has gained the interest
of academia and industry. Java is one of the most investigated
programming languages from the energy consumption point of
view [18]. In [19], the authors investigated the energy eagerness
of Java data collections. The authors first created energy pro-
files, executing micro-benchmarks to collect information about
energy behavior. Hence, they studied statically the target sys-
tem. Combining energy profiles and system specifications allows
the recommendation of alternative collection implementations.
The evaluation conducted on controlled environments revealed
energy savings of about 17%.

Kumar and Shi [20]. studied the energy effects of Java
command-line options. The authors proved that the Oracle JDK
is more energy efficient than OpenJDK. Furthermore, the Xint
command-line option resulted as the worst in terms of energy
efficiency with an average increase of 125%. The Xint flag pre-
vents the Hotspot JVM from compiling methods to native code.
Analogously, Pereira et al. [21] evaluated 27 popular program-
ming languages across 10 benchmark problems. Their findings
revealed key insights into the complex relationships between exe-
cution time, memory usage, and energy consumption, emphasiz-
ing that faster execution does not always equate to greater energy
efficiency. Moreover, they introduced a multi-dimensional anal-
ysis by combining energy, time, and memory usage, offering a
valuable tool for developers to optimize their choices based on
limited resources. In contrast, our work focuses on evaluating
energy consumption within a well-identified domain, specifically
model transformations using the ATL language. Our study inves-
tigates potential factors that impact the energy consumption of
executing model transformations, extending the conversation on
energy efficiency to domain-specific tasks.

In [22] the authors investigated the energy performance of 27 Java
I/O methods and explored the effects on software by substituting
these I/O methods. They managed to achieve energy savings of
even 30% in some real-case scenarios.

Georgiou, Kechagia and Spinellis [23]. compared the energy con-
sumption of small tasks developed in different programming lan-
guages, including Java, C, C++, Go, and Python. The authors
conducted an empirical study by analyzing tasks retrieved from
the Rosetta Code repository3 which is a repository of generic tasks
implemented in different programming languages, and even-
tually tested 14 languages. Besides particular cases, the study
demonstrated that compiled languages are more efficient than
interpreted ones. Empirical works about the energy consumption
of software systems have also been done in the domain of Android
[24], IoS [25], or wireless sensor networks [26]. In the domain
of Machine Learning different studies have been conducted
with the aim of improving the energy efficiency of ML-based
systems [27–29].

By focusing on investigations done in the MDE research field,
the performance of model transformations has been studied from
different perspectives. Cuadrado et al. [13]. developed a new com-
piler for ATL model transformation called A2L. The work aims
at improving the performance and scalability of developed trans-
formations. To this end, A2L can optimize OCL expressions and
transformation rules and exploit a novel algorithm to enable the
execution of parallel transformations.

In [30], the authors exploited the Ant World case study to com-
pare the performance of manual and automated transformation
optimizations. This case study was conceived as a contest orga-
nized by the 4th International Workshop on Graph-Based Tools4

aimed to simulate an anthill through model transformations. The
results reported an increment of 70% of execution time when
manual optimizations are neglected.

Amstel et al. [31]. studied the performance of ATL and QVT trans-
formation languages. The authors correlate the size and complex-
ity of input models to the execution time. The analysis is limited
to two simple transformations and neglects the aspect of energy
consumption.

The work by Piers [32]. provides a working profiler to find per-
formance issues inside a transformation. Developers can employ
two indicators: execution time and executed instructions. In [33],
the authors provide a refactoring catalog for rule-based ATL
transformation and study possible smells in rules and helpers
by providing corresponding solutions. The authors also stud-
ied the performance effect of such refactoring by analyzing the
CPU time.

Lano and Rahimi [34] defined a catalog of transformation design
patterns aimed at improving the modularization, efficiency,
and data storage requirements of model transformations. Their
study provides a systematic classification of patterns across lead-
ing model transformation languages such as ATL, QVT, and
GrGen.NET, and introduces a metamodel-based framework to
define these patterns. An experiment has been conducted to
guide pattern selections, accompanied by evaluating their effec-
tiveness across a range of case studies.
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Amstel and Brand [35]. discuss the quality of ATL transforma-
tions. In particular, the authors conducted a user evaluation to
correlate the automatically generated metrics and the quality
attributes. The qualitative analysis confirms the importance of
the right usage of helpers as a mechanism to increase trans-
formation performances. Tichy et al. explore the effects of bed
smells on the performances of transformations defined in Hen-
shin language. In particular, the study correlated the presence of
bad smells in rules as a potential threat during transformations.
Recently, an ad-hoc profiler for Henshin [36] has been released
to provide information about the execution time at the transfor-
mation level.

Groner et al. [37] studied how to predict the execution times of
ATL model transformations across different sets of model char-
acteristics. They experimented with the prediction performance
of various machine learning techniques on a large and diverse set
of input models, specifically varying the size and characteristics
of these models. Pinto, Soares-Neto and Filho [38]. investigated
the state of the art concerning the task of improving energy effi-
ciency using refactoring tools. In particular, the authors identified
several domains, reporting a set of studies achieving refactoring
and the related challenges.

As mentioned earlier, the performance of model transforma-
tions in MDE has been a subject of extensive research. Numer-
ous approaches, including compiler optimization, performance
benchmarking, and refactoring catalogs, have been investigated
to enhance their scalability and efficiency. While prior studies
have focused on metrics such as execution time, the number
of executed instructions, and quality attributes, the aspect of
energy consumption in model transformations remains largely
unexplored.

3 | Experiment design

3.1 | Research Questions

In this study, our focus is to provide an initial investigation of
the energy consumption associated with the execution of ATL

transformations and assess the contribution of each structural
component to this consumption. In this respect, we framed our
experiments to answer the following research questions:

• RQ1: To what degree does the energy consumption needed for
executing an ATL transformation correlate with the structural
attributes of the source and target metamodels, as well as the
inherent characteristics of the ATL transformation itself? We
explore the relationship between energy consumption and
well-known metrics for metamodels (which can include fac-
tors such as the size and complexity) involved in the trans-
formation [39], as well as transformation metrics [40].

• RQ2: To what extent does the size of input models impact the
energy consumption of ATL transformations? We produce dif-
ferent mutations of input models to examine their impact on
the energy consumption of ATL transformations.

• RQ3: How do OCL rules impact energy consumption? We
modify OCL rules to evaluate their influence on the energy
consumption of the ATL transformations under analysis.
Since we cannot foresee the effects of complex modifications
to the transformation semantics, we limit ourselves to simple
helper changes.

3.2 | Methodology

The methodology utilized to conduct the experiments is illus-
trated in Figure 1. Specifically, we utilized JoularJX [41] for mea-
suring the energy consumed by ATL transformations. JoularJX is
a Java agent that relies on Intel RAPL [42] to read the power usage
of the CPU. It can monitor the power consumption of methods at
runtime and focus on a specific Java application, filtering out the
consumption of the rest of the system. We chose JoularJX due
to its specific ability to measure the energy consumption of run-
ning Java programs, such as JAR files. This tool uniquely provides
method-level analysis, offering performance evaluations at inter-
vals as short as 10 milliseconds. To the best of our knowledge, it is
the only tool explicitly designed to measure the energy consump-
tion of JAR files. Additionally, JoularJX is part of a family of mon-
itoring tools that have been widely adopted in various research

Input Artifacts

Joular-based
Measurement
Environment

ATL Execution Engine

Target model

Measurements

Monitors

Generates

Produces

ATL Transformation

Input Model

Input Metamodel

Traget Metamodel

Metrics Calculation and Correlation Analysis

FIGURE 1 | Experimental execution procedure.
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FIGURE 2 | JoularJX at work on the XML2SpreadsheetMLSimplified transformation.

works (see e.g. [43–45]). These features made it the most suit-
able option for our study. ATL transformations are executed by
an execution engine, packaged in a JAR file to enable stand-alone
execution without requiring the entire Eclipse IDE to be running.
We employed the ATL version 3.5.0 v2014 to perform all the trans-
formations. Additionally, various metrics are computed on the
input artifacts and correlated with the execution time and power
consumption measured by JoularJX.

