
Software and Systems Modeling (2025) 24:923–948
https://doi.org/10.1007/s10270-025-01263-8

SPEC IAL SECT ION PAPER

On the use of large languagemodels in model-driven engineering

Juri Di Rocco1 · Davide Di Ruscio1 · Claudio Di Sipio1 · Phuong T. Nguyen1 · Riccardo Rubei1

Received: 20 March 2024 / Revised: 27 November 2024 / Accepted: 21 December 2024 / Published online: 31 January 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Model-driven engineering (MDE) has seen significant advancements with the integration of machine learning (ML) and
deep learning techniques. Building upon the groundwork of previous investigations, our study provides a concise overview
of current large language models (LLMs) applications in MDE, emphasizing their role in automating tasks like model
repository classification and developing advanced recommender systems. The paper also outlines the technical considerations
for seamlessly integrating LLMs in MDE, offering a practical guide for researchers and practitioners. Looking forward,
the paper proposes a focused research agenda for the future interplay of LLMs and MDE, identifying key challenges and
opportunities. This concise roadmap envisions the deployment of LLM techniques to enhance the management, exploration,
and evolution of modeling ecosystems. Moreover, we also discuss the adoption of LLMs in various domains by means of
model-driven techniques and tools, i.e., MDE for supporting LLMs. By offering a compact exploration of LLMs inMDE, this
paper contributes to the ongoing evolution of MDE practices, providing a forward-looking perspective on the transformative
role of large language models in software engineering and model-driven practices.

Keywords LLMs · Generative AI · Model-Driven Engineering

1 Introduction

Model-driven engineering (MDE) promotes the adoption of
models to allow for the specification, analysis, and promotion
of complex software systems [77]. A modeling ecosystem
is made of available models, transformations, code genera-
tors, and a plethora of software tools. With the integration of
machine learning (ML) techniques, particularly in the context

Communicated by Javier Troya and Alfonso Pierantonio.

B Davide Di Ruscio
davide.diruscio@univaq.it
https://www.disim.univaq.it/DavideDiRuscio

Juri Di Rocco
juri.dirocco@univaq.it

Claudio Di Sipio
claudio.disipio@univaq.it

Phuong T. Nguyen
phuong.nguyen@univaq.it
https://www.disim.univaq.it/ThanhPhuong

Riccardo Rubei
riccardo.rubei@univaq.it

1 Università degli studi dell’Aquila, L’Aquila, Italy

of modeling ecosystems, MDE has seen significant advance-
ments lately [32].

Large language models (LLMs), such as GPT−3.5, have
demonstrated remarkable proficiency in understanding and
generating human-like text [64, 70, 75]. Very recently, there
has been a dramatic increase in the number of applications
of LLMs and pre-trained models (PTMs) in software engi-
neering in general [69], and model-driven engineering in
particular. To name but a few, LLMshave beenwidely used in
testing [84], code generation [57], qualitative research [12],
summarization [33], or commit message generation [93].
However, to the best of our knowledge, there exists no work
to provide a panorama view of current applications of LLMs
in MDE, as well as to sketch a roadmap for future research
directions in the domain.

Our work has been conducted to fill such a gap, provid-
ing an overview of the existing applications of LLMs in the
MDE domain. We acknowledge that many techniques used
in AI-supported SE could potentially be adapted for MDE
tasks. However, this paper specifically aims to investigate
the unique challenges and methodologies that arise when
integrating LLMs within the MDE paradigm. The primary
reason for excluding papers related solely to AI-supported
SE is to maintain a clear and concentrated scope on MDE-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01263-8&domain=pdf
http://orcid.org/0000-0002-7909-3902
http://orcid.org/0000-0002-5077-6793
http://orcid.org/0000-0001-9872-9542
http://orcid.org/0000-0002-3666-4162
http://orcid.org/0000-0001-9622-5949

924 J. Di Rocco et al.

specific applications. Essentially, including SE papers would
broaden the scope too much, thus shifting the focus. More-
over, while textual encodings of models (e.g., XML) provide
a common ground for interoperability between SE andMDE,
the context and objectives of their use in MDE are distinct.
In MDE, these encodings are not merely textual representa-
tions but are used as inputs for model transformations, code
generation, and other automated processes that are central
to the MDE methodology. Therefore, we focused on stud-
ies that directly address these unique aspects of MDE. The
discussion involves the utilization of LLMs for automated
classification of model repositories and the development of
advanced recommender systems within modeling ecosys-
tems. This paper builds upon the foundations laid by our
previously published work entitled “Machine Learning for
Managing Modeling Ecosystems: Techniques, Applications,
and A Research Vision” [32]. While the previous chapter
explored the applications of traditional ML and deep learn-
ing (DL) inMDE, this paper goes one step forward, focusing
on the utilization of LLMs to further enhance the capabilities
of MDE.

Toprovide a comprehensive understanding, the paper goes
deep into the technical intricacies of applying LLMs inMDE
(LLM4MDE), as well as the other way round, i.e., using
MDE to facilitate the adoption of LLMs (MDE4LLM). In
particular, it outlines the specific steps and considerations
necessary for effectively supporting MDE tasks by means
of LLMs, and vice versa, i.e., promoting the inclusion of
LLMs with the help of MDE. This ensures seamless synergy
between languagemodel understanding and the complexities
of model-driven systems.

In particular, we aim at answering the following research
questions:

– RQ1: How has existing research explored the applica-
tion of LLMs in MDE tasks? By conducting a systematic
literature review (SLR) [49], we investigate (i) the extent
and manner in which current studies integrate LLMs into
MDE tasks (LLM4MDE); and (ii) the reverse scenario,
where the MDE paradigm is employed to enhance the
capabilities of LLMs (MDE4LLM);

– RQ2: What strategies and methodologies have been
developed to leverage LLMs in supporting MDE tasks?
We focus on the identification of the various approaches,
frameworks, and tools proposed in the literature that uti-
lize LLMs to facilitate different aspects of MDE.

In addition to the retrospective analysis, the paper sets
forth a research agenda for the future of LLMs in MDE.
It identifies key challenges and opportunities, proposing
avenues for further exploration to maximize the potential
of LLMs in enhancing the management, exploration, and
evolution of modeling ecosystems. The envisioned roadmap

encapsulates both the theoretical and practical aspects,
paving the way for the deployment of LLM techniques in
the MDE domain.

In this respect, the main contributions of our work are
summarized as follows:

– A systematic literature review on the applications of
LLMs in MDE, in which the reviewed articles have
been organized in a categorized manner following mod-
eling tasks. This allows readers to easily comprehend the
results of the literature review.

– We discuss technical considerations for adopting LLMs
to support the development ofMDE tasks, aswell as using
model-driven techniques and tools to foster the adoption
of LLMs.

– Based on the current development in the domain, we
present a research agenda organized with respect to the
envisioned interplay of LLMs and MDE;

Structure. The paper is organized in the following sec-
tions. Section2 provides some background related to LLMs,
prompt engineering, and hallucinations. Section3 elaborates
on technical considerations for integrating LLMs into the
MDE workflow. Afterward, in Sect. 4, we present a system-
atic literature review on the applications of LLMs in MDE.
Our research agenda is discussed in Sect. 5. The related work
is then reviewed in Sect. 6. Finally, Sect. 7 sketches future
work, and concludes the paper.

2 Background in large languagemodels

As a base for further presentation, in this section, we recall
basic concepts in the field of pre-trained and large language
models, including prompt engineering, and hallucinations.

2.1 The rise of Large LanguageModels

The recent months have witnessed a proliferation of pre-
trained and large language models (LLMs). These models
are characterized by theirmassive size, extensive pre-training
on vast textual corpora, and sophisticated architectures
based on deep learning techniques, notably transformer neu-
ral networks [82]. LLMs encompass various architectures,
including both generative models like GPT (generative pre-
trained transformer) andmasked languagemodels like BERT
(bidirectional encoder representations from transformers).
GPTmodels are designed to generate text, making them suit-
able for tasks such as text generation and completion. On the
other hand,BERTmodels are optimized formasked language
modeling, where they predict missing words in a sentence,
making them ideal for tasks such as text classification and
token prediction.

123

On the use of large language... 925

LLMs are usually built on top of the transformer archi-
tecture [82], which consists of (i) an encoder to process the
input text and generate a series of encoded representations;
and (ii) a decoder to use these representations to generate the
output text. Moreover, there is the attention mechanism that
allows LLMs to consider the entire context of a sentence
when processing each word. In encoder–decoder models,
cross-attentions enable the decoder to focus on relevant parts
of the input sentence when generating the output. LLMs
learn to understand and generate text by capturing intri-
cate patterns, semantic relationships, and syntactic structures
inherent in human language. During pre-training, the models
are exposed to diverse text sources, ranging from books and
articles toWeb pages and social media posts. Altogether, this
equips LLMs with the ability to learn from a vast amount
of text, and as a result, sophisticated artificial intelligence
models, such asGPT-3 (generative pre-trained transformer 3)
or BERT (bidirectional encoder representations from trans-
formers) they are capable of understanding and generating
human-like text.

One of the key features of LLMs is their capability
of generating informative answers, enabling them to pro-
duce coherent and contextually relevant text based on input
prompts or cues [54]. This technical feature facilitates a wide
range of applications, including language translation [96],
text summarization [40], question answering, sentiment anal-
ysis, and dialog generation, to name but a few. In software
engineering, LLMs offer unprecedented opportunities for
code and text generation [93], documentation automation,
summarization [33], and bug detection [70, 71]. By leverag-
ing their deep understanding of programming languages and
software development concepts, LLMs can assist developers
inwriting codemore efficiently [18], debugging applications,
and comprehending complex codebases. The integration
of LLMs into software development processes showcases
their potential to enhance productivity and streamline var-
ious aspects of the software engineering lifecycle [14]. As
these models continue to evolve, their impact on software
engineeringpractices promises to bebothprofoundand trans-
formative.

2.2 Prompt engineering

To guide the behavior of LLMs during the deployment phase,
prompt engineering is the process of designing effective
queries or input patterns. It is related to forming the input
text, so as to yield the desired response or behavior from the
model. The ultimate aim of prompt engineering is to pro-
vide the model with context and constraints that steer its
output toward the expected outcome. This involves specify-
ing the task, providing relevant examples or instructions, and
shaping the input to encourage the desired behavior, while
minimizing undesirable outputs such as biases or inaccura-

cies in various domains such as text generation, question
answering, or problem-solving [42, 80, 83]. There are the
following possible applications of prompt engineering in
software engineering [75]:

– Code Generation: Developers make use of LLMs to gen-
erate code snippets based on prompts that describe the
desired functionality or specifications. The use of prompt
engineering is crucial while crafting input prompts that
provide sufficient context and constraints to guide the
model in generating accurate and syntactically correct
code [74].

– Code Summarization: LLMs can be employed to auto-
matically summarize codebases, functions, or meth-
ods [4]. In this context, prompt engineering aims to
generate queries that allow the model to produce con-
cise and informative summaries of code segments, while
still preserving important details and functionality.

– Debugging and Problem-Solving:Developers can employ
LLMs in analyzing code snippets, identifying potential
bugs, and suggesting solutions to programming errors
[36]. Prompt engineering in debugging tasks is to frame
queries that describe the symptoms of the issue and pro-
vide relevant context to help the model diagnose and
propose solutions.

– Documentation Generation: LLMs can support devel-
opers in generating documentation for software projects,
including function descriptions, API documentation, and
usage examples [36]. In this case, prompt engineering is
used to craft prompts that capture the key features and
requirements of the software components to be docu-
mented.

Effective prompt engineering in software engineering
requires an understanding of both the capabilities of LLMs
and the specific requirements and challenges of software
development tasks. It is necessary to iteratively refine
prompts based on feedback, analyze model outputs, and
incorporate domain-specific knowledge to ensure accurate
and helpful responses from the LLMs. By means of prompt
engineering techniques, developers can take advantage of
the power of LLMs to streamline development workflows,
improve productivity, and accelerate software development
processes.

Considering theMDE domain, it is of a paramount impor-
tance to encode the information contained in the considered
modeling artifacts. Figure1 shows two explanatory exam-
ples of prompt engineering defined for assisting modelers in
specifying two different kinds of model, i.e., generic domain
model (see Fig. 1a) and activity diagram (see Fig. 1b). It
is worth mentioning that the first type of prompt, i.e., the
domain one, is a plain text that specifies the goal without con-
sidering the underpinning modeling elements. Meanwhile,

123

926 J. Di Rocco et al.

Fig. 1 Examples of prompts defined for MDE tasks

the prompt shown in Fig. 1b embodies elements of the model
since the goal is different, i.e., model completion. In other
words, the prompt engineering strategy needs to be adapted
to the correspondingMDE task. In the scope of this paper, we
distinguish between the Raw text prompting, i.e., plain text
prompts without model elements, and Template prompt engi-
neering, inwhich the natural language prompts are combined
with model elements.

Several prompt engineeringmethods have been developed
recently. For example, ReACT integrates logical reasoning
with LLM outputs to improve decision-making processes
[92]. TreeOfThought employs a hierarchical approach to
prompt design, enhancing the model’s ability to handle
complex tasks [91]. Self-consistency involves generating
multiple responses and selecting the most consistent one,
thereby improving the reliability of the outputs [87].

In this section, we focus on chain-of-thought, few-shot
prompting, and RAG because these methods are particularly
relevant and widely applied in the context of our study on
using LLMs in MDE tasks. Interested readers can refer to
a recent paper [5] presenting an introduction and advanced
methods for prompt design and engineering.

2.2.1 Chain of thought

Chain-of-Thought is a prompting technique designed to
improve the reasoning capabilities of LLMs by break-
ing down complex problems into a series of intermediate
steps [48, 56, 88]. Unlike the traditional question answering

prompting technique, where each question is independent,
Chain-of-Thought requires themodel to understand and keep
track of the context from previous interactions in the entire
conversation. In particular, a series of questions are posed,
each building upon the context established by the previous
question and answer pair [51]. The ultimate aim is to evalu-
ate the model’s capacity for coherent, multi-turn dialog and
its ability to infer relationships and dependencies between
questions and answers.

Due to the need for long-term context retention and the
ability to reason across multiple turns, Chain-of-Thought is
particularly challenging for models. They serve as a bench-
mark for evaluating the performance of conversational AI
systems and assessing their capabilities in handling com-
plex, multi-turn dialogs. Developers use Chain-of-Thought
to identify strengths and weaknesses in conversational AI
models and to guide further improvements in dialog systems,
natural language understanding, and reasoning abilities.
By addressing the challenges posed by Chain-of-Thought,
systems can achieve more human-like conversational capa-
bilities and improve their utility in various real-world applica-
tions, such as virtual assistants or customer service chatbots.

2.2.2 Few-shot prompting

In natural language processing (NLP), few-shot prompting
is a technique used to fine-tune or adapt large language mod-
els (LLMs) for specific tasks or domains using only a small
amount of labeled data, the so-called “few-shot” dataset [26].
In few-shot prompting, the model is provided with a prompt
or example of the task alongwith a limited number of labeled
examples, allowing it to generalize and learn the task quickly
with minimal supervision [53]. The typical process, which
is followed when doing few-shot prompting consists of the
following activities [94]:

– Prompt Design: A prompt is designed to provide the sys-
tem with context and guidance about the task or domain
that needs to be performed. The prompt serves as a
template or instruction for the model to followwhen gen-
erating responses or making predictions.

