Information and Software Technology 177 (2025) 107588

Contents lists available at ScienceDirect INFORMATION
AND

SOFTWARE

TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

DeepMig: A transformer-based approach to support coupled library and code [
migrations

Juri Di Rocco?, Phuong T. Nguyen ?, Claudio Di Sipio?, Riccardo Rubei ?, Davide Di Ruscio *-",
Massimiliano Di Penta”

a Universita degli studi dell’Aquila, 67100 L’Aquila, Italy
b Universita degli studi del Sannio, Italy

ARTICLE INFO ABSTRACT

Keywords: Context: While working on software projects, developers often replace third-party libraries (TPLs) with
Recommender system different ones offering similar functionalities. However, choosing a suitable TPL to migrate to is a complex
L‘brarfy migration task. As TPLs provide developers with Application Programming Interfaces (APIs) to allow for the invocation
Transformers

of their functionalities after adopting a new TPL, projects need to be migrated by the methods containing
the affected API calls. Altogether, the coupled migration of TPLs and code is a strenuous process, requiring
massive development effort. Most of the existing approaches either deal with library or API call migration but
usually fail to solve both problems coherently simultaneously.

Objective: This paper presents DeepMig, a novel approach to the coupled migration of TPLs and API calls. We
aim to support developers in managing their projects, at the library and API level, allowing them to increase
their productivity.

Methods: DeepMig is based on a transformer architecture, accepts a set of libraries to predict a new set of
libraries. Then, it looks for the changed API calls and recommends a migration plan for the affected methods.
We evaluate DeepMig using datasets of Java projects collected from the Maven Central Repository, ensuring
an assessment based on real-world dependency configurations.

Results: Our evaluation reveals promising outcomes: DeepMig recommends both libraries and code; by several
projects, it retrieves a perfect match for the recommended items, obtaining an accuracy of 1.0. Moreover, being
fed with proper training data, DeepMig provides comparable code migration steps of a static API migrator, a
baseline for the code migration task.

Conclusion: We conclude that DeepMig is capable of recommending both TPL and API migration, providing
developers with a practical tool to migrate the entire project.

1. Introduction Studies have shown that developers are reluctant to migrate TPLs [1,
9], not only due to the fear of incompatibility and breaking changes [10,

During the life-cycle of software projects, developers usually need 11] but also because migration requires extra effort and responsibility.

to replace third-party libraries (TPLs) with other ones providing similar As a result, developers usually resort to being in their comfort zone,
functionalities. This happens due to various reasons. Among others, retaining the most familiar versions and neglecting the increasing
old TPLs might no longer be maintained, have compatibility issues, maintenance debt [12]. Recent studies [1,13] showed that 81.5% of

or are longer suitable for the project [1], or need to be changed
because of licensing compatibility problems [2,3]. Indeed, choosing
which TPLs to migrate is challenging because an inappropriate replace-
ment would cause incompatibility or breaking changes, among other
possible problems. Substituting a library with a new one while retaining
the same behavior is called library migration [4-7], which is considered
a daunting task [8].

the surveyed systems remain with popular older versions, and more
than half of the projects never migrate more than 50% their TPLs. Pro-
crastinating updates of TPLs may culminate in ripple effects, harming
software in various aspects [1,14].

When TPLs are migrated, it is also necessary to operate changes
to the affected source code that might no longer work, triggering the

* Corresponding author.
E-mail addresses: juri.dirocco@univaq.it (J. Di Rocco), phuong.nguyen@univagq.it (P.T. Nguyen), claudio.disipio@univaq.it (C. Di Sipio),
riccardo.rubei@univagq.it (R. Rubei), davide.diruscio@univagq.it (D. Di Ruscio), dipenta@unisannio.it (M. Di Penta).

https://doi.org/10.1016/j.infsof.2024.107588

Received 14 February 2024; Received in revised form 17 September 2024; Accepted 20 September 2024

Available online 28 September 2024

0950-5849/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:juri.dirocco@univaq.it
mailto:phuong.nguyen@univaq.it
mailto:claudio.disipio@univaq.it
mailto:riccardo.rubei@univaq.it
mailto:davide.diruscio@univaq.it
mailto:dipenta@unisannio.it
https://doi.org/10.1016/j.infsof.2024.107588
https://doi.org/10.1016/j.infsof.2024.107588
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2024.107588&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Table 1