Figure 2 shows an explanatory execution of JoularJX on the input
XML2SpreadsheetMLSimplified transformation. JoularJX reports
the energy consumption, which is 70.55 J in this specific case, and
the total execution time is equal to 1.165 s. We can also notice the
time taken only by the transformation, which is 0.07 s. A remark-
able difference exists between the total execution time and the
one taken by the transformation only. The latter is related only to
the application of the transformation under analysis. In contrast,
the former regards all the mandatory operations to perform the
transformation, i.e., model loading, parsing, transformation and
saving of the generated model.

3.3 | Metrics

3.3.1 | Metrics for Energy Consumption
and Execution Time

In our investigation, we wanted to quantify the energy consump-
tion and execution time of ATL transformations. Thus, the fol-
lowing metrics were utilized:

• Energy Consumption: This metric quantifies the energy
consumed during the execution of a given ATL transforma-
tion. It is measured in terms of power usage, providing a
comprehensive understanding of the energy requirements
of the transformation process. We calculate the energy con-
sumption of the transformation using JoularJX. The con-
sumption is expressed in Joule and is the energy necessary
to read the models and metamodels plus the time to execute
the transformation. Each energy consumption value that we
report is calculated on average. As an example, according to
the #Tests value for the RQ1 shown in Table 5, the energy
consumption of a given ATL transformation 𝑡 is the average
of 50 measurements as follows:

𝐸(𝑡) = 1
50

50∑

𝑖=1
𝐸(𝑡

𝑖
)

where E(t) represents the value calculated by JoularJX for
the transformation 𝑡. Concerning RQ2 and RQ3, we tested
each mutant twice. Therefore, the average is calculated as
the following formula:

𝐸(𝑡) = 1
200

100∑

𝑖=1

2∑

𝑘=1
𝐸(𝑡mutant

𝑖

)

where we test all the 100 mutantsi of 𝑡 twice, and finally we
get the average value.

• Execution Time: The execution time metric measures the
duration taken by a given ATL transformation to complete
its execution. Thus, it is defined as the sum of the time to
parse the input metamodel and model, execute the transfor-
mation, and save the output model.

3.3.2 | Metrics Related to Structural Characteristics
of the Modeling Artifacts

To explore the relationship between energy consumption, model
size, metamodel, and transformation structural characteristics,
we employed a range of metrics focusing on the structural prop-
erties of models, metamodels, and transformations. These met-
rics facilitate the analysis of correlations among various compo-
nents involved in the transformation process. Metrics are based
on existing studies (see the metrics defined by Van Amstel and
Van Den Brand [40] and Williams et al. [46]) and calculated
by exploiting a model-based tool chain developed in a previous
work [47].

Metrics related to metamodels’ structural characteristics were
utilized to gain insights into the complexity and intricacies of
the metamodels employed in the transformation process. Met-
rics focusing on the structural properties of transformations were
utilized to assess the complexity of transformation rules. These
metrics aid in understanding the intricacies of the transforma-
tion and its impact on energy consumption and execution time.
Table 1 lists the structural metrics we computed among the trans-
formations and metamodels. Building on the structural metrics
analyzed in our previous work [47], we introduce two additional
metrics to further investigate metamodel complexity. Specifically,
𝐻

𝑀𝐴𝑋
measures the longest inheritance path within the meta-

model, whereas 𝐺
𝐶

quantifies the graph complexity, treating
classes as nodes and references as edges [48].
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TABLE 1 | Metrics of modeling artifact.

Metric Acronym

Transformation Number of bindings # B
Number of Bindings Involving

Object Resolution
# BOR

Number of Input Patterns # IP
Number of Output Patterns # OP
Number of Matched Rule # MR

Number of Rules With Using # RWU
Number of Helpers # H

Number of Attribute Helpers # AH
Number of Attribute Helpers With

Context
# AHWC

Number of Operational Helpers # OH
Number of Lines Of Code LOC

Metamodel Number of Meta Class # MC
Number of Abstract MetaClass # AMC
Number of Structural Feature # SF

Number of Structural Feature with
inherited

# SF
𝐴𝐿𝐿

Number of Attribute # A
Number of Attribute with inherited # A

𝐴𝐿𝐿

Number of Reference # R
Number of Reference with

inherited
# R

𝐴𝐿𝐿

Max Hierarchy Length H
𝑀𝐴𝑋

Max Graph Complexity G
𝐶

3.3.3 | Metrics Correlation Analysis

In addition to individual metrics, correlation analysis was per-
formed to identify relationships among transformation rules,
model size, metamodel structural characteristics, and energy
consumption. Correlation is a commonly employed statistical
technique for identifying associations and evaluating connec-
tions among observable data. Specifically, by examining corre-
lations, we answered RQ1 to determine the specific structural
properties of ATL transformation, as well as the input and output
metamodels, that impact energy consumption.

3.4 | Dataset

We employed the ATL Zoo as our principal repository of trans-
formations and related models and metamodels. These trans-
formations are predominantly linked with various research
works, embodying a broad spectrum of complexities. They range
from straightforward to complex transformations, reflecting the
diverse challenges and structures encountered in the practical
applications of ATL. The developers of these transformations
form at least two groups of users, including MDE experts, such as
the creator of ATL, and beginners, comprising students and MDE
newcomers. Table 2 reports detailed information about the trans-
formations we analyzed in our study. In particular, the columns
report common metrics employed in different studies [49, 50] to
elicit meta-data about the transformations. Table 1 introduces

the acronyms of the measured metrics, and some of those are
shown in Table 2 to characterize the analyzed transformations.
We analyzed the transformations also to identify the use of dep-
recated features as outlined in the official ATL documentation.5
Transformations containing at least one deprecated statement are
indicated in bold in Table 2. We chose to retain these transfor-
mations to avoid further reducing the dataset. Additionally, the
energy consumption of transformations with deprecated features
aligns with the dataset’s average, and none of these transfor-
mations are among the identified outliers, highlighted in italic
in Table 2.

3.4.1 | Model Transformations

The ATL Zoo contains a collection of 103 model transformations.
It has established itself as a benchmarking dataset in model trans-
formations, having been employed in numerous empirical stud-
ies over the past years (see e.g., [17, 37, 51, 52]).

To answer RQ1 we selected 52 transformations together with their
input models and metamodels based on the following inclusion
criteria:

– Transformations processing single input metamodel: We
adopt this rationale because RQ1 aims to evaluate the
relationship between energy consumption and structural
attributes of source and target metamodels. Consider-
ing multi input transformations complicates conducting a
homogeneous correlation analysis because these transfor-
mations do not maintain a direct and singular relationship
between input and output elements. This lack of one-to-one
correspondence introduces variability that can obscure or
distort the relationships under investigation, making it chal-
lenging to measure and interpret correlations accurately.

– Transformations that do not incorporate external modules in
their process: Because I/O operations can negatively impact
energy consumption [53], we decided to filter out transfor-
mations that require external modules.

– Transformations that do not involve UML as either input
or output metamodel: Because of the different versions of
UML, we could not identify the corresponding metamodel
versions involved in the transformations as input or out-
put metamodel. Moreover, the projects with ATL transfor-
mations working on UML do not include the correspond-
ing metamodel nor the unique metamodel identifier, i.e.,
nsURI. For this reason, we could not run the transforma-
tions involving UML.

– Transformations that do not raise exceptions during their
execution. Unfortunately, some transformations fail when
given a different model from the primary use case as input.
Since our assessment of energy consumption is empirical,
we excluded transformations that raised exceptions during
their execution.