– Few-shot Dataset: During fine-tuning, the system is fed
with a small dataset containing labeled examples or
instances of the task. The dataset may contain just a
few examples, thereby yielding the term “few-shot,” but
essentially, it should be representative enough to capture
the key patterns and variations in the training data.

– Inference: Once it has been fine-tuned, the system can
be deployed for inference on new data or tasks related to
the few-shot dataset. It uses the learned representations
and parameters tomake predictions or generate responses
based on the input prompts or queries provided during
inference.

123

On the use of large language... 927

As of my last update in January 2022,
the CEO of Twitter is Parag Agrawal.

Prompt
Engineering

Without RAG

Who is the owner of Twitter?

Retrieved documents

Generation

The owner of Twitter is Elon Musk. With RAG

Knowledge base

Augmentation

Fig. 2 Retrieval-augmented generation (RAG)

It is worth noting that fine-tuning, which involves train-
ing the model on a large amount of task-specific data to
adjust its parameters, is not mandatory for few-shot prompt-
ing. Instead, few-shot prompting leverages the pre-trained
capabilities of the model, using the examples in the prompt
to guide its behavior and outputs.

2.2.3 Retrieval-augmented generation (RAG)

RAG is a paradigm in NLP that combines elements of
retrieval-based and generative models to improve the qual-
ity and relevance of generated text [52]. RAG focuses on
enhancing the generation process by incorporating external
knowledge through retrieval. In this way, it can be consid-
ered as a complement to prompt engineering, which deals
with the crafting of the input prompts to guide the model’s
output. RAG involves the execution of the following main
phases:

– Retrieval: A retrieval mechanism is used to obtain and
extract relevant context or information from a large cor-
pus of text, knowledge bases, or external sources based
on the input prompt or context. This retrieval can be done
with various methods, e.g., keyword matching, semantic
similarity, or neural retrievers trained on large-scale text
data.

– Augmentation: The retrieved context is integrated with
the input prompt to yield additional input. This aug-
mented input is used to generate text that is contextually

relevant and coherent with respect to the retrieved infor-
mation.

– Generation: A generative model, such as a language
model or neural network, is responsible for generating
text based on the augmented prompt. The generative
model leverages the retrieved information to enhance the
relevance, coherence, and quality of the generated text.

A typical application ofRAG in practice is shown in Fig. 2.
Starting from the question: “Who is the owner of Twitter?”
then the answer generated by the corresponding LLM when
there is no RAG (the upper part of the figure) is: “As of my
last update in January 2022, the CEO of Twitter is Parag
Agrawal.” In fact, this is not the most updated knowledge as
Twitter was sold to Elon Musk in October 2022. Meanwhile,
in the lower part of Fig. 2, we see that by consulting external
sources, together with the initial query, the corresponding
LLM is able to find a proper answer to the question, i.e.,
“The owner of Twitter is Elon Musk.”

RAG enables LLMs to enhance their authenticity, diver-
sity, and specificity in knowledge-intensive tasks data [52,
90], reducing factually inaccurate answers in text generation
tasks [72]. In the scope of this paper, we are going to inves-
tigate the presence of RAG in MDE related applications.

2.3 Hallucination

Hallucination in LLMs refers to instances where the model
generates responses that are not grounded in the input con-

123

928 J. Di Rocco et al.

Fig. 3 An example of hallucinations with DALL-E3

text, or they are not related to the conversation [65]. This
happens due to the following reasons: (1) Contextual Under-
standing: LLMs are trained on large amounts of text data
and learn to generate responses based on patterns and asso-
ciations present in the training data; (2) Lack of Grounding:
Hallucination can occur when the model generates responses
that are not grounded in the input context or are disconnected
from the topic or subject being discussed; (3) Complexity of
Language Understanding: Natural languages are inherently
complex, hallucinations may arise when the model misinter-
prets the meaning of the input, or fails to recognize important
contextual cues; and (4) Bias and Error Propagation: Hallu-
cinations can be triggered by biases contained in the training
data.

Figure 3 takes an example of hallucinations generated by
Bing Copilot.1 With several attempts, we asked the engine
to draw for us a UML diagram for Teachers, Classes, and
Students. Surprisingly, Copilot misunderstood the query all
the times, and in the end, it returned 4 pictures of physical
classes with human teachers and students, and obviously this
is not what we expected.

Figure4 shows an example when ChatGPT hallucinates
with a text-to-text task.When being asked with the following
question: “What is there one in every corner and two in every

1 https://www.bing.com/chat?q=Bing+AI&FORM=hpcodx

Fig. 4 An example of hallucinations with ChatGPT

room?” ChatGPT gives an answer which reads “The answer
to the riddle ‘What is there one of in every corner and two of
in every room?’ is the letter ‘R’” (Fig. 4a). Interestingly, this
is not the right answer because the letter ‘R’ appears twice in
‘corner’ and only once in ‘room.’ Only after being corrected,
ChatGPT has the right answer as shown in Fig. 4b.

3 Adopting LLMs to support MDE tasks: a
technical overview

This section starts by sketching the main activities that are
performed when employing LLMs to support MDE tasks, as
well as discussing possible metrics for evaluating such types
of applications. Afterward, we provide a running example of
generating UML diagrams via LLMs. The insights presented
in this section are drawn from the authors’ knowledge and
experience in the topic.

3.1 Main activities to support MDE tasks with LLMs

This section makes an overview of the main activities that
need to be operated to leverage LLMs’ capabilities to support
specific MDE tasks, e.g., model generation, completion, and
model management operations. Chen et al. [25] identified
in their approach four steps to support the model comple-
tion task: (i) problem formulation and artifact representation,
(ii) LLM architecture definition (including the model and
hyperparameter selection), (iii) model representation, and
(iv) post-processing of the results.We believe that such activ-

123

https://www.bing.com/chat?q=Bing+AI&FORM=hpcodx

On the use of large language... 929

ities can be generalized and considered to be peculiar for any
model management operation. In the following, we discuss
these four steps and consider an additional one related to the
evaluation of LLMs.

3.1.1 Problem formulation and artifacts representation

Identifying the specificMDE tasks to be supported by LLMs
is a prerequisite before engineering the desired support.
LLMs, such as GPT, LLaMA, and their variants, offer a
broad spectrum of capabilities from natural language pro-
cessing to code generation and beyond. A broader list of
tasks took advantage of the introduction of AI in MDE [32].
For instance, model assistants and model generators are the
domains most investigated in recent work [21]. The positive
results of LLMs in creative tasks suggest that they can also
help with a wider range of MDE tasks. These tasks include
changing models, understanding model meanings, and man-
aging model updates together.

A well-defined conceptualization of MDE tasks impacts
how other tools or processes will consume LLM outputs,
the nature of the input data required by the LLM, and how
feedback loops can be established to refine performance con-
tinuously. In other words, formulating a problem for LLMs
requires meticulously mapping out the problem in terms of
data requirements, expected LLM interactions and desired
outputs to precisely match LLM strengths with MDE needs,
as shown in the illustrative application presented in Sect. 3.2.

Artifact encoding is a crucial preliminary step to employ
LLMs into the MDE workflow under development. This
process involves translating various MDE artifacts, such
as models, metamodels, model transformations, and design
documents, into comprehensible formats by LLMs. The aim
is to bridge the gap between the highly structured, often
graphical formats used inMDEand the text-based processing
capabilities of LLMs. Even though some artifacts, e.g., mod-
els and metamodels, are already encoded in understandable
textual formats, e.g., XML, for others, the adopted encoding
strategies should face the loss of semantics, the complexity,
and the ambiguity intrinsic of modeling artifacts.

Encoding formats that are typically employed with LLMs
include tree-based [89], graph-based [79], EBNF mod-
els [25], JSON schemas [9], and textual forms such as
plain[21] and prompt-engineered text [1]. Each schema
serves specific purposes, from preserving semantic integrity
and modeling complex relationships to ensuring data struc-
ture and facilitating natural language processing.

To properly formulate and tailor an LLM to support MDE
practitioners, the LLM engineer should take care of the fol-
lowing aspects:

– The complexity of the MDE task: Simulating the seman-
tics of a domain-specific language (DSL) engine is

generally more complicated than simply predicting addi-
tional modeling elements.

– The complexity of modeling context: Modeling artifacts
rarely exist in isolation; they typically relate to vari-
ous other artifacts, such as documentation, code, editors,
and transformations. Understanding how to encode these
relationships in the query context represents a significant
challenge.

– The format and complexity of generated output: Gener-
ating an XML-based version of a UML class diagram is
less complicated than generating a visual representation
of the diagram, as the latter also require consideration of
the layout arrangement.

3.1.2 LLM architecture definition

LLMs provide different strategies to improve their perfor-
mance in completing a specific task. LLMs’ engineers should
carefully design the LLM architecture. In recent years, hun-
dreds of domain-specific LLMs have been proposed, and
selecting suitable models can drastically impact the perfor-
mance of solving a specificMDE task. Once the LLMmodel
has been chosen, identifying suitable hyperparameters is piv-
otal in ensuring the successful completion of specific tasks.
For this reason, theLLMsengineer should leverage the exten-
sive range of model variants to identify and select the most
suitable option.

Moreover, hyperparameters plays a key role on the pre-
diction results. In Sect. 3.2, we discuss two common hyper-
parameters: one influencing the creativity of the LLM in
generating outputs and another setting the upper bound on
the number of new tokens the LLM can generate in response
to a query.

Furthermore, recent work has investigated the possibility
of orchestrating LLM agents to complete software engineer-
ing tasks [47]. A coordinated and supervised collaboration of
different LLM-based AI agents is another dimension that the
research community should investigate. In particular, when
a user seeks to perform a task, they must carefully engi-
neer the LLM agents architecture, considering techniques
not only to enhance individual LLM agents but also to prop-
erly engineering communication between agents, as well as
the mechanisms for exchanging artifacts among AI agents
and human engineers.

Improvingmodel performances of a single LLMagent can
even be achieved in different manner, i.e., selecting the right
prompt strategies or fine-tuning the selected model. RAG
strategies, Knowledge Graph Construction, Prompt Engi-
neering, andLLM Fine-Tuning are typical ingredients that the
LLM engineer uses to improve the predictive performance.
In the following list, we recall different strategies involved
to effectively support MDE tasks.

123

930 J. Di Rocco et al.

� RAG strategies: In the context of MDE, RAG can be
instrumental in automating and enhancing various tasks [8].
Customizing RAG to support MDE tasks involves sev-
eral critical steps tailored to the specific requirements and
challenges ofMDE. First, it is necessary to rely on a compre-
hensive MDE knowledge base that includes domain-specific
models, code repositories, design patterns, documentation,
and previous MDE artifacts. Furthermore, customizing the
retrieval mechanism for MDE could enhance the gathering
of information to understand and prioritize information rel-
evant to specific MDE task queries.
� Knowledge Graph Construction: It is pivotal for equipping
LLMs with the context necessary for generating meaningful
outputs. By structuring and connecting information derived
from MDE artifacts, such as mega-modeling data sources
[16, 30], knowledge graphs enhance LLMs’ comprehension
and analytical abilities.
� Prompt Engineering: It emerges as a critical tool for effec-
tively querying LLMs, guiding them toward generating the
desired outputs. The art of crafting prompts involves a care-
ful articulation of the tasks to the LLM, ensuring clarity and
precision. Given the diverse nature of MDE tasks and the
capabilities of different LLMs, prompt design is inherently
variable. It demands iterative refinement to achieve optimal
performance, with considerations for task complexity, the
specific LLM in use, and the desired output format playing
a pivotal role in this customization process. For this rea-
son, the application of prompt engineering strategies have
been deeply investigated in the approach proposed in the
paper resulting from our systematic literature review. For
instance, Chaaben et al. [22] used few-shot prompt learning,
which allows us to exploit these LLMs without having to
train or fine-tune them on a specific domain or task, while
Chen et al. [25] conducted a comprehensive, comparative
study of using LLMs for fully automated domain modeling,
employing various prompt engineering techniques on a data
set containing diverse domain modeling examples.
� LLM Fine-Tuning: It further refines the model’s align-
ment withMDE-specific requirements [60, 89], significantly
enhancing its accuracy and relevance to the tasks. Fine-tuning
practices vary widely, from minimal adjustments based on
a targeted dataset to extensive retraining on large, domain-
specific corpora. This step is vital for ensuring that the LLM
not only understands the intricacies of the MDE tasks, but
also produces outputs that are directly applicable and bene-
ficial to them.

3.1.3 Post-processing of LLMs results

A typical post-processing step transforms the output from
LLMs into a specified model artifact format through a rule-
based approach.When the output diverges from the expected
format, the post-processor can adjust the output to preserve

the validity of the generated answer, e.g., domain models
generated by the used LLM might need to be adapted when
generated attributes lack a specified data type, and the post-
processing can assign a default one to preserve the model
validity [25].

3.1.4 Evaluation of LLMs

A tailored evaluation methodology is paramount for accu-
rately assessing themodel’s performance and aligning it with
the specific objectives when utilizing LLMs for specialized
MDE tasks.

Current practices rely heavily on small testing sets [22,
89], primarily due to the resource-intensive nature of exten-
sive validations. While some exceptions have adopted an
80/20 schema for training and testing [7, 9], such instances
are rare and do not address the broader limitations of small-
scale evaluation datasets.

Moreover, the field needs more rigorous quantitative eval-
uation frameworks. Existing studies tend to favor qualitative
discussions [21] over systematic metrics, leaving much to be
desired regarding empirical evidence. Even though scenario-
based proofs of concepts [24, 79] are useful for showcasing
feasibility, they often need more comprehensive validation
and scale to real-world complexities. The involvement of
controlled scenarios and human-in-the-loop paradigms [25]
somewhat constrains the level of automation and highlights
the ongoing gap between academic prototypes and practical,
scalable solutions. These limitations highlight an urgent need
for more comprehensive investigations. Future work should
prioritize:

– Expanding testing datasets to ensure broader validation;
– Developing quantitative metrics tailored to this domain;
– Evaluating scalability and reliability in more diverse,
real-world scenarios;

– Exploring methods to minimize human intervention and
increase automation without compromising accuracy.

Addressing these gaps is essential for advancing the
reliability and applicability of LLMs in automating MDE
tasks, ensuring they move beyond proof-of-concept stages
to become integral components of model-driven engineering
workflows.

Creating custom evaluation metrics for specific LLMs
applications is essential, particularly when standard metrics
such as accuracy and F1 score may not fully capture the
model’s effectiveness in specialized tasks. In tasks likemodel
summary generation, utilizing metrics such as BLEU [20]
and ROUGE [55] scores is crucial for assessing the qual-
ity of machine translation and summarization by comparing
the LLM’s outputs with manual summaries. Additional met-
rics, e.g., METEOR [11] and SIDE [66], can offer a deeper

123

On the use of large language... 931

evaluation of these tasks, focusing on the nuances of lan-
guage quality and summary relevance. This highlights the
importance of tailoring evaluation metrics to reflect an
LLMs performance accurately in its designated application.
Furthermore, comparative analysis enriches the evaluation,
placing the LLM’s performance in context by benchmarking
it against other baselines or methodologies addressing the
same challenge. This highlights the LLM’s unique strengths
and weaknesses and uncovers potential areas for leveraging
its capabilities more effectively.