Library migration.
Cy D Cy D Action
commons-lang:2.6 1 commons-lang:2.6 1 No change
junit:4.12 8 junit:4.12 8 No change
jackson-databind:2.8.1 9 jackson-databind:2.8.1 9 No change
jackson-core:2.8.1 12 jackson-core:2.8.1 12 No change
unirest-java:1.4.9 5 okhttp:3.9.1 37 Migrated
(log4j) slf4j 11 Newly added
(null) commons-codec:1.10 11 Newly added

need for API migration [15]. Thus, there are two levels of migration
to deal with: (i) the library level; and (ii) the source code level. For the
former, developers need to replace a library with a more suitable one.
For the latter, developers need to adapt the client’s affected source code
to conform with the new libraries and the related APIs.

Several approaches have been proposed to recommend TPL mi-
grations [1,5-7], and they learn migrations by mining the history of
similar projects. Thus, the recommended libraries come from projects
with a similar set of TPLs. Nevertheless, this does not necessarily
guarantee that developers can concurrently perform migration at the
API call level: even projects using the same TPLs may invoke the APIs
differently. Altogether, the migration of TPLs and the affected source
code is a challenging task [16-18], making a mechanism to automate
the process as a whole highly desirable.

We propose DeepMig as a holistic approach to migrating software
projects. DeepMig is based on a Transformer [19] deep learning archi-
tecture, that has been conceived for machine translation [20]. DeepMig
is a dual-purpose tool that provides suitable recommendations to mi-
grate both TPLs and API calls. We built a double-layer architecture by
mining projects’ development history and changes at the method level.
Once trained, the networks predict the set of TPLs to be included in the
project and API calls for the affected code. DeepMig outperforms a well-
founded TPL migration baseline, and it provides similar code migration
plans compared to a static API migrator. To our best knowledge,
DeepMig is the first tool to recommend migrations at both library and
source code levels.

This paper makes the following contributions:

— A novel approach to provide developers with a complete solution
to third-party library and API call migrations, built on top of the
transformer architecture.

— A tailored process to mine library and API migration data from
Maven Central Repository.!

— An empirical evaluation and comparison with state-of-the-art
baselines using real-world datasets.

— The DeepMig tool and the curated datasets have been published
online to allow future research [21].

2. Motivation and background

This section introduces some basic concepts (Section 2.1), and a
motivating example (Section 2.2) as a base for further presentation.

2.1. Terminology

We briefly recall the most basic concepts in library and API migra-
tion by referring to the code snippet in Fig. 1(a);

+ An API is a code unit that can be used following a defined
interface without knowing its implementation [22,23]. Each
API consists of public methods M available to clients, e.g., the
asString() method of the HttpResponse type (Line 34);

1 https://mvnrepository.com/repos/central

A method definition? is made of a name, a list of parameter
types, a return type, and a body. A method may call others, e.g.,
the sendRequest () method (Line 1) invokes getHTTPMethod ()
within its body (Line 17);

A method declaration is the signature of a defined method,
containing a name, a list of parameter types, and a return type;
A third-party library or TPL is an encapsulated software module
offering functionalities to reuse;

An API method invocation or invocation is a call made from a
definition d € D to a method m € M. An API field access is an
entry to a field f € F from a method declaration.

2.2. Motivating example

Let us consider a developer who is working on the rRecomBEE/JAvA-
API-CLIENT project,® and let us assume that at the time of investiga-
tion, C, (com.recombee:api-client:1.4.0) is the client that the
developer needs to upgrade. As shown in Table 1, the developer re-
places the TPL unirest-java:1.4.9 with okhttp:3.9.1 and adds
commons-codec:1.10 to develop new functionalities. Because of such
changes, C, has to be migrated to fix the code affected by the TPL
replacement, leading to C, (com.recombee:api-client:2.0.0)-the
future version of C,. The developer has to conduct two levels of
migration as follows.

> Library migration. Since unirest-java:1.4.9* is outdated,
the developer plans to replace the library. This is an uphill task, as the
developer has to investigate different libraries and understand if they
have the desired functionalities, implying an enduring process [5,24].