Figure 3 shows two examples of transformation headers, i.e.,
UML2AnyLogic and Families2Persons. The former has
been excluded from our investigation because it is not a
one-to-one transformation; it uses an external module, i.e.,
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TABLE 2 | Structural metrics of the considered transformations (in bold, transformations with deprecated features; in italic, outlier
transformations).

Trafo Name # B # BOR # IP # OP # MR # RWU # H # AH # AHWC # OH LOC

KM32CONFATL.atl 591 221 5 287 5 2 1 1 1 0 1057

KM32Metrics.atl 27 0 2 9 2 0 15 8 3 7 304

KM32OWL.atl 74 34 10 49 10 0 4 1 1 3 307

KM32Problem.atl 54 0 18 18 18 0 6 2 2 4 471

SpreadsheetMLSimplified2XML.atl 46 3 12 20 12 1 1 0 0 1 248

XML2SpreadsheetMLSimplified.atl 42 6 11 17 11 1 10 0 0 10 380

Replace.atl 46 8 9 11 9 0 0 0 0 0 181

WithContext/ForeignKey.atl 39 8 8 9 8 0 0 0 0 0 150

WithoutContext/ForeignKey.atl 25 6 6 6 6 0 0 0 0 0 100

WithContext/Removing.atl 87 27 10 15 9 0 2 2 1 0 259

WithoutContext/Removing.atl 69 21 6 11 5 0 2 2 1 0 201

WithContext/partial2totalRole.atl 59 16 10 12 10 0 0 0 0 0 182

WithoutContext/partial2totalRole.atl 34 10 5 7 5 0 0 0 0 0 109

WithContext/PartialRolesTotalB.atl 78 32 13 13 9 0 1 1 0 0 248

WithoutContext/PartialRolesTotalB.atl 60 26 9 9 5 0 1 1 0 0 192

WithContextPrimaryKey.atl 41 11 8 9 8 0 0 0 0 0 150

WithoutContext/PrimaryKey.atl 17 4 4 5 4 0 0 0 0 0 72

Families2Persons.atl 2 0 2 2 2 0 2 1 0 1 49

SpreadsheetMLSimplified2XML.atl 46 3 12 20 12 1 1 0 0 1 248

Table2SpreadsheetMLSimplified.atl 12 6 3 9 3 2 1 0 0 1 117

XML2Ant.atl 81 0 29 29 29 0 7 0 0 7 459

BibTeX2DocBook.atl 25 2 9 20 9 0 4 3 3 1 261

XML2Book.atl 5 0 2 2 2 0 1 0 0 1 30

Book2Publication.atl 3 0 1 1 1 0 3 0 0 3 50

Class2Relational.atl 22 2 6 11 6 0 1 1 1 0 113

Grafcet2PetriNet.atl 24 14 5 5 5 0 0 0 0 0 89

PetriNet2PNML.atl 29 13 4 15 4 0 0 0 0 0 110

PetriNet2Grafcet.atl 26 14 5 5 5 0 0 0 0 0 92

IEEE1471−2−MoDAF.atl 54 18 14 14 13 0 1 1 1 0 229

JavaSource2Table.atl 7 0 2 7 2 0 2 1 1 1 115

A2B.atl 3 0 2 3 2 0 0 0 0 0 30

Make2Ant.atl 16 4 5 6 5 0 0 0 0 0 88

TT2BDD.atl 11 3 6 6 6 1 5 0 0 5 257

MySQL2KM3.atl 117 12 11 15 11 0 17 6 4 11 611

PathExp2PetriNet.atl 16 8 3 5 3 0 1 1 1 0 105

PetriNet2PathExp.atl 8 2 3 3 3 0 0 0 0 0 71

PathExp2TextualPathExp.atl 11 3 5 7 5 1 10 1 1 9 337

Port/TypeA2TypeB−v1.atl 4 2 1 3 1 0 0 0 0 0 20

SideEffect/TypeA2TypeB−v1.atl 4 3 1 3 1 0 1 0 0 1 29

TypeA2TypeB−v2.atl 3 1 2 3 2 0 1 1 1 0 64

TypeA2TypeB−v3−firstStep.atl 2 0 1 2 1 0 0 0 0 0 29

SimpleClass2SimpleRDBMS.atl 12 2 1 5 1 1 6 6 0 0 233

SoftwareQualityControl2Bugzilla.atl 32 1 2 3 2 0 1 0 0 1 107

SoftwareQualityControl2Mantis.atl 40 9 2 11 2 1 2 0 0 2 131

SimpleSBVR2SimpleUML.atl 24 2 8 10 8 0 2 0 0 2 187

Syntax2SimpleSBVR.atl 28 4 17 25 17 0 3 0 0 3 333

XSLT2XQuery.atl 33 15 7 21 7 0 0 0 0 0 169

KM32ATL−KM22MM.atl 64 21 5 29 5 1 5 3 3 2 239

DSL2KM3.atl 50 9 9 12 9 1 3 0 0 3 227

KM32DSL.atl 82 11 8 12 8 0 18 5 5 13 374

ATOM2RSS.atl 21 3 3 4 3 0 0 0 0 0 71

KM32ATLCopier.atl 40 13 2 17 2 1 4 1 1 3 144
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FIGURE 3 | Including and excluding criteria at work, (a) Header of an example of filtered-out transformation, (b) Header of an example of consid-
ered transformation.

string, and involves UML as an input metamodel. Contrari-
wise, the latter is the header of a transformation, which has been
instead considered in our investigation because it satisfies all the
considered inclusion criteria.

To address RQ2 and RQ3, we selected 6 model transformations
from the 52 transformations collected from the ATL Zoo based on
the previous constraints. In particular, the following additional
inclusion criteria have been applied:

– Transformations with the highest number of rules: this
criterion pertains to the transformations that incorporate a
substantial number of transformation rules. Transformation
rules are the entry points for the transformation process and
are paramount for initiating pattern matching over source
models.

– Transformations that convert a model into a target meta-
model with the highest number of metaclasses: This criteria
focuses on transformations where the target metamodels
are considerably larger than the source ones. Such transfor-
mations are particularly challenging as they often require
the creation of substantial numbers of model elements in
the target models, thereby necessitating intricate transfor-
mation mappings.

3.4.2 | Input Models

To address RQ1, we executed the chosen 52 transformations on
the input models sourced from the ATL Zoo, maintaining their
original configurations within the respective projects. We aim to
identify potential correlations between the structural character-
istics of the involved artifacts and the energy consumption of the
executed transformations. Consequently, we opted to utilize the
default configuration without altering any elements.

To give a comprehensive answer to RQ2 and RQ3, instead, we
needed the availability of several input models. In a recent
work [37], the authors, to gain enough data, exploited available
datasets of real case models. Furthermore, the authors manually
crawled GitHub to complete the datasets. The main issue with
this approach is that we would be forced to rely on the exist-
ing datasets, which support only a few transformations. More-
over, the datasets are dimensionally sparse. Thus, we decided
to generate mutants of different sizes. To this end, we employ
Wodel,6 a well-known mutation framework [16, 54]. In particu-
lar, Wodel provides users with a domain-specific language for the

specification and generation of model mutants. Section 3.5 gives
details on the employed mutation process.

In the experimental setup detailed in Table 5, the number of
tests conducted varies across the configurations: Configuration
C1 involved an extensive evaluation with 50 tests, providing a
comprehensive dataset. In contrast, Configurations C2 and C3
each underwent a limited set of only 2 tests, likely aimed at assess-
ing specific aspects or variations under controlled conditions.