3.2 Illustrative LLM application: from textual
specifications to UMLmodels

In this section, we present an illustrative example showing an
iterative process to devise an LLM to generate UML models
from textual specifications. The following example con-
tributes at instantiating the four steps previously described.
By following step-by-step guidelines, we explore the differ-
ent technical choices an LLM engineer must consider. It is
worth noting that we are presenting an explanatory example,
which is incomplete on purpose to focus on its essentials.
In our example, we will make use of a typical Python ML
environment stack, including the most used Python libraries.
For instance, we will use pandas2 for data manipulation and
analysis, and PyTorch3 can be used to train or fine-tune mod-
els. Moreover, we will use Hugging Face libraries4 to handle
LLMs models on Hugging Face Hub.

3.2.1 Problem formulation

In the illustrative example, software engineers design com-
plex systems to meet diverse requirements. Creating UML
diagrams, such as use case and class diagrams, is often
time-consuming and involves collaboration with multiple
stakeholders. In recent years, various techniques have been
explored to automate the generation ofUMLmodels [29, 41].
Inspired by the recent studies of Chen et al. [25], Arulmohan
et al. [9], and Cámara et al. [21], we show how an LLM can
support the generation of UML diagrams based on a natural
language description of the system.

First of all, developers must carefully analyze the specific
UMLmodels to be generated and understand the structure of
the textual requirements, considering whether such require-
ments adhere to a particular template or format. This step is
crucial for aligning the LLMs learning process with the task
at hand, ensuring that the model can interpret and generate
the desired models effectively.

2 https://pandas.pydata.org
3 http://pytorch.org
4 https://huggingface.com

UML models, inherently structured and XML-based,
present a relatively straightforward scenario for encod-
ing [63]. With its well-defined structure and widespread use
in software engineering, XML offers a computer-readable
framework that LLMs can navigate with relative ease. This
inherent structure allows for the direct application of encod-
ing strategies that leverage the XML-based nature of UML
models, facilitating their comprehension and manipulation
by LLMs without significant loss of semantic integrity or
detail.

3.2.2 LLM architecture definition

For this illustrative example, we decided to choose LLaMA,5

an open-source model suitable for deployment on personal
infrastructures. Among the available models, LLaMA pro-
vides users with threemainmodels, i.e.,Chat Model, tailored
for understanding and generating text in conversational con-
texts,

Non-Chat Model, a general-purposemodel adept at a wide
array of language-related tasks without specific optimization
for conversational nuances, and the Code Model, designed
explicitly for programming-related tasks.

Given the task’s nature of this example, the Non-Chat
model was selected for its versatility across a broad spec-
trum of language-related tasks, avoiding the need for con-
versational context capabilities irrelevant to UML model
generation. Finally, considering the balance between task
complexity and available computational resources, a 13B
parameter model size was identified as the ideal compro-
mise. Listing 1 shows an excerpt of code in Python to use the
LLaMA pre-trained 13B non-chat model for the illustrative
example.

Listing 1 LLaMA model selection.

1
2import torch
3import huggingface_hub
4import pandas as pd
5from transformers import (
6AutoModelForCausalLM,
7AutoTokenizer,
8...
9)
10model = AutoModelForCausalLM.from_pretrained(
11"meta-Llama/Llama-2-13b-hf",
12...
13)

Line 1 of Listing 1 imports the torch library to perform
text generation using a trained model in optimized inference
mode (as seen in Line 6 of Listing 2). The LLaMA 2 pre-
trained model with 13B parameters was retrieved from the

5 https://llama.meta.com/

123

https://pandas.pydata.org
http://pytorch.org
https://huggingface.com
https://llama.meta.com/

932 J. Di Rocco et al.

hugging face model hub in Line 9 of Listing 1. The AutoTok-
enizer, imported in Line 5 of Listing 1 and initialized in Line
2 of Listing 2, was used to encode and decode data for the
LLaMA model retrieved from the hugging face model hub.

Upon the model selection, developers must investigate the
configurations for various parameters pertinent to the chosen
model. For instance, Listing 2 delineates the methodology
for adjusting the max_new_token and temperature
hyperparameters for the response. The max_new_token
parameter delineates the upper limit of new tokens that
the model can generate in response to a specified prompt.
Conversely, the temperature parameter modulates the
randomness nature of the text generation process: lower val-
ues result in more deterministic outputs, whereas elevated
values foster a heightened degree of diversity and innova-
tion. These two hyperparameters are commonly used across
pre-trained models and LLMs [95], e.g., hugging face trans-
formers,6 OpenAI GPT,7 and LLaMA.8 Listing 2 provides
an excerpt demonstrating how to set these hyperparameters
on the LLaMA model.

Listing 2 Configuration of some LLaMA hyperparameters.

1 def generate(model, text: str):
2 tokenizer = AutoTokenizer.from_pretrained(

MODEL_NAME,use_auth_token=AUTH_TOKEN)
3 inputs = tokenizer(text, return_tensors="pt")

.to(DEVICE)
4 ...
5 with torch.inference_mode():
6 outputs = model.generate(
7 **inputs,
8 max_new_tokens=100,
9 temperature=0.0001)

10 ...

Developers have the opportunity to build a knowledge
base by leveraging both the requirements andmodel reposito-
ries to enhance the understanding and generation capabilities
of LLMs. An interconnected graph structure, enriched with
textual specifications alongside their corresponding UML
models as highlighted in research by Huang et al. [44], acts
as a contextual guide for LLMs. It enables the model to dis-
cern the relationships between textual descriptions and UML
components effectively.

For this purpose, model repositories such as ModelSet
[58] can be utilized. ModelSet provides a comprehensive
interface for querying UML models categorized based on
specific criteria, as exemplified inListing 3. This code snippet
showcases the usage of the ModelsSet Python library [61] to
search forUMLmodels related to thehealth category. Fur-

6 https://huggingface.co/docs/transformers/main_classes/model?
highlight=generate
7 https://platform.openai.com/docs/api-reference/chat/create#chat-
create-temperature
8 https://llama.meta.com/docs/llama-everywhere/

thermore, sophisticated queries can be employed to retrieve
models that encapsulate abstract representations of similar
domains.

By carefully crafting prompts with detailed task descrip-
tions, contextual hints, and domain-specific details, and by
continuously refining these prompts based on performance
feedback, developers can significantly enhance the genera-
tive capabilities of LLMs in converting textual requirements
into UML models.

Listing 3 Searching UML models in ModelSet.

1import modelset.dataset as ds
2
3categories = [’health’] //More categories here
4dataset = ds.load(MODELSET_HOME, modeltype = ’

uml’, selected_analysis = [])
5modelset_df = dataset.to_normalized_df(

min_ocurrences_per_category = 7, languages
= [’english’])

6df = df[df[’category’].isin(categories)]

For example, developers can enrich prompts with con-
textual clues extracted from the textual requirements. By
incorporating these clues into the prompt, the LLM gains
a better understanding of the specific aspects of the require-
ment that should be represented in the generatedUMLmodel.
Furthermore, an iterative process of refining prompts can
identify areas where the LLM may struggle with misunder-
standings or require additional information or guidance on
the structure and content of the desired UML model.

Listing 4 An explanatory prompt for the illustrative MDE task.
1 <s>
2 [INST] <<SYS>>You are a modeling assistant able to parse

textual files containing requirements and generate
UML sequence diagrams <</SYS>>

3 Here a set of textual sofware requirements {{software
requirement}}

4 [/INST]
5 Can you provide me with the UML models in XMI format?
6 </s>
7 <s>
8 [INST]
9 Here the UML models expressed in UML format: {{UML.ecore

content}}
10 [/INST]
11 Can you provide me with a UML model instances in XMI

format?
12 </s>
13 <s>
14 [INST]
15 Here a UML model that abstracts the class diagram for a

voting system: {{UML class diagram instance}}
16 [/INST]
17 Can you provide me with an instance of a UML model that

includes a use case diagram?
18 </s>
19 <s>
20 [INST]
21 Here a UML model that includes at least one Use Case

diagram for a voting system: {{UML use case instance
}}

22 [/INST]
23 Which type of UML models would you like me to generate?
24 </s>
25 <s>
26 [INST]
27 I would like to have a Use Case Diagram.
28 [/INST]

123

https://huggingface.co/docs/transformers/main_classes/model?highlight=generate
https://huggingface.co/docs/transformers/main_classes/model?highlight=generate
https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature
https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature
https://llama.meta.com/docs/llama-everywhere/

On the use of large language... 933

Creating prompt templates that can be adjusted for dif-
ferent types of UML model generation tasks provides a
foundation for prompt engineering, ensuring consistency in
how tasks are presented to the LLM while allowing for
customization to specific requirements or domains. More-
over, establishing feedback mechanisms that involve expert
reviews of generated UML models and user feedback in
the prompt refinement process can help identify subtle
nuances or complex requirements that may not be adequately
addressed by the current prompts. Incorporating this feed-
back into prompt refinement improves the LLM’s ability to
produce high-quality UML models.

Listing 4 show an excerpt of a possible prompt for the
illustrative MDE task. The text enclosed by the special
<<SYS>> tokens serves as context for the LLaMAmodel,
guiding its responses based on our expectations. Line 2 con-
textualizes the conversationwith the LLMwith the following
sentence: “You are a modeling assistant able to parse textual
files containing requirements and generate UML sequence
diagrams,” specified between the <<SYS>> tokens. This
approach is effective because the same format was utilized
during its training, incorporating a broad array of system
prompts designed for diverse tasks.

Throughout the course of the dialog, each exchange
between the human participant and the artificial intelligence
entity is successively appended to the preceding prompt,
demarcated by [INST] delimiters. To facilitate few-shot
prompting, we employed the tokens <s> and </s> to
demarcate sequences of one or more example questions and
their corresponding answers. These examples are designed to
guide the model’s reasoning toward the expected direction.
We utilized {{…}} as a placeholder intended to be substi-
tuted with specific contents, e.g., UML.ecore content is a
placeholder for the XMI encoding of UML notation. More-
over, the user gives some models in one sequence to help
generate valid UML models, e.g., “Here a UML model that
abstracts the class diagram for a voting system. {{UML class
diagram instance}}".

In particular, each discussion iteration delimited by the
tags <s>, </s> contributes to informing the LLM about
the context of the discussion. For instance, while Line 3
provides the requirements, three iterations are simulated.
First, the LLM is advised about UML specification to be
used (Lines 5–10), then two instances of class and use case
diagrams are provided within a defined domain, i.e., voting
system (Lines 11–22). Finally, the LLM asks which UML
diagram the human would like to get from the given natural
language requirements. This is just a demonstrative and not
evaluated example. However, to the best of our experience,
both the notations and model examples enhance the possibil-
ity of having valid models.

Leveraging the availability of a comprehensive corpus
of paired entities, i.e., template-based requirements along-

side corresponding use case diagrams [35], the developers
essayed on a fine-tuning process for the LLM. This fine-
tuning is designed to enable the LLM to contextualize and
interpret the retrieved examples effectively. The ultimate goal
was to empower the LLM to generate UML diagrams that
accurately align with and reflect the essence of new tex-
tual specifications. This nuanced adaptation ensures that the
LLM’s outputs are not only syntactically aligned with the
inputs, but also semantically resonant with the underlying
requirements.

3.2.3 Post-processing of LLMs results

Once the LLMs provides its answer to a specific query, the
result may require post-processing for various reasons, such
as cleaning chatbot comments, ensuring conformance with
the expected output format, removing non-ANSI characters,
and similar tasks. In our illustrative example, a typical post-
processor extracts the model code block from the response
and verifies whether the generated model conforms to the
UML specification. If themodel is invalid, the post-processor
can utilize the validation error messages to refine the input
and initiate another request round with the LLMs.

3.2.4 Evaluation of LLMs

The evaluation of LLMs remains a challenging and under-
explored domain, with significant gaps in methodology and
scope. Current practices rely heavily on small testing sets,
primarily due to the resource-intensive nature of extensive
validations. While some exceptions have adopted an 80/20
schema for training and testing, such instances are rare and do
not address the broader limitations of small-scale evaluation
datasets.

Moreover, the field needs more rigorous quantitative
evaluation frameworks. Existing studies tend to favor qual-
itative discussions over systematic metrics, leaving much
to be desired regarding empirical evidence. Even though
scenario-based proofs of concepts are useful for showcasing
feasibility, they often need more comprehensive validation
and scale to real-world complexities. This overreliance on
controlled scenarios and human-in-the-loop paradigms fur-
ther limits the degree of automation and underscores the gap
between academic prototypes and practical, scalable solu-
tions.

These limitations highlight an urgent need for more com-
prehensive investigations. Future work should prioritize:

– Expanding testing datasets to ensure broader validation;
– Developing quantitative metrics tailored to this domain;
– Evaluating scalability and reliability in more diverse,
real-world scenarios;

123

934 J. Di Rocco et al.

– Exploring methods to minimize human intervention and
increase automation without compromising accuracy.

Addressing these gaps is essential for advancing the
reliability and applicability of LLMs in automating MDE
tasks, ensuring they move beyond proof-of-concept stages
to become integral components of model-driven engineering
workflows.

4 Use of LLMs in MDE

This section aims to explore the current landscape of
LLMs usage in model-driven engineering. To achieve this,
we conduct a systematic literature review [49] across major
scientific databases, seeking state-of-the-art studies. The pro-
cess for retrieving relevantworks is illustrated inFig. 5, incor-
porating three distinct digital libraries: Scopus,9 ACM,10 and
IEEE Xplore.11 The query outlined in Listing 5 is employed
during this systematic review.

Listing 5 The search string.

("system modeling" OR "software modeling" OR "model-
driven engineering" OR "model-based software
engineering" OR "model-driven development" OR "model
-driven architecture" OR "model-driven software
engineering" OR mdd OR mbse OR mde OR mda OR mdse
AND (large AND language AND model*) OR llm OR llms
OR pre-trained OR pre-trained language model*)

Concerning the set of keywords, we searched for a specific
set of tasks, e.g., model transformation or model comple-
tion, plus synonyms of model-driven engineering, i.e., MDD
and MBSE. Since our work is focused on LLMs, we narrow
down the scope of our research by using specific keywords
used in this kind of model, e.g.,pre-trained or large language
model. Finally, we limited the search to recent papers, i.e.,
those published from 2020. To ensure an unbiased selection
process, we employed a rigorous approach. Two different
authors independently evaluated all the papers, and the three
senior co-authors thoroughly reviewed the entire selection
process.

By executing the query on the three aforementioned digital
libraries, we obtained a total of 714 papers. Subsequently, we
filtered out duplicates that appeared in the selected sources,
thereby reducing the number to 707. From this refined list,
we manually inspected titles and abstracts to identify papers
aligning with our goals by applying inclusion and criteria
described in Table 1.