Table 1 depicts the list of libraries of the old and new
clients, i.e., before and after the migration. Compared to the old one,
by the new client C,, while the first four libraries remain unchanged,
unirest-java:1.4.9 is removed, and the new library
okhttp:3.9.1° is added. By carefully inspecting the two libraries,
we see that they implement similar features, i.e., establishing, sustain-
ing, and terminating connections via the HTTP protocol. Essentially,
there is a migration from unirest-java:1.4.9 to okhttp:3.9.1,
aiming to provide the project with similar but more updated/stable
functionalities.

Apart from okhttp:3.9.1, commons-codec:1.10 is another newly
added library. This is understandable in light of the following rea-
son: unirest-java:1.4.9 includes functionalities that are offered
by commons-codec:1.10, while okhttp:3.9.1 does not. Thus, re-
moving unirest-java:1.4.9 means there must be a new library
added, i.e., commons-codec:1.10, which can compensate for the
missing code. This scenario represents a straightforward one-to-many
library migration. In the context of third-party library migration, we
distinguish the following types of library mappings:

2 The terms “method definition”, “method”, and “definition” are used
interchangeably across the paper for the sake of presentation.

3 https://github.com/recombee/java-api-client/

4 http://kong.github.io/unirest-java/

5 https://square.github.io/okhttp/

https://mvnrepository.com/repos/central
https://github.com/recombee/java-api-client/
http://kong.github.io/unirest-java/
https://square.github.io/okhttp/

J. Di Rocco et al.

1 protected String sendRequest(Request request) throus ApiException {
String signedUri = signUrl(processRequestUri(request));
String protocolStr = request.getEnsureHttps ()

"https® : this.defaultProtocol.name (). tolowerCase ();
String uri = protocolStr + "://" + this.baseUri + /' + signedUri;

Unirest.setTimeouts (request.getTimeout (), request.getTimeout());
HttpRequest httpRequest = null;

17 lsuitch (request.getHTTPMethod () {
case GET

19 httpRequest = get(uri);
eak;

20 br
21 case POST

22 BttpRequest = post (uri, request);
23 break;

24 case PUT

25 httpRequest = put (uri, request);
26 break;

27 case DELETE

BttpRequest = delete (uri);
29 break;

34 response = ering O ;

36 checkErrors (response, request);
37 return response. getBody() ;
38 [catch (UnirestException &) {
39 i1 (e. get

2% (e.getCause ()
pache.http.conn.ConnectTimeoutException
of java.net.SocketTimeoutException)) {

a1 Ile. getc:
a2 throu new ApiTimeoutException(request);
a3 b

a4 o.printStackTrace ();

45 }
16 return null;

(a) Original definition

(com.recombee:api-client:1.4.0)

Information and Software Technology 177 (2025) 107588

private String semdRequest(Request request) throws ApiException {
String signedUri - signUrl(processRequestUri(request));
String protocolStr = request.getEnsureHttps () ?
this.defaultProtocol . name (). toLowerCase O);
String uri = protocolStr + "://" + this.baseUri + /' + signedUri;

OKHttpClient tempClient = this.httpClient.newBuilder ()
connectTimeout (request.getTimeout (), TimeUnit.MILLISECONDS)

9 readTimeout (request.getTimeout (), TimeUnit.MILLISECONDS)

10 uriteTimeout (request.getTimeout (), TimeUnit.MILLISECONDS)

11 buildO;

12 lokhttp3. Request .Builder httpRequestBuilder =

13 new okhttp3.Request .Builder ()

14 url(uri) . addHeader ("User-Agent ", this.USER_AGENT);

17 switch (request.getHTTPHethod) {
case GET

break;
21 case POST

22 lder = post(lder, request);
23 break;

24 case PUT

25 lder = put(lder , request);
26 break;

27 case DELETE

28 httpRequestBuilder. delete)}

29 break;

30 i

33 lexy €
34 Response responmse = tempClient.

35 newCall (httpRequestBuilder.build()) .execute ()
36 checkErrors (response, request);

a7 return response.body().string ();

38)
39 catch (InterruptedIOException e) {

40 throw new ApiTimeoutException(request);
a1 b

a2 catch (I0Exception @) {

a3 o.printStackTrace ();

45 [return nu1l;

(b) Migrated definition

(com.recombee:api-client:2.0.0)

Fig. 1. Code migration for the SendRequest () method definition of the RECOMBEE/JAVA-API-CLIENT project.

— one-to-one mapping: This migration directly replaces one third-
party library in the original system with a corresponding library
in the new version of the client. This occurs when there is a
direct equivalent that performs the same functionality, facilitating
a simple and direct transition.