3.5 | Model Mutations

To give a comprehensive answer to RQ2 and RQ3, we needed
the availability of different input models. Thus, we decided to
generate mutants of different sizes. Therefore, we defined three
mutation sizes (i.e., small, medium, and large) in which we
differently increase the number of elements that are added to
mutants. To this end we employed Wodel, which provides users
with a domain-specific language to specify the wanted muta-
tions and includes a mechanism to identify and avoid the gen-
eration of duplicated mutants. Wodel is meta-model indepen-
dent and introduces a range of essential functionalities, includ-
ing the definition of mutation actions (such as creation, deletion,
and reference reversal), selection of items using different strate-
gies (like random, specific, or all), and orchestration of mutation
compositions.

The typical Wodel workflow involves the user initially provid-
ing a set of seed models adhering to a meta-model. Subse-
quently, Wodel is employed to articulate the desired mutation
operators and their execution specifics, such as determining the
quantity of each mutation type per mutant or establishing the
sequence of execution. Each Wodel program requires a declara-
tion of the considered model’s meta-model. This enables thor-
ough type-checking of the program to ensure validity, restricting
references to only valid meta-model types and properties and val-
idating the resultant mutation.

Figure 4 shows explanatory mutation rules we employed in the
performed experiments. According to the given specification, 100
mutants conforming to the input meta-model XML.ecore are
required (see lines 1–4). The first command that gets executed
is Select One Root (line 7), to select a random (one) object
of type Root from the input model as a starting element for fur-
ther modification. The keyword create (see lines 9, 15, 21) is
used to create objects of the class indicated by the type refer-
ence. Furthermore, two attributes are added to the created object,
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FIGURE 4 | Example of Wodel mutation rules.

TABLE 3 | Summary of performed model mutations.

ID Transformation
# create

statements
Mutation
size-small

Mutation
size-medium

Mutation
size-large

T1 Families2Persons 8 5 20 100

T2 Ieee2MoDaf 7 5 25 100

T3 MySQL2KM3 3 5–25 20–100 50–250

T4 Spreadsheet2XML 5 5 25 100–250

T5 Table2MSOffice 3 5 20–100 50–250

T6 XML2ANT 3 5 25 250

i.e., name and value. The reference parent is also added by pick-
ing one object of type Root previously selected. The cardinal-
ity of the objects to be created is also specified (see lines 13,
19, and 25). In particular, 250 objects will be created for each
specified create rule. We varied these cardinalities to gener-
ate the datasets as reported in Table 3. For example, the mean-
ing of 50–250 in the case of MySQL2KM3 is that some objects
were created 50 times and others 250, according to their complex-
ity (i.e., the number of attributes and references). The decision
to employ varying cardinalities is influenced by the complexity
of the considered metamodels. Specifically, metamodels with a
limited number of classes require the mutator to generate more
instances within these classes than those with a broader set of
metaclasses. In scenarios involving more metaclasses, the gener-
ation of new instances is distributed more widely across them.
This strategy ensures that mutations within models conforming
to simpler metamodels are of comparable size to those within
models adhering to more intricate metamodels. This balanced
approach facilitates a uniform analysis and comparison across
different model complexities.

Once mutation rules are defined, the Wodel execution engine
generates mutants. As previously discussed, for our experiments,
we generated 100 mutants for each transformation across three
distinct size dimensions—small, medium, and large—resulting

in a total of 300 mutants per transformation. This approach aligns
with the methodology of similar studies, such as the personalized
approach detailed in Barriga, Rutle and Heldal [55], and ensures a
comprehensive and varied sample size for our analysis. In Table 3
we show the performed mutations. For each transformation, we
depict the results of the mutation procedure on the input model,
in particular:

• # create statements: Represents the number of cre-
ate statements; as an example in Figure 4, we mutate three
classes of the XML2ANT transformation.

• Mutation size (Small/Medium/Large): Indicates
the number of required invocations of each create mutation
operator (as for instance in lines 13, 19, and 25 in Figure 4).

3.6 | Changes of OCL Helpers

As previously discussed, with RQ3 we want to understand to
which extent changing an ATL transformation reflects on the
energy consumption. An ATL transformation consists of two
main components: transformation rules and helpers. A trans-
formation rule describes how a part of the input model should
contribute to generating part of the target model. The helper is a
support function that simplifies the structure of a rule. Cuadrado
et al. proposed BeautyOCL [56], a framework designed to simplify
OCL statements. While BeautyOCL aims to simplify and enhance
the performance of OCL expressions, it does not specifically tar-
get the improvement of energy consumption during transforma-
tion executions. Thus, we decided to apply manual changes on
transformation helpers.

Figure 5 shows an explanatory example of changes operated on
ATL transformation helpers. In particular, we commented out
lines (50–54) and added line 49. Through this change, every
time a rule invokes the getAttribute helper, the string "Artificial
Value" is provided. We applied similar changes only once for each
of the six transformations we analyzed. To decide which helper
to modify, we employed the tool proposed by Götz and Tichy
[57]. In their work, the authors investigated the complexity of
ATL transformations. Specifically, we used Syntactic Complexity,
a method for defining the complexity of a transformation spec-
ification based on the intricacy of its expressions and activities.
This methodology posits that the complexity of each construct is
a composite measure, encompassing a baseline static value for
the construct itself, augmented by the cumulative complexities
of its constituent elements, including the complexity imparted by
each helper function involved. The column Helper Complexity in
Table 4 shows the results obtained by applying the tool presented
in [57] and the Maximum OCL Expressions Length (MEL) [33]
values to the six analyzed transformations. For each transforma-
tion, the corresponding helpers and their respective complexities
are shown. Notably, both metrics identified the same most com-
plex helpers across all transformations. Based on these values, we
selected and modified the most complex helpers for each trans-
formation in one set of experiments.

In another set of experiments, we focused on the frequency of
helper usage. While executing the transformations on the gener-
ated mutants, we identified the most frequently fired helpers, as
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FIGURE 5 | Example of operated ATL helper changes.

TABLE 4 | Analysis of helpers (most fired helpers are in bold, and most complex helpers are in italic).

Transformation Helper Name MEL
Helper

Complexity

# Fired
Helper Original

Model

# Fired Helper
Small

Mutants

# Fired Helper
Medium
Mutants

# Fired Helper
Large

Mutants

T1 familyName 8 44 9 28 88 208
T1 isFemale 9 16 18 56 176 416
T2 rationale 11 24 1 1 1 1
T3 dataBaseElt 4 9 1 1 1 1
T3 isStringType 3 4 243 924 2,695 5,517
T3 isIntegerType 9 7 195 434 655 1,234
T3 isDoubleType 9 7 74 230 299 594
T3 isUnsupportedType 15 13 57 223 658 1,168
T3 km3TypeExistsIn 20 74 36 86 236 536
T3 isForeignKey 4 9 58 108 258 558
T3 isDefinedIn 6 18 54 54 54 54
T3 isEquivalentTo 11 28 28 30 29 28
T3 enumExistsIn 4 15 5 5 5 5
T3 enumSet 8 20 1 1 1 1
T3 dbTypeSet 9 19 1 1 1 1
T3 km3TypeSet 6 20 1 1 1 1
T3 getTableNameRec 9 25 132 132 132 132
T3 getTableName 1 5 17 17 17 17
T3 getReferredTable 10 28 17 17 17 17
T3 getKM3TypeName 7 14 138 501 1,401 3,201
T4 getDateTimeStringValue 18 44 0 0 0 0
T5 isNumber 29 62 82 58 218 518
T6 getList 7 14 222 252 522 1,122
T6 getListAux 13 57 925 1,050 2,175 4,675
T6 getAttrVal 8 23 2,472 2,697 4,722 9,222
T6 testAttribute 9 24 4,624 5,659 19,474 79,174
T6 getAttribute 3 13 4,476 5,491 19,126 78,426
T6 testElement 9 24 1 1 1 1
T6 getText 13 38 1 1 1 1

depicted in Table 4. We then changed the most fired OCL helpers
with respect to the different mutant sizes. By including this fre-
quency dimension, we aimed to better investigate the contribu-
tion of the helpers.