Following this inspection, we pinpointed 21 papers eligi-
ble for the next step, i.e., reading the full paper.We eventually

9 https://scopus.com
10 https://dl.acm.org/
11 http://ieeexplore.ieee.org/

Table 1 Inclusion and exclusion criteria

Inclusion criteria

1. Papers that apply LLMs or pre-trained models to
support MDE tasks (LLM4MDE).

2. Papers that apply MDE techniques, strate-
gies or methodology to support LLMs definitions
(MDE4LLM).

3. Peer-reviewed papers published in high-ranking
conferences or journals. They are identified based
on established ranking systems such as the CORE
Conference Ranking and the SCImago Journal Rank
(SJR). Examples of such venues include, but are not
limited to, ICSE, MODELS, and SoSyM.

4. Studies published over the last 5 years, i.e., from
January 2019 to July 2024.

Exclusion criteria

1. Foundation papers on LLMs or pre-trained models.

2. Papers not written in English.

3. Out-of-scope papers, e.g., LLMs applied to generic
SE tasks, MDE, MDE approaches applied to ML/DL
networks.

selected 14 studies12 that leverage generative AI models
to support modeling tasks. Subsequently, we meticulously
analyzed each work to extract a set of relevant features char-
acterizing them, i.e., the employed LLMs, the supported
MDE task, the managed artifacts, the encoding mechanisms
applied to the input data, the prompt engineering strategy,
the post-processing phase (if any) and the used evaluation
strategies as shown in Table 2.

4.1 Model completion

Weyssow et al. [89] proposed a learning-based approach
that leverages the RoBERTa pre-trained model to suggest
relevant metamodel elements. The metamodels are encoded
as structured trees to train the underlying model and obtain
a textual sequential representation. Subsequently, a test set
is generated using a sampling strategy relying on mask-
ing. Essentially, masking is a technique employed in natural
language processing, where a portion of the input text is
randomly modified [86], allowing the model to learn to
predict the masked text by relying on the contextual remain-
ing words. The employed model is then used to predict
missing elements and provide the modeler with insightful
domain concepts. The results show that the employed model
is capable of predicting the masked model items considering
precision, recall and mean reciprocal rank (MRR) metrics.

12 The interested reader can find the total number of papers and
their details in the online appendix https://github.com/MDEGroup/
LLM4MDE-Appendix

123

https://scopus.com
https://dl.acm.org/
http://ieeexplore.ieee.org/
https://github.com/MDEGroup/LLM4MDE-Appendix
https://github.com/MDEGroup/LLM4MDE-Appendix

On the use of large language... 935

Scopus

IEEExplore

ACM DL

Duplicates
removal

Reading title
and abstract

197

443

74

714
papers

707
papers

Search
query

21
papers

Reading full
text

14
papers

Application of
criteria

Fig. 5 Process to retrieve relevant papers

Similarly, Chaaben et al. [22] support model completion
using the GPT-3 model. Specifically, the model under con-
struction is encodedusing semanticmapping, i.e., embedding
the model elements as structured text in the prompt. Prelim-
inary results computing traditional accuracy metrics on 30
models extracted from the ModelSet dataset [58] show that
the few-shot approach can help modelers to complete static
UML models, though there is still room for improvements,
e.g., the accuracy can be increased by encoding non-natural
language elements such as symbols and digits. In addition,
completion of dynamic UML has not been evaluated rigor-
ously.

Kulkarni et al. [50] proposed a methodology to integrate
GPT-4 and the development of digital twin models. First,
the human designer specifies the system requirements using
user stories directly in the prompt. Afterward, the prompt
is iteratively refined using the goal-measure-lever (GML)
metamodel, in which the modeler can define the goals and
sub-goals of the final system. The approach can eventually
generate an enhanced model that can be transformed into
DSL specification using MDE standard technique.

Apvrille and Sultan [7] employed ChatGPT to complete
structural and behavioral SysML models. Built on top of the
online TTool framework, the proposed approach first pro-
cesses the user query composed of the partial SysML and
the domain knowledge encoded as a JSON request. After-
ward, ChatGPT exploits the augmented query to enhance
the model’s generation. The TTool framework eventually
extracts the GPT’s response and delivers it to the modelers
using a feedbackmechanism to post-process any syntax error.
The evaluation shows that the proposed framework slightly
outperforms students in the modeling tasks, even though the
results are worse when complex specifications are consid-
ered.

4.2 Model search

Shrestha and Csallner [79] proposed SLGPT, a fine-tuned
version of the GPT-2 model to support the generation of
graphical block-diagram models, i.e., Simulink models. Ini-
tially, a curated training corpus of 400 valid open-source

models is collected by combining a random model generator
and a dedicatedmining tool. The proposed approach then uti-
lizes a breadth-first search (BFS) algorithm to preprocess the
training models, e.g., removing macros, default settings, and
comments. SLGPT eventually generates a Simulink model
by computing a probability mass function based on a well-
known sampling technique and temperature. The conducted
evaluation shows that SLGPT outperforms DeepFuzzSL, a
baseline approach, in terms of generated structural prop-
erties. In addition, graph-based metrics computed on the
generated sub-graphs demonstrate that SLGPT can generate
adequate Simulinkmodels using the internal validity checker
component.

ChatGPT has been used to assess plagiarism in model-
ing assignments [76]. First, a generic AI-based plagiarism
detector has been developed by relying on an NLP-based
plagiarism detector composed of four different phases, i.e.,
tokenization, normalization, pairwise matching, and similar-
ity calculation. Afterward, ChatGPT is instructed to replicate
human assignment by using two different prompt techniques,
i.e., zero-shot asking for a full-generation and few-shots
using obfuscation on existing models. By relying on an
existing dataset of EMF-based metamodels, the conducted
evaluation reveals that ChatGPT is not able to produce cor-
rect assignments even though using obfuscation improves the
generation capabilities in terms of plagiarism metrics.

4.3 Model generation

A framework to generate domain models in a textual for-
mat has been developed [25], being compatible with various
prompt engineering methods, and including a semantic
scoring technique for evaluation. In addition, a dedicated
post-processor module is devised to check the syntactic
validity of the generated output using a rule-based method.
The authors experimented with GPT−3.5 and GPT-4 using
different prompt engineering methods, and conducted a
detailed comparative evaluation with precision, recall, and
F1-measure. The results demonstrate that GPT-4 can under-
stand the application domain, but is not mature enough to
completely automate model generation.

123

936 J. Di Rocco et al.

The ability of GPT−3.5 to extract information from
requirements documents for model generation has been
recently investigated [9]. Specifically, the authors focused
on the extraction from requirements concentrating on agile
backlogs. In this work, 22 product backlogs and 1,679 user
stories were used for extraction, and the evaluation consisted
of comparing three approaches (Visual Narrator, GPT−3.5,
and CRF) in terms of F1-score metric. Interestingly, the CRF
implementation outperformed GPT−3.5.

4.4 Model management operation

Cámara et al. [21] explored the capability of GPT−3.5 in
assisting modelers in their modeling tasks. Although GPT
revealed to provide solid assistance with OCL expressions,
it demonstrates many limitations in model generation. In
particular, only for very specific domains like banking, the
authors demonstrate a decent precision. To evaluate the con-
sistency of the generated model, a human-based evaluation
has been carried out by creating 40 models belonging to 8
different domains.

Abukhalaf et al. [1] assessed the Codex LLM’s capabili-
ties in generating OCL logical constraints defined on UML
models. By manually creating prompts following a prede-
fined template, the authors experiment different strategies,
i.e., basic prompts, zero-shots, and few-shots. The conducted
evaluation on a dataset composed of 15UMLmodels and 168
specifications show that Codex obtains better results with
few-shots technique in terms of validity score and accuracy
even though the program repair techniques can increase the
naturalness of the generated constraints. The same authors
proposed PathOCL [2], an approach based on GPT-4 model
to support the generation of OCL rule using chuncking tech-
nique to overcome the token limitation issue. Afterward, the
generated prompts are ranked according to well-known sim-
ilarity functions, e.g., Cosine and Jaccard. In particular, the
comparison with Codex model shows that GPT-4 is more
efficient in generating OCL constraints using the augmented
prompts in terms of the considered metrics, e.g., correctness
and validity.

4.5 Model architecture

Ahmand et al. [3] applied ChatGPT to support the gen-
eration of software architecture from textual requirements.
First, the initial requirements are enforced by a continuous
dialog between ChatGPT and the human architect. After-
ward, a PlantUML diagram is generated by exploiting three
well-founded architecting activities. ChatGPT is eventually
used to evaluate the generated software architecture using the
SAAM methodology [34].

4.6 DSL requirement

Bertram et al. [15] exploited GPT-3 models to translate tex-
tual requirements in DSL specification in the context of
advanced driver assistance systems (ADAS). Starting from
unstructured textual requirements, the authors employ the
few-shots prompt technique to derive formal rules used in
the DSL specification. To evaluate the approach, the authors
conducted an early validation using an adaptive light system
as the motivating scenario.

4.7 Goal modeling

Chen et al. [24] exploited GPT-4 to guide the creation of
goalmodels in the context of requirement engineering. Given
the input specified using textual goal-oriented requirement
language (TGRL), the authors exploit zero-shot and few-shot
prompting to instruct GPT in completing goal models using
two different types of questions, i.e., open and closed. In
addition, each prompt contains a syntax description to detail
the application context with dedicated TGRL tags. Finally,
interactive feedback has been used to improve the results. The
experiment conducted on two different use cases, i.e., Kids
Help Phone and Social Housing, demonstrates that GPT-4 is
effective in specifying the goal models even though it fails
to handle complex requirements.

From the analyzed approaches, we constructed a fea-
ture model depicted in Fig. 6. This model encapsulates the
fundamental concepts of both fields, i.e., LLMs and MDE.
The devised feature model provides a technical visualiza-
tion of the essential elements and relationships between
LLMs and MDE, offering insights into their interconnected
functionalities and constituting elements. Concerning the
MDEConcepts, the identified Input Artifact needs to be
encoded by adopting the proper artifact Encoding, i.e., stan-
dard format that can be processed by LLMs. It is worth
mentioning that there are only three types of model arti-
facts supported by the existing literature, i.e., domainmodels,
metamodels, and Simulink models. Concerning LLMCon-
cepts, we map the generic concepts discussed in Sect. 2 to
the actual approaches identified in Table 2. We report that
PromptEncoding plays an important role since it is necessary
to guide the generation of the wanted Input Artifact. Differ-
ent approaches show that using a prompt template compared
to RawText can improve the quality of the generated model-
ing artifacts. Notably, only one of the examined approaches
employs RAG as a strategy, i.e., Apvrille and Sultan [7]. This
means that the majority of identified works focus more on
zero and few-shots prompting. Noteworthy, few approaches
handle the post-processing phase by relying on two main
techniques, i.e., tailored parsers or iterative feedback. Con-
cerning the evaluation, we report that accuracy metrics are
used mostly to evaluate prediction tasks, e.g., model com-

123

On the use of large language... 937

Ta
bl
e
2

C
om

pa
ri
so
n
of

ex
is
tin

g
L
L
M
4M

D
E
ap
pr
oa
ch
es

M
od
el
in
g
ta
sk

A
pp
ro
ac
h

U
nd
er
pi
nn
in
g

m
od
el

M
od

el
in
g
ar
tif
ac
t
A
rt
if
ac
te
nc
od

in
g

PE
1
E
nc
od
in
g

PE
st
ra
te
gy

Po
st
-p
ro
ce
ss
in
g

E
va
lu
at
io
n

M
od
el
co
m
pl
et
io
n

C
ha
ab
en

et
al

.
[2
2]

G
PT

-3
St
at
ic

an
d

dy
na
m
ic

m
od
-

el
s

N
on
e

Te
m
pl
at
e
PE

Fe
w
-s
ho
ts

N
on
e

Pr
ec
is
io
n,
R
ec
al
l

W
ey
ss
ow

et
al

.
[8
9]

R
oB

E
R
Ta

M
et
am

od
el
s

T
re
e-
ba
se
d

N
.A
.5

N
.A

N
on

e
Pr
ec
is
io
n,
R
ec
al
l,
M
R
R
4

K
ul
ka
rn
i

et
al

.
[5
0]

G
PT

-4
M
et
am

od
el
s

G
M
L
m
od
el

R
aw

te
xt

C
oT

2
N
on
e

Sc
en
ar
io
-b
as
ed

A
pv

ri
lle

an
d
Su

l-
ta
n
[7
]

G
PT

−3
.5

Sy
sM

L
m
od
el
s

JS
O
N
sc
he
m
a

JS
O
N
re
qu
es
t

R
A
G

Fe
ed
ba
ck

m
ec
ha
ni
sm

T
im

e
co
m
pu
ta
tio

n

M
od
el
se
ar
ch

Sh
re
st
ha

an
d

C
sa
lln

er
[7
8,

79
]

G
PT

-2
Si
m
ul
in
k
m
od

el
s

G
ra
ph

-b
as
ed

R
aw

Te
xt

N
.A

V
al
id
ity

C
he
ck
er

G
ra
ph

-b
as
ed

m
et
ri
cs

Sa
ğl
am

et
al

.[
76

]
C
ha
tG

PT
6

M
et
am

od
el
s

E
M
F-
ba
se
d
m
od
-

el
s

O
bf
us
ca
te
d
m
od
-

el
s

Z
er
o

an
d

Fe
w
-

sh
ot
s

N
on

e
Pl
ag
ia
ri
sm

m
et
ri
cs

M
od
el
ge
ne
ra
tio

n
C
he
n

et
al

.[
25

]
G
PT

−3
.5
,G

PT
-4

D
om

ai
n
m
od
el
s

E
B
N
F
m
od
el
s

R
aw

Te
xt

Z
er
o

an
d

fe
w
-

sh
ot
s,
C
oT

2
R
ul
e-
ba
se
d

Pr
ec
is
io
n,
R
ec
al
l,
F1

-s
co
re

A
ru
lm

oh
an

et
al

.
[9
]

G
PT

−3
.5

U
M
L
m
od
el
s

JS
O
N
sc
he
m
a

R
aw

Te
xt

R
ap
id

pr
ot
ot
yp
-

in
g

JS
O
N
pa
rs
er

F1
-s
co
re

M
od
el
m
an
ag
em

en
to

p
C
am

ar
a

et
al

.[
21

]
G
PT

−3
.5

U
M
L
m
od
el
s

N
on
e

R
aw

Te
xt

N
on
e

N
on
e

Sc
en
ar
io
-b
as
ed

A
bu
kh
al
af

et
al

.
[1
]

C
od
ex

U
M
L
m
od
el
s

Pl
an
tU
M
L

Te
m
pl
at
e
PE

Z
er
o

an
d

Fe
w
-

sh
ot
s

M
an
ua
l

A
cc
ur
ac
y
an
d
va
lid

ity

A
bu
kh
al
af

et
al

.
[2
]

G
PT

-4
,C

od
ex

U
M
L
m
od
el
s

Pl
an
tU
M
L

Te
m
pl
at
e
PE

Fe
w
-s
ho
ts

M
an
ua
l

Si
m
ila
ri
ty

3
,c
or
re
ct
ne
ss
,v
al
id
ity

M
od
el
ar
ch
ite
ct
ur
e

A
hm

ad
et

al
.[
3]

C
ha
tG

PT
6

U
M
L
m
od
el
s

Pl
an
tU
M
L

R
aw

te
xt

C
oT

2
N
on
e

SA
A
M

m
et
ho
do
lo
gy

[3
4]

D
SL

re
qu
ir
em

en
t

B
er
tr
am

et
al

.
[1
5]

G
PT

-3
A
D
A
S

re
qu
ir
e-

m
en
ts

D
SL

ru
le
s

R
aw

Te
xt

Fe
w
-s
ho
ts

N
on
e

Sc
en
ar
io
-b
as
ed

G
oa
lm

od
el
in
g

C
he
n

et
al

.[
24

]
G
PT

-4
T
G
R
L
m
od

el
s

St
ru
ct
ur
ed

T
G
R
L

Te
m
pl
at
e
PE

Z
er
o

an
d

Fe
w
-

sh
ot
s

Fe
ed
ba
ck

m
ec
ha
ni
sm

Sc
en
ar
io
-b
as
ed

1
PE

=
Pr
om

pt
en
gi
ne
er
in
g

2
C
oT

=
C
ha
in

of
T
ho
ug
ht
s

3
T
he

si
m
ila

ri
ty

ha
s
be
en

as
se
ss
ed

w
ith

C
os
in
e
an
d
Ja
cc
ar
d
di
st
an
ce

4
M
R
R
=
M
ea
n
R
ec
ip
ro
ca
lR

an
k

5
N
.A
.=

N
ot

ap
pl
ic
ab
le

6
G
PT

ve
rs
io
n
no
ts
pe
ci
fie
d

123

938 J. Di Rocco et al.

pletion or model management operations, while tasks that
require human reasoning, e.g., goalmodeling ormodel archi-
tecture, have been evaluated using scenarios or use cases.