— one-to-many mapping: This type of mapping replaces a single
third-party library with multiple libraries in the new system.
This approach is adopted when the replaced library’s functional-
ities are broader and can be better served by several specialized
libraries in the new system, enhancing specific aspects of the
original library’s capabilities.

— many-to-one mapping: This mapping consolidates several third-
party libraries from the original setup into a single comprehensive
library in the new system. It is applied when the new library offers
an integrated suite of functions that can effectively replace and
simplify the functionalities provided by multiple older libraries.

— many-to-many mapping: This scenario aims to replace multiple
third-party libraries with an equal or greater number of new
ones in the new system. This mapping is necessary when the
transition involves significant realignment of the provided func-
tionalities, such as splitting, combining, or extending features
across several new libraries, to adapt to the system’s technological
advancements or architectural changes.

It is worth mentioning that library migration [6] is different from
library upgrade [8]. In particular, with the latter, developers refine
the system by upgrading some of the current TPLs with their newest
versions. Instead, with the former, developers replace some of the used
TPLs with alternative ones.

> Code migration. Migrating TPLs is the first step of the consid-
ered upgrading, which also requires changes at the code level. For
instance, by replacing unirest-java:1.4.9 with okhttp:3.9.1, the
developer needs to inspect the source code of C; and looks for affected
definitions, and conducts adaptations.

The client C; has many affected method definitions. We consider, as
an example (shown in Fig. 1(a)), the sendRequest () definition needs
to be migrated as it invokes APIs of the removed unirest-java:1.4.9
library.

Similarly to library migration challenges, in the context of API
function migration, Alrubaye et al. [25] classified the migration of API
function calls scenarios as follows:

— one-to-one mapping: This mapping involves directly replacing a
single API function call from the old library with a correspond-
ing function from the new library. This is the simplest form of
mapping, where each function in the original library has a direct
equivalent in the replacement library.

— one-to-many mapping: In this scenario, a single API function call
to the removed library is replaced by multiple API function calls
to the new library. These additional calls may include functions
from newly added libraries or existing APIs (e.g., standard Java
API calls). This type of mapping is used when the new library
offers more granular functionality split across several functions.

— many-to-one mapping: This type of mapping occurs when multiple
API functions from the original library are consolidated into a
single function in the new library. This may happen when the new
library provides a more integrated or comprehensive function
that can accomplish what previously required several separate
functions.

— many-to-many mapping: This complex mapping occurs when mul-
tiple API functions from the original library are replaced by an
equal or greater number of API functions in the new library.
Such mappings are typically necessary when the functionalities
of the old library are either split into more discrete functions
or combined and extended in the new library and other ones
(including Java API), requiring comprehensive changes in how
the functions interact and operate. This ensures that the appli-
cation can leverage the full capabilities of the new library while
maintaining or enhancing its original functionality.

Fig. 1(b) shows the changes occurring in the commit a0576aa,®
referring to the final code after migration. In particular, the access
modifier of sendRequest() is changed from protected to pri-
vate, and the APIs related to unirest-java:1.4.9 are also adapted
to those offered by okhttp:3.9.1.7

In Fig. 1(a) and Fig. 1(b), pairwise blue frames are used to mark
the portions of code being adapted. By comparing the upper frames,
we can see that all the declarations related to unirest-java:1.4.9

6 https://bit.ly/30aVv2e

7 To facilitate the reading, we employ a GitHub-like color scheme to
highlight the changes between two versions of the same method definition,
i.e., red and green correspond to removed and added code, respectively.

https://bit.ly/3OaVv2e

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

e

J

Library Migration

-
=]
=
$=

One-hot matrix

Input project Mav

{ iF s

Code

(]
S

@B

Change
Detector

> /o e
0 ' U i
H PLs migration pair
< :

Affected
definitions

TPL dictionary
I Rascal M3
model
=] a6
v=| 300
=
[A1 dictionary (" one-hot matrix]

>
Mapper ----- Feeder |fe====enn--d)

Code Migration

API calls

Fig. 2. The DeepMig double-layer architecture to provide library and API migration.

have been replaced with those from okhttp:3.9.1 (Lines 6-15).
By the middle frames, the old variables are superseded, i.e., the
httpRequestBuilder variable of the apiokhttp3.Request.Builder type
substitutes for the HttpRequest variable of the HttpRequest type
(Lines 22-28). Finally, at the bottom, the affected API calls are migrated
accordingly, e.g., getBody () is changed to body() .string() (Line
37).