Through the two sets of experiments, we investigated the effects
of helper complexity and frequency dimensions on the energy con-
sumption of the analyzed ATL transformations.

3.7 | Configurations

To address the three research questions, we applied the execu-
tion process shown in Figure 1 by varying the input artifacts to

emphasize and explore the aspects relevant to each of the three
research questions. To mitigate possible biases concerning the
measurements, we repeated each transformation multiple times
[27, 29]. In particular, for the RQ1, we executed each transfor-
mation 50 times. For RQ2 and RQ3, we tested each mutant twice
for a final counting of 200 times. Furthermore, to avoid possible
power tail states, we forced a pause of 10 s after each transforma-
tion execution [27, 58]. The details of the configurations that have
been defined to perform the experiments are shown in Table 5
and described below:

• 𝐶1: To address 𝑅𝑄1, we examined the 52 original transfor-
mations obtained from the ATL Zoo. Each transformation
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TABLE 5 | Experiment Configurations.

𝑪1 𝑪2 𝑪3

Number of Input Models 1 (Original Dataset) 3 × 100 (Mutated Models) 3 × 100 (Mutated Models)
Number of Input
Transformation

52 (Original Dataset) 6 6 (Simplified Transformation)

Number of Tests 50 2 2
Employed Metrics
(Common)

Energy Consumption, Execution Time

Employed Metrics
(Specific)

Correlation of Artifact
Metrics

Transformation Complexity, Helper Complexity

TABLE 6 | Average values for energy consumption and execution time with serialization (S) and without (−S).

AverageS Average−S
Standard

deviationS
Standard

deviation−S MaxS Max−S MinS Min−S

Energy consumption (J) 84.829 85.262 10.186 9.776 133.9 132.55 67.13 66.97
Execution time (s) 0.731 0.724 0.110 0.111 1.673 1.423 0.599 0.594

was executed using the original model provided in the cor-
responding project.

• 𝐶2: For 𝑅𝑄2, we selected six ATL transformations, each of
which was executed on 100 mutants generated from the orig-
inal input models across three distinct size dimensions (see
Section 3.5).

• 𝐶3: To explore 𝑅𝑄3, we maintained the same number of
transformations and input models as in 𝑅𝑄2. However,
we modified the six transformations by simplifying the
most complex and fired helpers in the transformation (see
Section 3.6) to investigate their potential impact on energy
consumption.

We run our experiments on a laptop equipped with an AMD
Ryzen7 6850U, which featured a clock speed of 2.7 GHz7, an SSD
M.2 2280 PCIe 4.0×4 NVMe Opal 2.0 and 32 GB of RAM. The
operating system used was Linux Manjaro 23.0.4 (kernel version:
5.15.167). The same conditions were maintained throughout the
experiments: the laptop was connected to a power source, and the
battery was fully charged before starting the study.

Various methodologies and statistical instruments exist for the
identification and quantification of correlations. In this study, we
opt for Pearson’s coefficients [59] that have been examined to
quantify the correlations among previously introduced metrics.
Pearson’s correlation index assumes values in the range of −1.00
(perfect negative correlation) and +1.00 (perfect positive corre-
lation). A correlation of 0 indicates no correlation between two
variables.

4 | Experiment Results

4.1 | RQ1

In Table 6, we present summary statistics derived from the exe-
cution of the 52 ATL transformations with respect to configu-
ration C1 shown in Table 5. The average energy consumption

is approximately 85 J, calculated as the mean consumption across
all transformations. The standard deviation indicates minimal
variation in energy consumption. Specifically, only five out-
liers exceeded 95 J, with one reaching 133.9 J. In particular,
the outlier transformations are (KM32CONFATL; KM32OWL;
XML2SpreadhseetMLSimplified; XML2Ant; MySQL2KM3). The
outlier transformations evidence some common peculiarities. In
particular, we highlight with italic font the transformations in
Table 2, and we can see that they exhibit more bindings (# B and
# BOR), more output patterns (# OP), and are generally longer
(LOC). The transformation time, as defined in Section 3, repre-
sents the average duration required to complete a transformation.
Furthermore, we studied the effect of the serialization of the out-
put models. In particular, we removed the method devoted to the
serialization. Table 6 presents a comparison of energy consump-
tion and execution time, highlighting the effects of including (𝑆 )
or omitting (−𝑆 ) output serialization. The difference in terms of
energy and execution time is negligible. The explanation is that
the laptop is equipped with an SSD hard drive, and the size of the
input models is relatively modest.

Table 7 presents a correlation analysis between energy consump-
tion and the model’s structural features. The table specifically
shows the correlation between the model and transformation’s
structural metrics and the energy consumption during transfor-
mation execution, with and without output serialization. In this
analysis, we applied the Pearson correlation coefficient to paired
observations of two variables, e.g., energy consumption and one
of the studied metrics. For instance, for 𝑛 distinct transforma-
tions, we have corresponding values {𝑒1, 𝑒2, . . . , 𝑒𝑛} for average
energy consumption, and {𝑏1, 𝑏2, . . . , 𝑏𝑛} for numbers of bindings.
The correlation metrics, along with their associated p-values, are
computed to quantify the linear relationship between each struc-
tural feature metric and the average energy consumption.

Correlation coefficients span from −1 to 1, wherein values near-
ing 1 signify a robust positive correlation, implying that as the
feature count increases, so does energy consumption. Conversely,
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TABLE 7 | Correlation and p-value for artifact metrics and transformation energy consumption with serialization (S) and without serialization (−S).

Metric CorrelationS p-valueS Correlation−S p-value−S

Transformation # B 0.708 0.000e+00 0.672 0.000e+00
# OP 0.664 0.000e+00 0.626 1.536e−282

# BOR 0.610 1.547e−264 0.572 7.239e−226
# IP 0.550 1.357e−205 0.565 2.805e−219

# MR 0.538 8.298e−195 0.551 1.402e−206
# RWC 0.457 1.431e−134 0.445 1.102e−126

# H 0.422 1.264e−112 0.445 2.024e−126
# AH 0.316 2.543e−61 0.339 9.649e−71

# AHWC 0.329 9.228e−67 0.347 1.555e−74
# OH 0.395 1.312e−97 0.413 1.379e−107

MMin # R 0.610 1.185e−264 0.604 1.174e−258
# A 0.509 3.199e−171 0.509 2.427e−171

# HMAX 0.496 2.955e−30 0.505 5.050e−01
# MC 0.350 1.086e−75 0.360 1.619e−80

# SF
𝐴𝐿𝐿

0.314 1.037e−60 0.320 7.072e−63
# A

𝐴𝐿𝐿
0.237 2.154e−34 0.245 7.511e−37

# SF 0.224 4.851e−31 0.231 6.057e−33
# AMC 0.221 2.955e−30 0.234 8.828e−34
# R

𝐴𝐿𝐿
0.136 3.085e−12 0.139 9.427e−13

inMaxG −0.172 −1.725e−01 −0.172 −1.719e−01
MMout # MC 0.521 7.491e−181 0.513 8.667e−175

HMAX 0.497 4.923e−162 0.501 1.524e−165
# R 0.479 1.612e−149 0.467 7.202e−141

# A
𝐴𝐿𝐿

0.473 4.372e−145 0.464 4.653e−139
# SF 0.468 1.549e−141 0.460 2.826e−136

# AMC 0.463 3.687e−138 0.452 7.612e−131
# A 0.462 2.204e−137 0.450 1.461e−129

# SF
𝐴𝐿𝐿

0.426 3.950e−115 0.415 9.958e−109
# R

𝐴𝐿𝐿
0.266 1.880e−43 0.263 1.888e−42

GC 0.066 7.748e−04 0.064 1.106e−03

coefficients approaching −1 indicate a strong negative correla-
tion, suggesting that higher feature counts correspond to lower
energy consumption. Coefficients approximating 0 denote negli-
gible linear correlation. To assess the significance of these corre-
lations, p-values are employed, with a conventional threshold of
0.05 indicating statistical significance. Table 7 presents the cor-
relation coefficients between various structural metrics of the
transformation and metamodels with the energy consumption
of executing the transformation, both with and without output
serialization. The data reveal that correlation values are gener-
ally higher when output serialization is included, a trend that is
especially pronounced in metrics such as # B, # BOR, # OP, and #
R. This observation suggests that, in the absence of serialization,
these structural metrics have a stronger association with energy
consumption during transformation execution.