Concerning MDE4LLM, Cariso and Cabot [73] proposed
a domain-specific language (DSL), called Impromptu, to
generate prompts in a platform-independent way. The sys-
tem allows users to define the prompt sketch, customize it
for the application domain, and validate it using a dedicated
code generator. To evaluate the Impromptu capabilities, the
authors generate platform-specific fine-tuned prompts for
two platforms, i.e., Midjourney and Stable Diffusion. The
results demonstrate that the proposed DSL succeeded in
supporting the image.to-text systems, although in-depth eval-
uation is required to support more complex LLMs. Since it is
the only work that supports MDE4LLM, we did not insert it
in the table to avoid an unfair comparison, i.e., the identified
feature refers to LLM approaches to support modeling tasks.

Answer to RQ1: LLMs are increasingly being used
in MDE tasks such as model completion, and genera-
tion. While models like GPT-3 and GPT-4 have been
successfully applied, the field is still emerging, with sig-
nificant opportunities in developing more sophisticated
integration methods such as retrieval-augmented genera-
tion (RAG) and knowledge graph-based approaches.

Answer to RQ2: Prompt engineering, few-shot and zero-
shot learning methods are commonly used to adapt LLMs
to specific MDE tasks without extensive fine-tuning.
Some approaches have explored the use of LLMs in con-
junctionwithMDE tools, through iterative feedback loops
and post-processing.

5 Research agenda

The integration of LLMs in the realm of MDE introduces
a transformative dimension to the established concepts of
abstraction and automation. Traditionally, MDE has been
centered around abstracting target platforms and providing
automation to simplify the engineering of complex systems.
This has proven effective in managing the intricacies of
diverse platforms and streamlining development processes.
However, with the advent of LLMs, MDE can now extend
its capabilities to support the adoption of single LLMs and
the interactions of several LLMs.

LLMsdiffer fromotherAI-based techniques in several key
aspects including generative capabilities and pre-training on
vast corpora by disclosing several opportunities for support-
ing automation in MDE tasks. In particular, the generative
ability of LLMsdistinguishes them from other AI techniques

that might focus on classification, regression, or other pre-
dictive tasks. Moreover, the extensive pre-training of LLMs
allow them to perform well on various tasks with minimal
fine-tuning. In contrast, other AI techniques often require
task-specific training data and significant feature engineer-
ing.

Akin to the concepts of software engineering for AI
(SE4AI) and AI for software engineering (AI4SE), it is
imperative for the MDE community to actively engage with
two distinctive but interrelated directions: MDE4LLM and
LLM4MDE. They represent a bidirectional collaboration
aimed at advancing the integration and utilization of LLMs
in diverse domains while leveraging the capabilities of LLMs
to enhance variousMDE tasks. In this section, we dare draft a
research agenda organized with respect to the two identified
directions.

5.1 MDE4LLM: supporting LLMs adoption with MDE

In the MDE4LLM direction, the focus is on supporting
the adoption of LLMs in various domains by means of
model-driven techniques and tools. Envisioning a multitude
of task-specific LLMs, the community should actively con-
tribute to the training and utilization of these models to
support a broad spectrum of tasks, extending beyond tra-
ditional software engineering domains. Recognizing that the
applications of LLMs span diverse fields, the MDE commu-
nity should reinforce the multidisciplinary attitude. While
the immediate applications may not be limited to software
engineering tasks, the community’s expertise in modeling
and abstraction can significantly contribute to the develop-
ment and effective use of LLMs in different research and
application domains.
Abstraction in the context of LLMs: MDE has historically
focused on abstracting the intricacies of target platforms
through domain-specific modeling languages. Convergence
of domain-specific languages, LLMs, and prompt engineer-
ing emerges as a promising trajectory, particularly in training
andusing task-specific languagemodels. Prompt engineering
becomes an integral part of this research, facilitated by repos-
itories of context-aware and domain-specific languages.
Automation with multitudes of task-specific LLMs: In the
traditional MDE sense, a platform refers to a specific tech-
nology stack or execution environment. With the integration
of LLMs, the notion of a platform expands to include the
collaborative ecosystem of multiple language models work-
ing together in a multi-agent system. This conceptual shift
broadens the scope of MDE’s target platforms.
Envisioned interplay of MDE and LLMs: As illustrated
in Fig. 7, the symbiotic integration of LLMs and MDE
technologies and tools holds the potential for reciprocal ben-
efits. Building upon our earlier discussion, we anticipate a
paradigm shift toward the proliferation of task-specific AI

123

On the use of large language... 939

Fig. 6 Feature models representing state-of-the-art approaches employing LLMs and MDE

123

940 J. Di Rocco et al.

MDE-task specific AI agent

Large Language ModelsPrompt Engineering1 32

Chain-of-Thoughts

Few-shot prompting

Retrieval-augmented Generation

Representative MDE tasks

Model evolutionModel generation

Model completion Model search

LLMs-based execution environment

MDE-task specific Prompt Engineering

Model-based User Request

Main technical ingredients and concepts

Envisioned MDE and LLMs interplay

Modeler

Fig. 7 Envisioned interplay of MDE and LLMs

agents fueled by LLMs. This departure from large, gener-
alized agents, which entail resource-intensive development
and training processes, offers notable advantages in terms of
both time and cost-effectiveness.

In this envisioned landscape, LLMs transition from play-
ing the role of generic execution environments to empower-
ing MDE task-specific AI agents. These specialized agents
are tailored to perform distinct model management opera-
tions, including but not limited to model evolution, model
comparison, domain modeling, generation of training and
testing data, and model completion. Users can increase their
efficiency and relevance in development processes by align-
ingAI agents with specificMDE tasks. Crucially, the input to
these task-specific agents is provided through specifications
adhering to domain-specific languages (similarly towhatwas
proposed by Clarisó et al. [73]), further enhancing the preci-
sion and applicability of the collaborative interplay between
LLMsandMDE technologies. In otherwords, low-code envi-
ronments [31] will democratize the usage of AI agents that
are specific for the application domains of interests.

5.2 LLM4MDE: LLMs-based automation for MDE
tasks

In the LLM4MDE direction, the community should con-
tinue the work initiated with automated modeling assistants,
domain analysis based on neural networks, and deep learning
technologies. The scope of LLM4MDE extends beyond con-
ventional software engineering tasks. LLMs can be leveraged

as tools to automate and assist in a wide range of MDE activ-
ities, from requirements elicitation to model transformation,
providing valuable insights and augmenting the capabilities
of modelers.

A cross-cutting concern that involves all the aspects
discussed later in this section is the mitigation of halluci-
nations in LLMs. Hallucinations occur when LLMs produce
responses that are not relevant to the input context, result-
ing in nonsensical, incorrect, or useless outputs. It is then
crucial to address this issue to ensure the reliability and
effectiveness of LLMs in MDE tasks. Various strategies,
such as fine-tuning on domain-specific data, integrating addi-
tional context or constraints into the generation process,
and implementing post-generation filtering techniques, can
help mitigate hallucinations. Ensuring that LLMs provide
accurate and contextually appropriate outputs is essential
for their successful integration into MDE workflows. More-
over, designing and deploying LLMs applications with the
user-centered principle will help improve the velocity and
flexibility of the development process. Once the goals and
needs of the system’s end-users have been placed at the cen-
ter of software development, they will allow developers to
deliver software with appropriate usability [17].
Enhanced modeling assistance: Being built on top of auto-
mated modeling assistants and domain analysis based on
neural networks, research in this direction should focus
on advanced recommendation algorithms, combining LLM
capabilities with existing MDE knowledge to provide accu-
rate and context-aware suggestions for modelers. In particu-

123

On the use of large language... 941

lar, besides the research already done so far (see Sect. 4),
further investigations are needed to enable personalized
recommendations based on individual modeling styles and
preferences. For instance, RAG techniques can be adopted
to enable the generation of recommendations that not only
consider the inherent characteristics of modeling artifacts,
but also adapt to the specific context and preferences of the
modeler.
Dealing with hallucinations: So far, various strategies have
been proposed to mitigate hallucination in LLMs [85],
including fine-tuning on domain-specific data, incorporating
additional context or constraints into the generation pro-
cess, and implementing post-generation filtering techniques
to identify and remove hallucinatory responses. We do not
expect to provide an exhaustive list of methods to mitigate
hallucinations, rather than,we anticipate that there are at least
the following ones:

– Training and fine-tuning with high-quality datasets:
Usinghigh-quality,well-curated trainingdatasets reduces
the chances of the model learning incorrect information.
Including diverse perspectives and accurate information
helps the model to provide more accurate outputs.

– Prompt Engineering: Designing prompts that are clear
and specific can guide the model toward generating more
accurate responses. Moreover, providing context within
prompts will help the model understand the scope and
constraints, aiming to reduce the likelihood of generating
off-topic or fabricated information.

– Users’ feedback: Incorporating feedback from users is a
means to continuously improve the model’s performance
and reduce hallucinations over time. Moreover, allowing
users to query the model iteratively and correct or clarify
information can help mitigate hallucinations.

Automated model generation: This line of research is to
enhance the automation capabilities within MDE by extend-
ing to the automatic generation of models or model elements
based on insights from LLMs. As discussed in the previous
sections, different techniques have been already proposed to
synthesize models [81] or mutate existing ones according to
user specified characteristics [38] e.g., to evaluate newmodel
management tools on varying model data sets. Additionally,
LLMs can assist in generating or mutating models by ana-
lyzing textual requirements and considering the specificity of
the application domain of interest. Thus, for example when
asked to create mutants of a given input model, instead of
generating model elements named with random strings, the
application domain (such as medical or industrial) will be
considered to generate appropriate elements having names
that make sense for the domain of interest. In this respect,
prompt engineering can be used to craft effective queries or

input patterns, so as to provide the model with context and
constraints that steer its output toward the desired results.
Ethical and responsible use of LLMs in MDE: As LLMs
become integral to MDE workflows, the ethical implications
of their usage come into focus as stated by recent research
[13, 37, 67, 68]. Research efforts should aim to examine
issues related to bias, fairness, and transparency, proposing
guidelines and best practices for the responsible integration
ofLLMs.The focus has to extend beyond traditional software
engineering tasks, ensuring ethical considerations in diverse
application domains. The relevance of such topics has been
made popular, e.g., by infamous incidents in the recruitment
instrument employed by Amazon[6] and the criminal recidi-
vism predictions made by the commercial risk assessment
software COMPAS [46].
Benchmarking and evaluation metrics: To facilitate the inte-
gration of LLMs into MDE workflows, researchers and
practitioners can already exploit several tools and frame-
works. For instance, Hugging Face Transformers13 is a
widely used library that offers access to a vast array of pre-
trained LLMs, such as GPT, BERT, T5, to name but a few.
Essentially, these models can be fine-tuned or used directly
in MDE applications. OpenAI API14 allows access to LLMs
like GPT-3 and GPT-4, enabling developers to implement
these models in MDE scenarios. Over the last few years,
some datasets (e.g., MAR [59], and ModelSet15) have been
defined by the MDE community, and they can be used to
further train or evaluate LLMs within the context of MDE.

To gauge the effectiveness of LLMs integration in MDE
tasks, establishing standardized benchmarks becomes cru-
cial.Metrics includingmodel accuracy, efficiency, and adapt-
ability go beyond traditional evaluation criteria. Moreover,
qualitative metrics such as fairness, robustness should also
be taken into account. In this respect, human evaluation is
an essential step to validate the performance of an LLM.
Such an evaluation, apart from a conventional quality mea-
surement, can also help reveal the Helpfulness, Honesty, and
Harmlessness of an LLM [10]. In fact, a manual evaluation
reflects better the actual application scenario, and thus it has
the potential to yield more comprehensive and accurate feed-
back [23]. This research direction should aim to provide
a comprehensive framework for evaluating LLMs perfor-
mance within the requirements of MDE scenarios. Similarly
to what has been done to support a disciplined comparison
of ML methods for a particular MDE task [62], there will be
the need for frameworks to support the quality assessment of
contents generated by LLMs and even to compare those that
are produced by different models from the same queries.