The sendRequest () method is only one among the affected defini-
tions, and adapting all of them is an arduous task. Despite refactoring
services and tools exist, e.g., OpenRewrite® can be used to support
code migration, their recommendations are based on a set of prescribed
rules. Therefore, while offering a practical solution to migration, such
services have their own Achilles heel, i.e., they will not work if there
are not sufficiently defined rules prepared beforehand.

Remark 1. The migration of libraries and the affected code is
a daunting task, as it requires intensive manual work, to search
for suitable libraries, and update the related code. Thus, ap-
proaches aimed at assisting developers to automatically perform the
migration are greatly needed.

There is a common characteristic between the two types of mi-
gration as follows. Library migration can be considered as a map-
ping from a set of libraries to the new ones, e.g., changing from
unirest-java:1.4.9 to Ookhttp:3.9.1, and from null to
commons—codec:1.10. This is also the case with code migration, e.g.,
getBody () is transformed to body) . string (), and HttpRequest is
superseded by apiokhttp3.Request.Builder.

Remark 2. (i) The migration of TPLs boils down to transforming
an input to an output sequence of libraries; (ii) Likewise, code mi-
gration is equal to the transition from a sequence of API invocations
to a different one.

The motivating example inspires us to automate the migration of
both levels together. We come up with a holistic solution to library
and code migration, exploiting machine translation techniques, which
are briefly recalled as follows.

In this paper, we postulate that the problem of library and API
call migration can be reformulated as a machine translation task. We

8 https://docs.openrewrite.org/

develop DeepMig following a holistic approach, applying a transformer
architecture to recommend migration for libraries and the affected
source code.

3. Proposed approach

DeepMig is a double-layer system consisting of different modules
to mine the development history of projects as well as changes in the
method level to provide relevant recommendations (see Fig. 2). In the
learning phase (the blue dashed lines), training data related to library
and code migrations is collected from open-source repositories, e.g.,
Maven to feed as input for the whole system. In the deployment phase
(the continuous lines), data from developers is converted into a suitable
format, which is then used as input for the recommendation engine.

3.1. Lib Parser

To learn relationships between libraries we leverage data from the
Maven Central Repository. In particular, we use the Maven Dependency
Graph (MDG) developed by [26], an open-source dataset that stores
Maven artifacts in a graph database. The MDG includes all types of
relations between Maven artifacts, i.e., upgrades and dependencies.
Also, the MDG can (i) link each version of a specific library to the next
version (if it exists); and (ii) join an artifact to their dependencies.

The LB Parser component of DeepMig uses the MDG to mine the
migration history of TPLs, by considering the following pieces of infor-
mation:

« Artifact: Each software stored in MDG is called client if it plays the
role of a final product, or library if it is a dependency of another
artifact.

* Version: An instance of an artifact issued at a certain time.

* An update pair {c.c,) is two consecutive versions x and y of an
artifact c.

* MLy oy = AL oy U RL e Y UL, e the set of TPLs that
has been either added (AL) in ¢y, or removed (RL) from c,, or
upgraded (UL) in an update pair (cx, cy)-

With respect to the dependencies listed in Table 1, RLc, c,) con-
sists of unirest-java:1.4.9, AL, ¢,y includes okhttp:3.9.1 and
commons=codec:1.10, while UL, c,, is empty. Lis Parser mines MDG
to find update pairs (c,,c,) where ML<cx’cy> # (. It can even take 2
libraries as input, i.e., /., and /, to restrict the set of update pairs by
selecting ones where /, € RLic e, and /, € AL o) In particular,
DeepMig takes a list of libraries and predicts a suggested list of re-
placements. This capability allows DeepMig to support more complex

https://docs.openrewrite.org/

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Table 2
Example of dictionaries generated by the Marper.
Library Frequency D
org.slf4j:slf4j-api:1.7.25 6,179 0
N commons-lang:commons-lang:2.6 5,924 1
junit:;junit:4.12 3,271 8
com.sun.jersey:jersey-grizzly2:1.11 5 35542
API call Frequency ID
java/lang/StringBuilder/toString() 28,827 0
& java/lang/StringBuilder/append(java.lang.String) 28,690 1
http/exceptions/UnirestException/printStackTrace() 6 60725
beaker/server/Proposer/configuration() 5 60735

scenarios, including one-to-one, one-to-many, many-to-one, and many-
to-many library migrations. It is worth noting that DeepMig does not
identify which new libraries replace the existing ones, i.e., it does not
compute the matches between them. Instead, its scope is to provide
developers with insights for upgrading the libraries involved in the
current version of the project under development.