Although the correlation values with serialization are gener-
ally lower, the analysis reveals a consistent trend across both

conditions. Specifically, the influence of structural metrics on
energy consumption remains significant, with similar patterns
appearing in the presence of serialization. For instance, # B and #
OP continue to show high correlations with energy consumption
in both cases, with values of 0.672 and 0.626, respectively, when
serialization is included. This consistency indicates that, while
serialization reduces the magnitude of correlation, it does not
alter the underlying relationship between these structural met-
rics and energy consumption.

These results imply that the number of bindings, along with
input and output patterns, significantly influences energy usage
in model transformations. In ATL transformations, bindings can
either involve direct assignments or object resolution, with the
latter presumed to require more computational effort. After com-
puting the number of bindings involving object resolution, we
found that, on average, bindings involving object resolution occur
with a frequency of 0.24. Moreover, a Pearson correlation analysis
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revealed a strong correlation between object resolution bindings
and energy consumption, with a correlation coefficient of 0.610
and a p-value of 1.547E−264 without serialization and a slightly
reduced correlation of 0.572 and a p-value of 7.239E−226 with
serialization. This suggests that object resolution bindings are
indeed a significant factor influencing energy consumption, and
their impact is evident in both cases, though slightly diminished
when output serialization is included. A similar observation
applies to the input and output metamodel (MM

𝑖𝑛
and MM

𝑜𝑢𝑡
)

metrics. Metrics such as # A, # R, and # SF maintain compara-
ble correlation patterns across both conditions, despite a slight
reduction in correlation values with serialization. For example,
# A in MM

𝑖𝑛
shows a correlation of 0.509 in both cases, while

# R in MM
𝑜𝑢𝑡

changes only marginally from 0.479 without seri-
alization to 0.467 with serialization. 𝐻

𝑀𝐴𝑋
, which measures

the longest inheritance path, demonstrates moderate correla-
tions with energy consumption. In contrast, 𝐺

𝐶
, representing the

graph complexity of the metamodel, shows a weaker correlation,
suggesting that it has a minimal impact on energy consumption
compared to other structural metrics. Such metrics exhibit a dif-
ferent trends to other metrics when comparing scenarios with
and without serialization, indicating weaker correlations when
serialization is considered. However, the magnitude of the corre-
lations remains consistent.

In summary, the higher correlation values observed without
serialization coincide with the metrics most strongly related to
energy consumption. Even though correlation values with seri-
alization are generally lower, the analysis demonstrates simi-
lar trends in both scenarios. These findings suggest that out-
put serialization acts as a smoothing factor, reducing the impact
of structural metrics on energy consumption but not altering
the overall relationships. This insight is valuable for optimiz-
ing energy-efficient transformations, as it highlights the role
of serialization in modulating the energy impact of structural
characteristics.

The 𝑀𝑀
𝑖𝑛

and 𝑀𝑀
𝑜𝑢𝑡

features, which share identical metrics,
highlight structural attributes, whether inherited or not, and also
demonstrate a statistically significant correlation with energy
consumption. Particularly, the #𝑆𝐹

𝐴𝐿𝐿
consistently displays a

moderate positive correlation across both 𝑀𝑀
𝑖𝑛

and 𝑀𝑀
𝑜𝑢𝑡

metamodels, emphasizing the role of inherited attributes in shap-
ing the energy footprint of the transformation process.

Answer to RQ1. Our investigation reveals an average energy
consumption of 85 J across the 52 ATL transformations of the
considered dataset, with minimal variation observed, except
for three outliers. Correlation analysis underscores the sub-
stantial impact of metrics such as # B and # OP on energy
consumption, emphasizing their pivotal role in transforma-
tion complexity. Furthermore, it is worth noting that also #
MC and #𝑆𝐹

𝐴𝐿𝐿
play a relevant role. These insights shed

light on the relationship between transformation intricacy
and energy usage, suggesting potential research directions for
optimization in transformation development. Moreover, out-
put serialization slightly augments the impact of structural
metrics on energy consumption, acting as a smoothing factor
without altering the overall relationship. This suggests that
the effect of serialization on energy usage is marginal.

4.2 | RQ2

In this research question, we investigate the impact of input
model size by employing configuration C2 as shown in Table 5. As
detailed in Section 3, we classify mutants into three groups based
on their size, i.e., small, medium, and large. Similar to the analy-
sis done in the RQ1, we study the effect of the serialization of the
output models. In particular, we removed the method devoted to
the serialization.

Figure 6 shows the average energy consumption of original
models with that of corresponding mutants. The x-axis rep-
resents transformations based on the mutant sets, while the
y-axis denotes energy consumption. The Figure 6a depicts the
consumption of the transformation considering the serializa-
tion, whereas the Figure 6b shows the consumption without the
serialization.

The initial finding indicates that larger models incur higher
energy consumption. For instance, transformations T3 and T6
exhibit energy increases of 54% and 43%, respectively, when
applied to larger models. An interesting observation pertains
to the energy variations in other transformations. Notably, the
energy increment is marginal. For instance, transformations T4
and T5 demonstrate a linear progression, with energy consump-
tion rising from 91.1 J to 92.8 J and from 82.0 J to 90.9 J, respec-
tively. Similarly, transformations T1 and T2 follow a comparable
trend, albeit with more substantial gains observed with larger
datasets. For T1 there is an increase of 14% in energy, whereas 10%
for T2 when applied to the larger dataset. Concerning the differ-
ence between employing the serialization, we can notice almost
no improvements. The improvement is less than 1% in the case of
T3, which required the writing of the largest output model (about
112 kb).

In Figure 7, the impact of mutations on total execution time is
illustrated. Furthermore, we report the measurements concern-
ing the serialization. From a temporal perspective, the findings
related to the serialized transformations are more foreseeable,
as visible in Figure 7a. It is observed that larger models neces-
sitate more execution time. Specifically, transformations T3 and
T6 incur the most substantial time overhead. T3, for instance,
requires approximately 102% more time, while T6 consumes
over 91.6% additional time. In absolute terms, T3 takes around
one second with the original model, whereas with the larger
model, it extends to 1.7 s. Similarly, for T6, the time escalates
from 0.992 s to 1.901 s. Furthermore, a consistent trend is dis-
cernible for transformation T2, with a gain of approximately 18%,
equivalent to 0.132 s. An important observation worth highlight-
ing is that while increasing model size leads to longer execution
times, the corresponding rise in energy consumption is negligi-
ble for certain transformations. Taking transformation T2 as an
example, we observe that with larger models, the execution time
increases by 18%, whereas the energy consumption rises by only
9.9%. One possible explanation for this phenomenon is that the
transformation engine is sufficiently optimized to handle such
larger models efficiently. This fact is relevant since we can derive
some clues to generate models that, although vast, do not require
excessive energy. In Figure 7b, we illustrate the time required by
the transformations not considering the serialization. The results
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(a) (b)

FIGURE 6 | Analysis of the energy consumption for the six transformations with serialization (a) and without serialization (b). (a) Energy con-
sumption with serialization. (b) Energy consumption without serialization.

(a) (b)

FIGURE 7 | Analysis of the energy consumption for the six transformations with serialization (a) and without serialization (b). (a) Total execution
time comparison on mutants with serialization. (b) Total execution time comparison without serialization.

demonstrate a general yet modest improvement of the perfor-
mances. In particular, the transformations T1 and T2 reduced the
overhead for the large models from 3.2% to 0.6% and 18% to 14.3%,
respectively.