13 https://huggingface.co/docs/transformers/index
14 https://openai.com/
15 https://models-lab.github.io/blog/2021/modelset/

123

https://huggingface.co/docs/transformers/index
https://openai.com/
https://models-lab.github.io/blog/2021/modelset/

942 J. Di Rocco et al.

Scalability and resource efficiency: Scalability is a cru-
cial consideration in deploying LLMs for large-scale MDE
projects. Research needs to investigate methods to enhance
scalability while optimizing resource utilization. Thus, tech-
niques for deploying LLMs in resource-constrained environ-
mentsmust be explored, ensuring accessibility across a broad
spectrumofMDEapplications.Here,we need support to sug-
gest the most energy/resource-efficient technique that can be
exploited for the problem at hand. An early analysis is prefer-
able instead of always using the most resource-consuming
technologies. Of course, this can be done when the user
can accept the reduced accuracy price. In other words, it
is necessary to devise methodologies for early analysis and
assessment of availablemodels and techniques to identify the
most suitable options for the givenMDE task. Such proactive
approacheswill allow for informed decision-making, balanc-
ing resource constraints with the desired level of accuracy.
Security and robustness: Security is a crucial considera-
tion when integrating LLMs within MDE workflows. It is
essential to assess potential vulnerabilities and propose mit-
igation strategies to ensure the integrity of the model-driven
ecosystem. The research direction should focus on explor-
ing techniques to enhance the robustness of LLMs against
adversarial attacks within MDE tasks. For instance, recently
GitHub faced an attack that resulted in the creation of mil-
lions of code repositories containing obfuscated malware
[39] These malicious repositories are clones of legitimate
ones, making them challenging to distinguish. An unknown
party automated a process that forks legitimate reposito-
ries, resulting in millions of forks with names identical to
the originals but containing payloads wrapped under seven
layers of obfuscation. Therefore, it is necessary to develop
techniques and tools for detecting malicious sources when
training language models for MDE tasks or any other soft-
ware engineering purposes.
Long-term impact assessment: The long-term impact of
adopting LLMs in MDE practices is a crucial aspect of
research. Thus, it is necessary to perform studies to assess,
e.g., modeler productivity, and overall product quality. Key
success indicators and performance metrics have to be iden-
tified to measure sustained benefits, providing insights into
the impact of LLMs integration in MDE over time.
Educational assistance: Research can be done to employing
LLMs for teaching. In particular, the goal is integratingLLMs
into educational environments to teach and assist new mod-
elers in their tasks. This concept aligns with recommender
systems but focuses on less granular concepts, providing
educational support at a broader level. LLMs can offer expla-
nations, context, and guidance tailored to the educational
needs of novice modelers. To this end, the community might
consider training LLMs using reviewed sources such as

Fig. 8 Gartner Hype Cycle

SWEBOK [45], SLEBOK,16 and thereby contribute to the
development of a comprehensivemodel-based software engi-
neering body of knowledge [19].
Final thoughts: The hype around using LLMs is showing
their big potential in many areas. But like any new tech-
nology, the initial excitement might fade as we learn more
about what they can and can not do. In particular, mirroring
the Gartner Hype Cycle17 (see Fig. 8), LLMs may undergo
phases of inflated expectations, followed by a clearer under-
standing of their real-world applications and constraints.

We believe that LLMs represent a relevant technology to
improve the automation aspect of model-driven engineer-
ing. However, while LLMs-based automation can benefit
MDE processes, the human element remains indispensable.
In particular, as discussed in Sect. 2, LLMs may produce
outputs that deviate from the desired context or contain
inaccuracies. Human intervention is crucial to identify and
rectify such instances, ensuring the quality and reliability
of model-driven artifacts. Moreover, in complex engineering
tasks, particularly those involving critical systems, human
oversight remains indispensable for accountability. Human-
in-the-loop systems enable traceability and accountability,
ensuring that decisions made by LLMs align with regulatory
standards. Finally, industries such as healthcare, aerospace,
and automotive adhere to stringent certification standards.
Human involvement in the loop is still necessary for the vali-
dation and certification processes, ensuring compliance with
regulatory requirements and safety standards.

6 Related work

In recent years, the research landscape surrounding the inte-
gration of LLMs with SE has witnessed remarkable activity.

16 https://slebok.github.io/
17 https://en.wikipedia.org/wiki/Gartner_hype_cycle

123

https://slebok.github.io/
https://en.wikipedia.org/wiki/Gartner_hype_cycle

On the use of large language... 943

This section reviews some of the most notable studies in this
topic.

A systematic mapping study [64] to analyze 248 stud-
ies from January 2010 to March 2020 reveals that the most
explored SE properties of AI-based systems are dependabil-
ity and safety. The study identifies various SE approaches
for AI-based systems, categorized according to the SWE-
BOK areas, with a focus on software testing and quality,
while maintenance aspects appear neglected. Data-related
challenges are recurring, providing valuable insights for
researchers, practitioners, and educators to understand the
current state-of-the-art, address research gaps, and bridge the
knowledge divide between SE and AI in curricula.

Hou et al. [43] focused on the application of LLMs in
Software Engineering (from 2017 to 2023). Firstly, the study
categorizes different LLMs used in SE tasks, describing
their features and applications. Secondly, it analyzes data
collection, preprocessing methods, and the importance of
well-curated datasets for successful implementation. Thirdly,
it investigates strategies for optimizing and evaluating LLM
performance in SE. Lastly, it examines specific SE tasks
where LLMs have demonstrated success, highlighting their
practical contributions. The review aims to provide a compre-
hensive understanding of the current state-of-the-art, identify
research gaps, and suggest promising areas for future study
in the intersection of LLMs and SE.

Similarly, Fan et al. [36] presented a survey on LLMs in
software engineering and highlights the research challenges
in applying LLMs to address technical issues faced by soft-
ware engineers. LLMs are known for their innovative and
generative capabilities, which have a significant impact on
various SE activities such as coding, design, requirements,
repair, refactoring, performance improvement, documenta-
tion, and analytics. However, the emergence of these proper-
ties also poses significant challenges in accurately identifying
solutions and addressing issues like hallucinations. The sur-
vey emphasizes the importance of hybrid techniques that
combine traditional SE approaches with LLMs to ensure the
development and deployment of reliable, efficient, and effec-
tive LLM-based SE solutions.

In the MDE community, Combemale et al. [27] discussed
how a large language model like ChatGPT can be used in
software development, particularly in creating models that
represent software systems. The authors explored different
scenarios, from fully automated generation of code from
requirements to using ChatGPT as an assistant for human
modelers. They acknowledged the challenges of ensuring
reliable and trustworthy results from AI-generated models
and the need for large libraries of existing models for Chat-
GPT to learn from.

Di Ruscio et al. [32] elaborated on the use ofmodel-driven
engineering and machine learning techniques to support the
management of modeling ecosystems. The paper identifies

and discusses possible lines of research to explore the adop-
tion of existing machine learning techniques to enhance the
management of modeling ecosystems.

In a recent paper [21], the authors elaborated on the poten-
tial of LLMs, such as Copilot and ChatGPT, to revolutionize
software development. The paper examines the current capa-
bilities of ChatGPT for modeling tasks and assisting model-
ers, and identifies several shortcomings, including syntactic
and semantic deficiencies, lack of consistency in responses,
and scalability issues. The paper provides suggestions on
how the modeling community can help improve the current
capabilities of ChatGPT and future LLMs for software mod-
eling.

7 Conclusion and future work

In contrast to broader research on large language models
(LLMs) in software engineering, our paper focuses on the
specific synergy between LLMs and model-driven engi-
neering. We explored how LLMs automate tasks unique
to MDE, like model repository classification and advanced
model recommenders. The paper also outlines the technical
considerations for seamlessly integrating LLMs into MDE
workflows, offering a practical guide for researchers and
practitioners. This paper proposed also a targeted research
agenda, identifying challenges and opportunities for leverag-
ing LLMs in MDE and vice versa. This roadmap contributes
to evolvingMDE practices and offers a forward-looking per-
spective on the transformative role of large language models
in software engineering and model-driven practices.

Acknowledgements This work was partially supported by the fol-
lowing Italian research projects: EMELIOT (PRIN 2020, grant n.
2020W3A5FY) and TRex SE (PRIN 2022, grant n. 2022LKJWHC).
Additional support was provided by the European Union NextGenera-
tionEU through the Italian Ministry of University and Research for the
MATTERS project, funded under the cascade scheme of the SERICS
program (CUP J33C22002810001), Spoke 8, within the Italian PNRR
Mission 4, Component 2, as well as the FRINGE project (PRIN 2022
PNRR, grant n. P2022553SL).

References

1. Abukhalaf, S., Hamdaqa, M., Khomh, F.: On codex prompt
engineering for ocl generation: An empirical study. In: 2023
IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), pp. 148–157 (2023). doi:https://doi.org/10.
1109/MSR59073.2023.00033

2. Abukhalaf, S., Hamdaqa, M., Khomh, F.: Pathocl: Path-based
prompt augmentation for ocl generation with gpt-4. In: Proceed-
ings of the 2024 IEEE/ACM First International Conference on AI
FoundationModels andSoftwareEngineering, FORGE’24, p. 108-
118. Association for Computing Machinery, New York, NY, USA
(2024). doi:https://doi.org/10.1145/3650105.3652290

123

https://doi.org/10.1109/MSR59073.2023.00033
https://doi.org/10.1109/MSR59073.2023.00033
https://doi.org/10.1145/3650105.3652290

944 J. Di Rocco et al.

3. Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Aktar, M.S.,
Mikkonen, T.: Towards Human-Bot Collaborative Software Archi-
tecting with ChatGPT. In: Proceedings of the 27th International
Conference on Evaluation and Assessment in Software Engi-
neering, EASE ’23, pp. 279–285. Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/
3593434.3593468. Read_Status: New Read_Status_Date: 2024-
07-17T07:38:55.084Z

4. Ahmed, T., Devanbu, P.: Few-shot training llms for project-specific
code-summarization. In: Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE
’22. Association for Computing Machinery, New York, NY, USA
(2023). doi:https://doi.org/10.1145/3551349.3559555

5. Amatriain, X.: Prompt design and engineering: Introduction and
advanced methods (2024). https://arxiv.org/abs/2401.14423

6. Amazon: Amazon’s ai hiring software showed bias against
women. https://www.theguardian.com/technology/2018/oct/
10/amazon-hiring-ai-gender-bias-recruiting-engine (2018).
Accessed: 2024-07-22

7. Apvrille., L., Sultan., B.: System architects are not alone anymore:
Automatic system modeling with ai. In: Proceedings of the 12th
International Conference on Model-Based Software and Systems
Engineering - MODELSWARD, pp. 27–38. INSTICC, SciTePress
(2024). doi:https://doi.org/10.5220/0012320100003645

8. Ardimento, P., Bernardi, M.L., Cimitile, M.: Teaching uml using a
rag-based llm. In: 2024 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2024). doi:https://doi.org/10.1109/
IJCNN60899.2024.10651492

9. Arulmohan, S., Meurs, M.J., Mosser, S.: Extracting Domain
Models from Textual Requirements in the Era of Large Lan-
guage Models. In: 2023 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), pp. 580–587. IEEE, Västerås, Swe-
den (2023). doi:https://doi.org/10.1109/MODELS-C59198.2023.
00096. https://ieeexplore.ieee.org/document/10350787/

10. Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T.,
Jones,A., Joseph,N.,Mann,B.,Dassarma,N., Elhage,N.,Hatfield-
Dodds, Z., Hernandez, D., Kernion, J., Ndousse, K., Olsson, C.,
Amodei, D., Brown, T.B., Clark, J., McCandlish, S., Olah, C.,
Kaplan, J.: A general language assistant as a laboratory for align-
ment. ArXiv abs/2112.00861 (2021). https://api.semanticscholar.
org/CorpusID:244799619

11. Banerjee, S., Lavie, A.: Meteor: An automatic metric for mt
evaluation with improved correlation with human judgments. In:
Proceedings of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or summarization, pp.
65–72 (2005)

12. Bano, M., Hoda, R., Zowghi, D., Treude, C.: Large language
models for qualitative research in software engineering: exploring
opportunities and challenges. Autom. Softw. Eng. 31(1), 8 (2024).
https://doi.org/10.1007/S10515-023-00407-8

13. Basta, C., Costa-jussà, M.R., Casas, N.: Evaluating the under-
lying gender bias in contextualized word embeddings. In: M.R.
Costa-jussà, C. Hardmeier,W. Radford, K.Webster (eds.) Proceed-
ings of the First Workshop on Gender Bias in Natural Language
Processing, pp. 33–39. Association for Computational Linguis-
tics, Florence, Italy (2019). doi:https://doi.org/10.18653/v1/W19-
3805. https://aclanthology.org/W19-3805

14. Belzner, L., Gabor, T., Wirsing, M.: Large language model assisted
software engineering: Prospects, challenges, and a case study. In:
Steffen, B. (ed.) Bridging the Gap Between AI and Reality, pp.
355–374. Springer Nature Switzerland, Cham (2024)

15. Bertram, V., Boß, M., Kusmenko, E., Nachmann, I.H., Rumpe,
B., Trotta, D., Wachtmeister, L.: Neural language models and few
shot learning for systematic requirements processing in mdse. In:
Proceedings of the 15th ACM SIGPLAN International Conference

on Software Language Engineering, SLE 2022, p. 260-265. Asso-
ciation for Computing Machinery, New York, NY, USA (2022).
doi:https://doi.org/10.1145/3567512.3567534

16. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamod-
els. In: proceedings of the OOPSLA/GPCE: best practices for
model-driven software development workshop, 19th Annual ACM
conference on object-oriented programming, systems, languages,
and applications, pp. 1–9. Citeseer (2004)

17. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring prin-
ciples of user-centered agile software development: A literature
review. Information and Software Technology 61, 163–181 (2015).
doi:10.1016/j.infsof.2015.01.004. https://www.sciencedirect.com/
science/article/pii/S0950584915000129

18. Bucaioni, A., Ekedahl, H., Helander, V., Nguyen, P.T.:
Programming with ChatGPT: How far can we go?
Machine Learning with Applications 15, 100526 (2024).
doi:10.1016/j.mlwa.2024.100526. https://www.sciencedirect.
com/science/article/pii/S2666827024000021

19. Burgueño, L., Ciccozzi, F., Famelis, M., Kappel, G., Lambers,
L., Mosser, S., Paige, R.F., Pierantonio, A., Rensink, A., Salay,
R., Taentzer, G., Vallecillo, A., Wimmer, M.: Contents for a
model-based software engineering bodyof knowledge. Softw. Syst.
Model. 18(6), 3193–3205 (2019). https://doi.org/10.1007/s10270-
019-00746-9

20. Callison-Burch, C., Osborne, M., Koehn, P.: Re-evaluating the role
of bleu in machine translation research. In: 11th conference of the
european chapter of the association for computational linguistics,
pp. 249–256 (2006)

21. Cámara, J., Troya, J., Burgueño, L., Vallecillo, A.: On the assess-
ment of generative AI in modeling tasks: an experience report with
ChatGPT and UML. Softw. Syst. Model. 22(3), 781–793 (2023).
https://doi.org/10.1007/s10270-023-01105-5

22. Chaaben, M.B., Burgueño, L., Sahraoui, H.: Towards Using
Few-Shot Prompt Learning for Automating Model Completion.
In: Proceedings of the 45th International Conference on Soft-
ware Engineering: New Ideas and Emerging Results, ICSE-NIER
’23, pp. 7–12. IEEE, IEEE Press, Melbourne, Australia (2023).
doi:https://doi.org/10.1109/ICSE-NIER58687.2023.00008

23. Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen,
H., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu,
P.S., Yang, Q., Xie, X.: A survey on evaluation of large language
models. Intell. Syst. Technol, ACM Trans (2024). https://doi.org/
10.1145/3641289

24. Chen, B., Chen, K., Hassani, S., Yang, Y., Amyot, D., Lessard,
L., Mussbacher, G., Sabetzadeh, M., Varró, D.: On the use of gpt-
4 for creating goal models: An exploratory study. In: 2023 IEEE
31st International Requirements Engineering Conference Work-
shops (REW), pp. 262–271 (2023). doi:https://doi.org/10.1109/
REW57809.2023.00052