A more in-depth study using K-means cluster [60] analysis has
been undertaken to delve deeper into the factors influencing the

energy and time consumption for two particular transformations,
T3 and T6, notably impacted by the size of the input models. This
technique employs Euclidean distance and specifies the number
of clusters (K) as 2. We leverage ATL metrics, detailed in Table 8,
which have been computed for the selected transformations as
vector features to streamline the clustering analysis. The cluster-
ing analysis reveals that T3 and T6 are classified into one cluster
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TABLE 8 | Metrics of the analyzed ATL transformations.

T1 T2 T3 T4 T5 T6

# B 2 54 117 46 12 81
# IP 2 14 11 12 3 29
# OP 2 14 15 20 9 29
# MR 2 13 11 12 3 29
# AH 1 1 6 0 0 0
# AHWC 0 1 4 0 0 0
# OH 1 0 11 1 1 7

FIGURE 8 | The cluster analysis.

(labeled as 0), while the remaining transformations are grouped
into another cluster labeled as 1.

Figure 8 shows the cluster analysis to visualize the charac-
teristics of cluster centers within a multidimensional dataset.
Each cluster is represented by a line, with points along the
line corresponding to the average value of the cluster’s mem-
bers on that feature. The plot aids in discerning how clusters
vary from each other across the features. Features where the
lines diverge significantly indicate important features for distin-
guishing between clusters. This type of visualization is particu-
larly useful for identifying the defining characteristics of each
cluster, helping to interpret the clustering results in a multi-
dimensional space, and hypothesizing about the nature of the
clustered data. In particular, the plot depicts the first cluster
(line 0) exhibiting significantly higher values for the # B com-
pared to the second cluster (line 1). This suggests that # B is
the most influential metric for clustering transformation using
their metrics. It is worth noting that in RQ1 we also identified
that # B metrics are one of the most related metrics to energy
consumption.

Both clusters appear to exhibit similar trends for other metrics,
albeit at varying levels. This suggests that although the absolute
values differ, the proportions of metrics such as matched rules
and helpers within context, relative to each other, remain rela-
tively consistent between the clusters.

Answer to RQ2. The experiments revealed that, in general,
an augmentation in model size corresponds to an increase
in both energy usage and execution time. This trend is par-
ticularly pronounced in the cases of MySQL2KM3 (T3) and
XML2ANT (T6). The former witnessed a consumption surge
from 96.8 J to 149.4 J, accompanied by a 102% rise in exe-
cution time. Similarly, the latter experienced a consump-
tion hike of 43.7%, with the execution time extending from
0.99 s to 1.90 s. The comparison of serialization vs. no seri-
alization showed minimal differences. This result is interest-
ing since, with the experimental configuration, the improve-
ment in removing the serialization was negligible. Therefore,
this result suggests concentrating the possible optimization
efforts during the definition of the transformation rules. The
cluster analysis underscores the significant role of the num-
ber of bindings in determining cluster membership, which in
turn may be linked to differences in energy consumption and
execution time between the two clusters.

4.3 | RQ3

In this section, we illustrate the effects of OCL changes operated
to ATL transformations. We aim at investigating the effects of
changing the most complex OCL helpers, as proposed by Götz
and Tichy [57], and the most frequently activated ones by employ-
ing configurations C3 and C4 shown in Table 5.

Table 9 compares the energy consumption of the original trans-
formation with the changed ones. For the majority of transforma-
tions, the impact of the changes is minimal. Although T1 and T5
show slight improvements, the effects are not significant. How-
ever, it is noteworthy that T3 exhibits a worsening performance.
Overall, the modifications resulted in an increase in consump-
tion of approximately 4%. In Table 10, we present the effects of the
modifications on the execution time. Similar to the case of energy
consumption, the variations are minimal for most transforma-
tions, with T3 exhibiting poor performance once again. Based on
these findings, it can be concluded that there is not a strong cor-
relation between energy consumption, execution time, and the
complexity of the helpers for the 6 ATL transformations that have
been selected and analyzed. To further investigate these insights,
we conducted a more detailed examination of transformation T3.
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TABLE 9 | Comparison of energy consumption values (expressed in Joules) for the original transformations and the modified ones.

Original ATL Modified most complex helper Modified most fired helper

Transformation
Small
model

Medium
model

Large
model Small model Medium model Large model Small model Medium model Large model

T1 74.94 76.51 86.13 73.77 (−1.59) 75.94 (−0.74) 85.18 (−1.11) 74.46 (−0.65) 77.22 (0.91) 85.25 (−1.02)

T2 86.51 91.02 95.24 88.15 (1.86) 91.93 (0.99) 97.17 (1.97) Only one helper

T3 97.04 109.29 149.40 96.77 (−0.27) 113.74 (3.91) 155.53 (3.94) 94.72 (−2.45) 113.79 (3.91) 153.74 (3.94)

T3* 97.16 (0.12) 109.58 (0.27) 147.41 (−1.34) 97.61 (−0.5) 110.33 (0.93) 148.98 (−0.27)

T4 91.52 92.89 92.84 92.44 (0.99) 91.08 (−1.98) 93.58 (0.79) Only one helper

T5 87.06 88.70 90.91 82.82 (−5.12) 89.416 (0.80) 92.65 (1.87) Only one helper

T6 103.21 114.19 149.38 109.72 (5.93) 114.79 (0.52) 152.44 (2.00) 98.97 (−4.27) 102.32 (−11.6) 112.79 (−32.44)

TABLE 10 | Comparison of total execution time (expressed in seconds) for the original transformations and the modified ones.

Original ATL Modified most complex helper Modified most fired helper

Transformation
Small
model

Medium
model

Large
model Small model Medium model Large model Small model Medium model Large model

T1 0.654 0.66 0.676 0.664 (1.8) 0.666 (3.08) 0.681 (0.73) 0.658 (0.6) 0.667 (1.04) 0.679 (0.44)

T2 0.731 0.754 0.862 0.746 (2) 0.764 (1.3) 0.883 (2.38) Only one helper

T3 0.901 1.051 1.737 0.913 (1.31) 1.096 (4.1) 1.817 (4.4) 0.913 (1.3) 1.101 (4.5) 1.794 (3.18)

T3* 0.898 (−0.3) 1.04 −(1.05) 1.694 (−2.5) 0.906 (0.55) 1.055 (0.38) 1.719 (−1.04)

T4 0.758 0.779 0.804 0.756 (−0.26) 0.772 (−0.9) 0.801 (−0.37) Only one helper

T5 0.712 0.724 0.759 0.699 (−1.86) 0.724 (0) 0.763 (0.52) Only one helper

T6 1.03 1.164 1.901 1.032 (0.19) 1.157 (−0.6) 1.902 (0.05) 0.937 (−9.9) 0.97 (−20) 1.094 (−73.7)

Specifically, we focused on the modified helper, which was ini-
tially a boolean. In our initial round of experiments, we simplified
the helper by replacing it with the value False. Subsequently, we
conducted another round of experiments, modifying the helper
with the value True, resulting in a transformation identified as
T3* in Table 9 and Table 10. Notice that now in the tables some
values are missing since we reported only the new estimation of
T3*. As we can see, changing the value from true to false altered
the outcome. Notably, we observed a slight decline in perfor-
mance only with the Large models. This demonstrates that the
semantics of simplification can significantly affect energy con-
sumption and execution time. Such changes can potentially have
a substantial impact on the overall transformation process, as a
boolean guard directs the process to alternative branches that
may vary in energy consumption.

We decided to conduct additional investigations by examining
the number of activations for each helper. For each transforma-
tion, we calculated the activations of all helpers. As previously
discussed, Table 4 presents the results, showing that the most
complex helper is not necessarily the most frequently invoked
one. For instance, in transformation T1, the most complex helper
is familyName, while the most frequently triggered is isFemale. In
this case, one helper is called exactly twice as often as the other.
In other transformations, the difference is more significant. In
T6, testAttribute is invoked 79,174 times, approximately 17 times
more than the most complex helper, getListAux. We then selected
the most frequently fired helpers and changed them. Subse-
quently, we tested the transformations to measure the new energy
consumption and execution time values. The results are shown
in Table 9. Notably, the operated OCL change produced improve-
ments in both energy consumption and execution times across all
cases. For example, in T6, energy consumption decreased from

149.38 J to 112.79 J for large mutations. A similar trend was
observed for execution times as shown in Table 10.

Answer to RQ3. The experimental findings suggest that
for the analyzed ATL transformations, there is not a strict
correlation between energy consumption, execution time,
and helper complexity. However, a quantitative analysis of
the helpers reveals a stronger correlation. Specifically, it is
observed that some helpers that are heavily activated lead to
a significant increase in both energy consumption and exe-
cution time. For instance, the simplification of the helper tes-
tAttribute in the XML2ANT transformation resulted in a sav-
ing of 39 J, corresponding to a 32% reduction. In conclusion,
complexity and activations should be considered together to
assess the effects of rule changes.

5 | Threats to Validity

This section discusses the threats that may hamper the validity of
the presented study results, distinguishing between internal and
external threats to validity. Internal Validity pertains to any adver-
sary factor that may have an influence on our results. In this work
it is mainly related to the precision and reliability of the energy
measurements. External validity refers to the generalizability of
the obtained results and findings. In this work it is bound to the
considered dataset.

Internal Validity: One significant threat is measurement reli-
ability, which is affected by various factors such as interference

1160 Software: Practice and Experience, 2025

 1097024x, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3410 by U

niversität K
oblenz-L

andau, W
iley O

nline L
ibrary on [11/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



from noise, voltage spikes, and background processes. These fac-
tors can significantly impact the precision of our energy measure-
ments. To mitigate this threat, we implemented several strate-
gies. We utilized JoularJX 2.0, a tool specifically designed for
measuring process energy consumption, to ensure accurate read-
ings. Additionally, we adopted iterative testing methodologies: for
RQ1, we conducted 50 tests of each ATL transformation, while
for RQ2 and RQ3, we performed 200 tests, recording their average
values. This approach helps to smooth out anomalies and provide
more reliable data. We also implemented a 10-s sleep command
after each test to reduce the impact of potential energy spikes.
Another potential threat is the variability in the experimental
environment. Conducting all experiments within a Linux envi-
ronment, we selectively halted non-essential services and dae-
mons to minimize operating system overhead. This setup aims
to create a consistent and controlled environment, reducing the
influence of extraneous factors on our results. Prior works, such
as those by Ournani et al. [18, 22], have validated this approach,
demonstrating its effectiveness in similar studies.

External Validity: Regarding the generalizability of the experi-
ments, we acknowledge that the employed rules may not com-
prehensively mirror real-world models. ATL Zoo is a widely
exploited dataset [61, 62] containing old and relatively simple
transformations. Therefore, we could not test industrial-case
transformations. Nonetheless, our approach involved a gradual
increase in mutant size to encompass a wide array of scenarios
with the attempt to mimic real-size industrial models, capping
the maximum size at 250 elements due to exponential incre-
ments in mutant generation time. Additionally, the simplifica-
tion of OCL helpers might not assure semantic transformation
correctness, constituting a potential limitation. Nevertheless, our
focus was directed towards investigating the impact of this sim-
plification. The limited number of simplified transformations
could introduce a bias. To address this, we selected heterogeneous
transformations, as reported in Section 3.4, ensuring a decent
level of representativeness of ATL applications. The results are
strictly bound to the hardware configuration. Replicating the
experiments on different hardware may lead to significant differ-
ences. We mitigated this threat by focusing on the correlation and
variance of energy consumption and execution time in relation to
model size and OCL rule change.

6 | Conclusion and Future Work

In this paper, we focused on evaluating the energy consumption
of ATL transformations to gain insights into potential correla-
tions between consumption and various (meta)model and trans-
formation characteristics. Our experiments revealed a correlation
between energy consumption and ATL structural features. Addi-
tionally, we investigated the effects of model mutations, discov-
ering a strong correlation between transformations and energy
consumption in some instances. Furthermore, we explored the
impact of simplifying OCL rules, finding that balancing rule com-
plexity and activation frequency is crucial for achieving power
reduction.

Our study established correlations between several struc-
tural elements of transformations and their impact on energy
consumption. Specifically, elements such as the number of bind-
ings, output patterns, number of metaclasses, and structural

features inherited appear to play a significant role. Therefore,
refactoring efforts could focus on reducing the complexity or
frequency of these structural elements to optimize energy effi-
ciency. For instance, rewriting transformation rules to minimize
the number of bindings or consolidating bindings where possi-
ble could mitigate their energy impact. Regarding helper func-
tions, while their overall correlation with energy consumption
was marginal across most scenarios, we observed that in some
specific cases (e.g., XML2ANT), helpers contributed significantly
to energy use. This suggests that certain optimizations—such
as caching frequently used helper function results to prevent
repetitive calculations—could be effective in specific contexts.
Future work could explore these caching strategies in more
detail to determine whether they yield meaningful reductions
in energy consumption across a broader set of transformations.
As for the serialization process, our experiments indicated that
its effects on energy consumption were negligible, particularly
when performed on solid-state drives. Therefore, model serial-
ization might not need to be a primary target during optimization
refactoring efforts, allowing focus to shift to more impactful ele-
ments like bindings and helpers. We recognize that the present
study is primarily analytical, and we do not yet provide fully
fledged solutions for energy optimization. However, we believe
that these insights could serve as a starting point for identifying
energy-efficient refactoring strategies in future research.

For future research, there are numerous opportunities to enhance
the contributions of our analytical study. We recognize certain
limitations that could pave the way for new investigations into
energy consumption during model-to-model transformation. In
particular, we aim to conduct a comparative study to evaluate the
differences between ATL transformations and other transforma-
tion languages, such as Henshin and YAMTL, or Java [50]. Addi-
tionally, we want to evaluate the possible differences between
the tested version of the ATL engine (3.5.0) and the more
up-to-date version (4.8.0). This could provide valuable insights
into the energy efficiency of different transformation languages.
Additionally, RQ2 and RQ3 focused on specific transformations
selected based on certain criteria, as reported in Section 3.4.1. We
aim to expand these criteria to include a broader range of transfor-
mations, guided in part by OCL complexity, and provide a more
comprehensive analysis. Furthermore, we plan to investigate
how the use of typical ATL caching constructs, e.g., lazy unique
rules, attribute helpers, and extracting global helpers [33] impacts
the energy consumption of a model transformation and further
validate their potential to improve its efficiency. Most impor-
tantly, to assess our study’s generalizability, we seek to validate
our findings by examining real-world and industrial transforma-
tions, which could significantly enhance the applicability of our
research. Finally, we aspire to utilize this knowledge to develop a
recommender system capable of providing energy-aware sugges-
tions during the development of ATL transformations.
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Data Availability Statement

The data that support the findings of this study are openly available in
SPE−2024 at https://github.com/riccardoRubei/SPE_2024.

Endnotes
1 https://eclipse.dev/atl/atlTransformations/.
2 https://github.com/riccardoRubei/SPE_2024.
3 https://rosettacode.org/wiki/Rosetta_Code.
4 http://grabats2010.inf.mit.bme.hu/.
5 https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#

Iterative_target_pattern_element.
6 https://gomezabajo.github.io/Wodel/.
7 CPU specification https://www.amd.com/en/products/apu/

amd-ryzen-7-pro-6850u.
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