25. Chen, K., Yang, Y., Chen, B., Hernández López, J.A., Mussbacher,
G., et al.: Automated Domain Modeling with Large Language
Models: A Comparative Study. In: 2023 ACM/IEEE 26th Inter-
national Conference on Model Driven Engineering Languages
and Systems (MODELS), pp. 162–172 (2023). doi:https://doi.org/
10.1109/MODELS58315.2023.00037. https://ieeexplore.ieee.org/
abstract/document/10344012

26. Chen, X., Liu, T., Fournier-Viger, P., Zhang, B., Long, G., Zhang,
Q.: A fine-grained self-adapting prompt learning approach for few-
shot learning with pre-trained languagemodels. Knowledge-Based
Systems 299, 111968 (2024). doi:https://doi.org/10.1016/j.knosys.
2024.111968. https://www.sciencedirect.com/science/article/pii/
S0950705124006026

27. Combemale, B., Gray, J., Rumpe, B.: ChatGPT in software mod-
eling. Softw. Syst. Model 22(3), 777–779 (2023). https://doi.org/
10.1007/s10270-023-01106-4

123

https://doi.org/10.1145/3593434.3593468
https://doi.org/10.1145/3593434.3593468
https://doi.org/10.1145/3551349.3559555
https://arxiv.org/abs/2401.14423
https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
https://doi.org/10.5220/0012320100003645
https://doi.org/10.1109/IJCNN60899.2024.10651492
https://doi.org/10.1109/IJCNN60899.2024.10651492
https://doi.org/10.1109/MODELS-C59198.2023.00096
https://doi.org/10.1109/MODELS-C59198.2023.00096
https://ieeexplore.ieee.org/document/10350787/
https://api.semanticscholar.org/CorpusID:244799619
https://api.semanticscholar.org/CorpusID:244799619
https://doi.org/10.1007/S10515-023-00407-8
https://doi.org/10.18653/v1/W19-3805
https://doi.org/10.18653/v1/W19-3805
https://aclanthology.org/W19-3805
https://doi.org/10.1145/3567512.3567534
https://www.sciencedirect.com/science/article/pii/S0950584915000129
https://www.sciencedirect.com/science/article/pii/S0950584915000129
https://www.sciencedirect.com/science/article/pii/S2666827024000021
https://www.sciencedirect.com/science/article/pii/S2666827024000021
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://doi.org/10.1109/REW57809.2023.00052
https://doi.org/10.1109/REW57809.2023.00052
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.1109/MODELS58315.2023.00037
https://ieeexplore.ieee.org/abstract/document/10344012
https://ieeexplore.ieee.org/abstract/document/10344012
https://doi.org/10.1016/j.knosys.2024.111968
https://doi.org/10.1016/j.knosys.2024.111968
https://www.sciencedirect.com/science/article/pii/S0950705124006026
https://www.sciencedirect.com/science/article/pii/S0950705124006026
https://doi.org/10.1007/s10270-023-01106-4
https://doi.org/10.1007/s10270-023-01106-4

On the use of large language... 945

28. Darif, I., Politowski, C., El Boussaidi, G., Benzarti, I., Kpodjedo,
S.: A model-driven and template-based approach for requirements
specification. In: 2023 ACM/IEEE 26th International Conference
on Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 239–249. IEEE (2023)

29. Deeptimahanti, D.K., Babar, M.A.: An automated tool for gener-
ating uml models from natural language requirements. In: 2009
IEEE/ACM International Conference on Automated Software
Engineering, pp. 680–682. IEEE (2009)

30. Di Rocco, J., Di Ruscio, D., Härtel, J., Iovino, L., Lämmel, R.,
Pierantonio, A.: Understanding mde projects: megamodels to the
rescue for architecture recovery. Softw. Syst. Model. 19, 401–423
(2020)

31. Di Ruscio, D., Kolovos, D.S., de Lara, J., Pierantonio, A., Tisi,
M., Wimmer, M.: Low-code development and model-driven engi-
neering: Two sides of the same coin? Softw. Syst. Model. 21(2),
437–446 (2022). https://doi.org/10.1007/s10270-021-00970-2

32. Di Ruscio, D., Nguyen, P.T., Pierantonio, A.:Machine Learning for
Managing Modeling Ecosystems: Techniques, Applications, and a
Research Vision. Springer International Publishing, Cham (2023).
https://doi.org/10.1007/978-3-031-36060-2_10

33. Doan, T.T.H., Nguyen, P.T., Di Rocco, J., Di Ruscio, D.: Too long;
didn’t read: Automatic summarization of github readme.md with
transformers. In: Proceedings of the 27th International Conference
onEvaluation andAssessment in SoftwareEngineering, EASE ’23,
p. 267-272. Association for ComputingMachinery, NewYork, NY,
USA (2023). doi:https://doi.org/10.1145/3593434.3593448

34. Dobrica, L., Niemelä, E.: A survey on software architecture anal-
ysis methods. IEEE Trans. Softw. Eng. 28(7), 638–653 (2002).
https://doi.org/10.1109/TSE.2002.1019479

35. Elallaoui, M., Nafil, K., Touahni, R.: Automatic transformation of
user stories into uml use case diagrams using nlp techniques. Proc.
Comput. sci. 130, 42–49 (2018)

36. Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S.,
Yoo, S., Zhang, J.M.: Large languagemodels for software engineer-
ing: Survey and open problems arXiv:2310.03533 (2023). http://
arxiv.org/abs/2310.03533. ArXiv:2310.03533 [cs]

37. Gehman, S., Gururangan, S., Sap, M., Choi, Y., Smith, N.A.:
RealToxicityPrompts: Evaluating neural toxic degeneration in lan-
guage models. In: T. Cohn, Y. He, Y. Liu (eds.) Findings of the
Association for Computational Linguistics: EMNLP 2020, pp.
3356–3369. Association for Computational Linguistics, Online
(2020). doi:https://doi.org/10.18653/v1/2020.findings-emnlp.301

38. Gómez-Abajo, P., Guerra, E., DeLara, J.:Wodel: a domain-specific
language for model mutation. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing, pp. 1968–1973. ACM,
Pisa Italy (2016). doi:https://doi.org/10.1145/2851613.2851751

39. Goodin, D.: Github besieged by millions of malicious reposi-
tories in ongoing attack. https://arstechnica.com/security/2024/
02/github-besieged-by-millions-of-malicious-repositories-in-
ongoing-attack/ (2024). Accessed: 2024-07-22

40. Goswami, J., Prajapati, K.K., Saha, A., Saha, A.K.: Parameter-
efficient fine-tuning large language model approach for hos-
pital discharge paper summarization. Applied Soft Com-
puting 157, 111531 (2024). doi:https://doi.org/10.1016/j.asoc.
2024.111531. https://www.sciencedirect.com/science/article/pii/
S1568494624003053

41. Gulia, S., Choudhury, T.: An efficient automated design to generate
uml diagram from natural language specifications. In: 2016 6th
international conference-cloud system and big data engineering
(Confluence), pp. 641–648. IEEE (2016)

42. Henrickson, L., Meroño-Peñuela, A.: Prompting meaning: a
hermeneutic approach to optimising prompt engineering with chat-
gpt. AI and Society (2023). doi:10.1007/s00146-023-01752-8.
Publisher Copyright: © 2023, The Author(s)

43. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X.,
Lo, D., Grundy, J., Wang, H.: Large language models for software
engineering: A systematic literature review arXiv:2308.10620
(2024). doi:https://doi.org/10.48550/arXiv.2308.10620. http://
arxiv.org/abs/2308.10620. ArXiv:2308.10620 [cs]

44. Huang, L., Duan, Y., Sun, X., Lin, Z., Zhu, C.: Enhancing uml
class diagram abstraction with knowledge graph. In: Intelligent
Data Engineering and Automated Learning–IDEAL 2016: 17th
International Conference, Yangzhou, China, October 12–14, 2016,
Proceedings 17, pp. 606–616. Springer (2016)

45. IEEE: Software engineering body of knowledge. https://
www.computer.org/education/bodies-of-knowledge/software-
engineering (2024). Accessed: 2024-07-22

46. Jeff Larson Surya Mattu, L.K., Angwin, J.: How we analyzed the
compas recidivism algorithm. https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm (2016).
Accessed: 2024-07-22

47. Jin, H., Huang, L., Cai, H., Yan, J., Li, B., Chen, H.: From llms
to llm-based agents for software engineering: A survey of current,
challenges and future (2024). https://arxiv.org/abs/2408.02479

48. Kareem,W., Abbas, N.: Fighting lies with intelligence: Using large
language models and chain of thoughts technique to combat fake
news. In: Bramer, M., Stahl, F. (eds.) Artificial Intelligence XL, pp.
253–258. Springer Nature Switzerland, Cham (2023)

49. Kitchenham, B.: Procedures for performing systematic reviews.
Keele, UK, Keele University 33(2004), 1–26 (2004)

50. Kulkarni, V., Reddy, S., Barat, S., Dutta, J.: Toward a Symbiotic
Approach Leveraging Generative AI for Model Driven Engi-
neering. In: 2023 ACM/IEEE 26th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pp. 184–193 (2023). doi:https://doi.org/10.1109/MODELS58315.
2023.00039. https://ieeexplore-ieee-org.univaq.idm.oclc.org/
document/10343767/?arnumber=10343767. Read_Status: New
Read_Status_Date: 2024-07-23T09:49:31.511Z

51. Lee, G.G., Latif, E., Wu, X., Liu, N., Zhai, X.: Applying
large language models and chain-of-thought for automatic scor-
ing. Computers and Education: Artificial Intelligence 6, 100213
(2024). doi:https://doi.org/10.1016/j.caeai.2024.100213. https://
www.sciencedirect.com/science/article/pii/S2666920X24000146

52. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal,
N., Küttler, H., Lewis, M., Yih, W.t., Rocktäschel, T., Riedel,
S., Kiela, D.: Retrieval-augmented generation for knowledge-
intensive nlp tasks. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20.
Curran Associates Inc., Red Hook, NY, USA (2020)

53. Li, X., Yuan, S., Gu, X., Chen, Y., Shen, B.: Few-shot code
translation via task-adapted prompt learning. Journal of Systems
and Software 212, 112002 (2024). doi:https://doi.org/10.1016/
j.jss.2024.112002. https://www.sciencedirect.com/science/article/
pii/S0164121224000451

54. Lin, B.: Reinforcement learning and bandits for speech and
language processing: Tutorial, review and outlook. Expert Sys-
tems with Applications 238, 122254 (2024). doi:https://doi.
org/10.1016/j.eswa.2023.122254. https://www.sciencedirect.com/
science/article/pii/S0957417423027562

55. Lin, C.Y.: ROUGE: A package for automatic evaluation of sum-
maries. In: Text Summarization Branches Out, pp. 74–81. Asso-
ciation for Computational Linguistics, Barcelona, Spain (2004).
https://aclanthology.org/W04-1013

56. Liu, X., Pang, T., Fan, C.: Federated prompting and chain-of-
thought reasoning for improving llms answering. In: Jin, Z., Jiang,
Y., Buchmann, R.A., Bi, Y., Ghiran, A.M., Ma, W. (eds.) Knowl-
edge Science, Engineering and Management, pp. 3–11. Springer
Nature Switzerland, Cham (2023)

57. Liu, Y., Le-Cong, T., Widyasari, R., Tantithamthavorn, C., Li,
L., Le, X.B.D., Lo, D.: Refining chatgpt-generated code: Char-

123

https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/978-3-031-36060-2_10
https://doi.org/10.1145/3593434.3593448
https://doi.org/10.1109/TSE.2002.1019479
http://arxiv.org/abs/2310.03533
http://arxiv.org/abs/2310.03533
http://arxiv.org/abs/2310.03533
http://arxiv.org/abs/2310.03533
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.1145/2851613.2851751
https://arstechnica.com/security/2024/02/github-besieged-by-millions-of-malicious-repositories-in-ongoing-attack/
https://arstechnica.com/security/2024/02/github-besieged-by-millions-of-malicious-repositories-in-ongoing-attack/
https://arstechnica.com/security/2024/02/github-besieged-by-millions-of-malicious-repositories-in-ongoing-attack/
https://doi.org/10.1016/j.asoc.2024.111531
https://doi.org/10.1016/j.asoc.2024.111531
https://www.sciencedirect.com/science/article/pii/S1568494624003053
https://www.sciencedirect.com/science/article/pii/S1568494624003053
http://arxiv.org/abs/2308.10620
https://doi.org/10.48550/arXiv.2308.10620
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://arxiv.org/abs/2408.02479
https://doi.org/10.1109/MODELS58315.2023.00039
https://doi.org/10.1109/MODELS58315.2023.00039
https://ieeexplore-ieee-org.univaq.idm.oclc.org/document/10343767/?arnumber=10343767
https://ieeexplore-ieee-org.univaq.idm.oclc.org/document/10343767/?arnumber=10343767
https://doi.org/10.1016/j.caeai.2024.100213
https://www.sciencedirect.com/science/article/pii/S2666920X24000146
https://www.sciencedirect.com/science/article/pii/S2666920X24000146
https://doi.org/10.1016/j.jss.2024.112002
https://doi.org/10.1016/j.jss.2024.112002
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://doi.org/10.1016/j.eswa.2023.122254
https://doi.org/10.1016/j.eswa.2023.122254
https://www.sciencedirect.com/science/article/pii/S0957417423027562
https://www.sciencedirect.com/science/article/pii/S0957417423027562
https://aclanthology.org/W04-1013

946 J. Di Rocco et al.

acterizing and mitigating code quality issues. ACM Trans. Softw.
Eng. Methodol. (2024). doi:https://doi.org/10.1145/3643674. Just
Accepted

58. López, J.A.H.,Cánovas Izquierdo, J.L., Cuadrado, J.S.:Modelset: a
dataset formachine learning inmodel-driven engineering. Software
and Systems Modeling pp. 1–20 (2021)

59. López, J.A.H.,Cuadrado, J.S.:Mar: a structure-based search engine
for models. In: Proceedings of the 23rd ACM/IEEE international
conference on model driven engineering languages and systems,
pp. 57–67 (2020)

60. López, J.A.H., Durá, C., Cuadrado, J.S.: Word embeddings for
model-driven engineering. In: 2023 ACM/IEEE 26th International
Conference onModel Driven Engineering Languages and Systems
(MODELS), pp. 151–161. IEEE (2023)

61. López, J.A.H., Izquierdo, J.L.C., Cuadrado, J.S.: Using the mod-
elset dataset to support machine learning in model-driven engi-
neering. In: Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion
Proceedings, pp. 66–70 (2022)

62. López, J.A.H., Rubei, R., Cuadrado, J.S., Ruscio, D.D.: Machine
learning methods for model classification: a comparative study.
In: E. Syriani, H.A. Sahraoui, N. Bencomo, M. Wimmer (eds.)
Proceedings of the 25th International Conference onModel Driven
Engineering Languages and Systems, MODELS 2022, Montreal,
Quebec, Canada, October 23-28, 2022, pp. 165–175. ACM (2022).
doi:https://doi.org/10.1145/3550355.3552461

63. Lundell, B., Lings, B., Persson, A., Mattsson, A.: Uml model
interchange in heterogeneous tool environments: An analysis of
adoptions of xmi 2. In: Model Driven Engineering Languages and
Systems: 9th International Conference, MoDELS 2006, Genova,
Italy, October 1-6, 2006. Proceedings 9, pp. 619–630. Springer
(2006)

64. Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert,
J., Trendowicz, A., Vollmer, A.M., Wagner, S.: Software engineer-
ing for ai-based systems: A survey. ACMTransactions on Software
Engineering and Methodology 31(2), 1–59 (2022). https://doi.org/
10.1145/3487043

65. Martino, A., Iannelli, M., Truong, C.: Knowledge injection to
counter large language model (llm) hallucination. In: Pesquita,
C., Skaf-Molli, H., Efthymiou, V., Kirrane, S., Ngonga, A., Col-
larana, D., Cerqueira, R., Alam, M., Trojahn, C., Hertling, S. (eds.)
The Semantic Web: ESWC 2023 Satellite Events, pp. 182–185.
Springer Nature Switzerland, Cham (2023)

66. Mastropaolo, A., Ciniselli,M., Penta,M.D., Bavota, G.: Evaluating
code summarization techniques: A new metric and an empirical
characterization (2023)

67. Morales, S., Clarisó, R., Cabot, J.: Automating bias testing of llms.
In: 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1705–1707 (2023). doi:https://
doi.org/10.1109/ASE56229.2023.00018

68. Nemani, P., Joel, Y.D., Vijay, P., Liza, F.F.: Gender bias in
transformers: A comprehensive review of detection and mitiga-
tion strategies. Natural Language Processing Journal 6, 100047
(2024). doi:https://doi.org/10.1016/j.nlp.2023.100047. https://
www.sciencedirect.com/science/article/pii/S2949719123000444

69. Nguyen, P.T., Di Rocco, J., Di Sipio, C., Rubei, R., Di Rus-
cio, D., Di Penta, M.: GPTSniffer: A CodeBERT-based classifier
to detect source code written by ChatGPT. Journal of Systems
and Software 214, 112059 (2024). doi:https://doi.org/10.1016/
j.jss.2024.112059. https://www.sciencedirect.com/science/article/
pii/S0164121224001043

70. Ozkaya, I.: Application of large language models to software
engineering tasks: Opportunities, risks, and implications. IEEE
Software 40(3), 4–8 (2023). https://doi.org/10.1109/MS.2023.
3248401

71. Ozkaya, I.: The next frontier in software development: Ai-
augmented software development processes. IEEE Software 40(4),
4–9 (2023). https://doi.org/10.1109/MS.2023.3278056

72. Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A.,
Leyton-Brown, K., Shoham, Y.: In-Context Retrieval-Augmented
Language Models. Transactions of the Association for Computa-
tional Linguistics 11, 1316–1331 (2023). https://doi.org/10.1162/
tacl_a_00605

73. Robert, C., Jordi, C.: Model-driven prompt engineering. In: 2023
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (2023)

74. Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., et al.: Code
llama: Open foundation models for code (2023)

75. Sauvola, J., Tarkoma, S., Klemettinen, M., Riekki, J., Doermann,
D.: Future of software development with generative ai. Auto-
mated Software Engineering 31 (2024). doi:https://doi.org/10.
1007/s10515-024-00426-z

76. Sağlam, T., Hahner, S., Schmid, L., Burger, E.: Automated Detec-
tion of AI-Obfuscated Plagiarism in Modeling Assignments.
In: Proceedings of the 46th International Conference on Soft-
ware Engineering: Software Engineering Education and Training,
ICSE-SEET ’24, pp. 297–308.Association forComputingMachin-
ery, New York, NY, USA (2024). doi:https://doi.org/10.1145/
3639474.3640084. Read_Status: New Read_Status_Date: 2024-
07-22T13:08:19.395Z

77. Schmidt, D.: Guest editor’s introduction: Model-driven engineer-
ing. Computer 39(2), 25–31 (2006). https://doi.org/10.1109/MC.
2006.58

78. Shrestha, S.L.: Harnessing Large Language Models for Simulink
Toolchain Testing and Developing Diverse Open-Source Corpora
of Simulink Models for Metric and Evolution Analysis. In: Pro-
ceedings of the 32nd ACMSIGSOFT International Symposium on
Software Testing andAnalysis, ISSTA2023, pp. 1541–1545.Asso-
ciation for Computing Machinery, New York, NY, USA (2023).
doi:https://doi.org/10.1145/3597926.3605233

79. Shrestha, S.L., Csallner, C.: SLGPT: Using Transfer Learning to
Directly Generate Simulink Model Files and Find Bugs in the
Simulink Toolchain. In: Proceedings of the 25th International Con-
ference on Evaluation and Assessment in Software Engineering,
EASE ’21, pp. 260–265. Association for Computing Machinery,
NewYork, NY, USA (2021). doi:https://doi.org/10.1145/3463274.
3463806

80. Taulli, T.: Prompt Engineering, pp. 51–64. Apress, Berkeley, CA
(2023). doi:https://doi.org/10.1007/978-1-4842-9852-7_4

81. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the
automated generation of consistent, diverse, scalable and realistic
graph models. In: Graph Transformation, Specifications, and Nets:
In Memory of Hartmut Ehrig, pp. 285–312. Springer (2018)

82. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., et al.:
Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.)
Advances in Neural Information Processing Systems, vol. 30. Cur-
ran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

83. Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., et al.: Prompt
tuning in code intelligence: An experimental evaluation. IEEE
Transactions on Software Engineering 01, 1–17 (2023). https://
doi.org/10.1109/TSE.2023.3313881

84. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Soft-
ware testing with large language models: Survey, landscape, and
vision. IEEE Trans. Softw. Eng. (2024). https://doi.org/10.1109/
TSE.2024.3368208

85. Wang, L., He, J., Li, S., Liu, N., Lim, E.P.: Mitigating fine-grained
hallucination by fine-tuning large vision-language models with
caption rewrites. In: Rudinac, S., Hanjalic, A., Liem, C., Worring,

123

https://doi.org/10.1145/3643674
https://doi.org/10.1145/3550355.3552461
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
https://doi.org/10.1109/ASE56229.2023.00018
https://doi.org/10.1109/ASE56229.2023.00018
https://doi.org/10.1016/j.nlp.2023.100047
https://www.sciencedirect.com/science/article/pii/S2949719123000444
https://www.sciencedirect.com/science/article/pii/S2949719123000444
https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.1016/j.jss.2024.112059
https://www.sciencedirect.com/science/article/pii/S0164121224001043
https://www.sciencedirect.com/science/article/pii/S0164121224001043
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.1109/MS.2023.3278056
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1145/3639474.3640084
https://doi.org/10.1145/3639474.3640084
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/3597926.3605233
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1007/978-1-4842-9852-7_4
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/TSE.2023.3313881
https://doi.org/10.1109/TSE.2023.3313881
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208

On the use of large language... 947

M., Jónsson, B.A., Liu, B., Yamakata, Y. (eds.) MultiMedia Mod-
eling, pp. 32–45. Springer Nature Switzerland, Cham (2024)

86. Wang, L., Lepage, Y.: Learning from masked analogies between
sentences at multiple levels of formality. AnnalsMath. Artif. Intell.
(2023). https://doi.org/10.1007/s10472-023-09918-2

87. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.,
Chowdhery, A., Zhou, D.: Self-consistency improves chain of
thought reasoning in languagemodels (2023). https://arxiv.org/abs/
2203.11171

88. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F.,
Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits
reasoning in large language models. In: S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, A. Oh (eds.) Advances in Neu-
ral Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022 (2022)

89. Weyssow, M., Sahraoui, H., Syriani, E.: Recommending meta-
model concepts during modeling activities with pre-trained lan-
guage models. Software and Systems Modeling pp. 1–19 (2022)

90. Yang, S., Zhu, J., Wang, J., Xu, X., Shao, Z., Yao, L., Zheng,
B., Huang, H.: Retrieval-augmented generation with quantized
large language models: A comparative analysis. In: Proceedings
of the 2023 5th International Conference on Internet of Things,
Automation and Artificial Intelligence, IoTAAI ’23, p. 120-124.
Association for Computing Machinery, New York, NY, USA
(2024). doi:https://doi.org/10.1145/3653081.3653102

91. Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.,
Narasimhan, K.: Tree of thoughts: Deliberate problem solvingwith
large language models (2023). https://arxiv.org/abs/2305.10601

92. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao,
Y.: React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022)

93. Zhang, Y., Qiu, Z., Stol, K.J., Zhu, W., Zhu, J., Tian, Y., Liu, H.:
Automatic commitmessage generation:Acritical reviewanddirec-
tions for future work. IEEE Trans. on Softw. Eng. (2024). https://
doi.org/10.1109/TSE.2024.3364675

94. Zhou, X., Yang, L., Wang, X., Zhan, H., Sun, R.: Two stages
prompting for few-shot multi-intent detection. Neurocomput-
ing 579, 127424 (2024). doi:https://doi.org/10.1016/j.neucom.
2024.127424. https://www.sciencedirect.com/science/article/pii/
S0925231224001954

95. Zhu, Y., Li, J., Li, G., Zhao, Y., Jin, Z., Mei, H.: Hot or cold? adap-
tive temperature sampling for code generation with large language
models. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, pp. 437–445 (2024)

96. Zielińska, A., Organisciak, P., Dumas, D., Karwowski, M.:
Lost in translation? not for large language models: Auto-
mated divergent thinking scoring performance translates to non-
english contexts. Thinking Skills and Creativity 50, 101414
(2023). https://doi.org/10.1016/j.tsc.2023.101414. https://www.
sciencedirect.com/science/article/pii/S1871187123001827

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Juri Di Rocco is an assistant profes-
sor at the University of L’Aquila,
Italy. He obtained a PhD in Com-
puter Science from the University
of L’Aquila. He is interested in
several aspects of software lan-
guage engineering and model-
driven engineering (MDE) includ-
ing domain-specific modeling lan-
guages, model transformation,
model differencing, modeling
repositories and mining techniques.
More information is available at
http://www.di.univaq.it/juri.dirocco.

Contact him at juri.dirocco@univaq.it

Davide Di Ruscio is a Profes-
sor at the Department of Informa-
tion Engineering Computer Sci-
ence and Mathematics of the Uni-
versity of L’Aquila. His main
research interests are related to
several aspects of software engi-
neering and model-driven engi-
neering (MDE), including domain-
specific modeling languages, model
differencing, coupled evolution, and
recommendation systems. Davide
is on the editorial board of the
International Journal on Software
and Systems Modeling (SoSyM),

of IEEE Software, of the Journal of Object Technology, and of the
Business and Information Systems Engineering journal, and he is a
regular reviewer of many journals including IEEE Transactions on
Software Engineering, Science of Computer Programming, Software
and Systems Modeling, and Journal of Systems and Software. He has
served in the organization and program committees of more than 100
international events, including MODELS, STAF, ICSE, FSE, EASE,
and SANER. Web: https://www.disim.univaq.it/DavideDiRuscio

Claudio Di Sipio is a post-
doc researcher in the Department
of Engineering, Mathematics, and
Computer Science at the Univer-
sity of L’Aquila. He took his PhD
in 2023 at the University of
L’Aquila, and he has been an invited
researcher at GEODES lab, Uni-
versity of Montreal, for six months.
His research interests include rec-
ommendation systems for software
engineering, mining OSS reposi-
tories, model-driven engineering,
and application of ML/AI tech-
niques for software engineering.

He served as a program committee member for different international
conferences, including ASE, MSR, FORGE, and MODELS. In addi-
tion, he served as a reviewer for the IEEE Transactions on Software
Engineering (TSE) and the Springer Software and Systems Model-
ing (SoSyM) journals. Further information about him is available at
https://claudiodsi.github.io/. Contact him at claudio.disipio@univaq.it.

123

https://doi.org/10.1007/s10472-023-09918-2
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://doi.org/10.1145/3653081.3653102
https://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2210.03629
https://doi.org/10.1109/TSE.2024.3364675
https://doi.org/10.1109/TSE.2024.3364675
https://doi.org/10.1016/j.neucom.2024.127424
https://doi.org/10.1016/j.neucom.2024.127424
https://www.sciencedirect.com/science/article/pii/S0925231224001954
https://www.sciencedirect.com/science/article/pii/S0925231224001954
https://doi.org/10.1016/j.tsc.2023.101414
https://www.sciencedirect.com/science/article/pii/S1871187123001827
https://www.sciencedirect.com/science/article/pii/S1871187123001827
http://www.di.univaq.it/juri.dirocco
https://www.disim.univaq.it/DavideDiRuscio
https://claudiodsi.github.io/

948 J. Di Rocco et al.

Phuong T. Nguyen is a asso-
ciate professor at the University
of L’Aquila, Italy. He
obtained a PhD in Computer Sci-
ence from the University of Jena,
Germany. Since graduation, he has
been a university teaching and
research assistant in Vietnam and
Italy. His research interests include
Computer Networks, Semantic
Web, Recommender Systems, and
Machine Learning. Phuong is an
associate editor of Springer Applied
Intelligence, and he is on the edi-
torial board of Springer Software

Quality Journal. Moreover, he has been a reviewer for many premier
journals and conferences including TSE, TOSEM, JSS, AAAI, FSE,
SANER, ESEM, and EASE. More information is available at the fol-
lowing address: https://www.disim.univaq.it/ThanhPhuong

Riccardo Rubei is a postdoc-
toral researcher at the University
of L’Aquila(Italy). He earned his
PhD in 2022 from the University
of L’Aquila. His research interest
is related to software engineering,
recommender systems and several
aspects of MDE. Furthermore, he
is active in the field of sustainabil-
ity and green software engineer-
ing. He is organizing the work-
shops in STAF 2024 and 2025
entitled “Large Language Mod-
els for Model-Driven Engineer-
ing” and “Foundations and Prac-

tice of Visual Modeling” in Models 2024. Contact him at ric-
cardo.rubei@univaq.it

123

https://www.disim.univaq.it/ThanhPhuong

	On the use of large language models in model-driven engineering
	Abstract
	1 Introduction
	2 Background in large language models
	2.1 The rise of Large Language Models
	2.2 Prompt engineering
	2.2.1 Chain of thought
	2.2.2 Few-shot prompting
	2.2.3 Retrieval-augmented generation (RAG)

	2.3 Hallucination

	3 Adopting LLMs to support MDE tasks: a technical overview
	3.1 Main activities to support MDE tasks with LLMs
	3.1.1 Problem formulation and artifacts representation
	3.1.2 LLM architecture definition
	3.1.3 Post-processing of LLMs results
	3.1.4 Evaluation of LLMs

	3.2 Illustrative LLM application: from textual specifications to UML models
	3.2.1 Problem formulation
	3.2.2 LLM architecture definition
	3.2.3 Post-processing of LLMs results
	3.2.4 Evaluation of LLMs

	4 Use of LLMs in MDE
	4.1 Model completion
	4.2 Model search
	4.3 Model generation
	4.4 Model management operation
	4.5 Model architecture
	4.6 DSL requirement
	4.7 Goal modeling

	5 Research agenda
	5.1 MDE4LLM: supporting LLMs adoption with MDE
	5.2 LLM4MDE: LLMs-based automation for MDE tasks

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