3.2. Code analyzer

Starting from source code, DeepMig extracts related information
including definitions, API invocations, and field accesses (see Sec-
tion 2.1). The DeepMig CopE ANALYZER relies on the Rascal M> model [27]
to mine data from open-source repositories. M> manages the decla-
rationy and methodInvocationy relationship containing a set
of pairs (loc|,loc,), i.e., loc; and loc, represent locations, which are
uniform resource identifiers (URI) to specify locations of definitions and
invocations. A declarationy relation maps the location of a method
to its URI Likewise, a methodInvocationy relation associates the
artifact identities of a caller with those of the callee(s). This enables
Cope AnaLvzeR to retrieve the referred resources without contextual
information.

3.3. Change detector

We decided to implement a tailored change detector, rather than
relying on pre-existing code differencing tools, such as GumTree [28].
The rationale behind such the decision is as follows: We are interested
in extracting API function calls of method definitions provided by a
migrated library, not textual syntax that includes parameter values, i.e.,
those that GumTree can handle. In this respect, our change detector
can identify two consecutive versions of the same method definition
that uses the APIs provided by a migrated library. Given an update pair
(P the Code Migration Pairs (CMP) are defined as follows:

* For each | € RL, o the migration pair MP includes (MD, ,
MD,), where the MD,_ definition calls an API of /, and MD, holds
in cy with the same s1gnature Copt AnaLyzer does not consider
definitions that have been removed to support the migration, as
they do not contribute to the training models to adapt existing
method definitions.

For each | € AL, e the migration pairs MP includes (MD, ,
MD, > pairs where the method definition MD,, calls an API of
I and the method definition MD, holds in c with the same
signature. The Cope ANALYzER does not consider method definitions
that have been added to support the migration. In fact, they do
not contribute to the training models to adapt existing method
definitions.

For each | € UL, .) MP encompasses the (MD, , MD,) pair,
where the method definitions MD, and MD, have the same sig-
nature and call an API of /. For instance, the two implementations
of sendRequest () depicted in Fig. 1 are identified as a migration

pair since c¢; uses the APIs provided by the removed library
unirest-hjava:1.4.9, and sendRequest () is still available in
¢,. Moreover, ¢, calls the APIs provided by okhttp:3.9.1 the
new library. It is important to remark that CHANGE DETECTOR does
not consider pairs where the method definition is unchanged in ¢,
and ¢, as they do not contribute to the training models to adapt
existing definitions. Finally, CuanGe DETECTOR extracts the list of
migration pairs that shows how the evolved version of a method
definition deals with the migration of the library. The generated
migration pair is provided as input for Mapper, which is described
in the succeeding subsection.

3.4. Artifact mapper

An artifact’ is usually a long string, and thus it is not feasible to
feed it directly as input to Transformer. Therefore, we devise a method
to convert the original names to a shorter ones using numbers. In
particular, each artifact has to be encoded using a unique number, thus
converting each input sequence into a chain of numbers. To optimize
the computation, we need to keep the input as short as possible, i.e., the
length of the input sentence should be small. In fact, many artifacts are
very popular, and they appear several times in source code. As a result,
if we use large numbers (i.e., with many digits) to encode them, then we
would encounter long sequence, necessitating more resources to handle
the data. Given a training corpus, two dictionaries are built, i.e., D, for
libraries, and D 4 for API calls. Mapper counts the number of occurrences
for each artifact and builds a list of artifacts with their frequency, sorted
in descending order. From the list, the ArtiracT MappER assigns an ID to
each artifact, by traversing down from the top to bottom. The IDs start
from 0 and increase by 1 at every artifact. In this way, a more frequent
API call is encoded with a smaller number, and vice versa. Altogether,
this aims to avoid long sequences, thereby optimizing the computation.
The two dictionaries are independent on each other, i.e., they are used
separately, and they can encode artifacts sharing the same numbers,
without interfering with each other.

An example of D; and D, is shown in Table 2, where artifacts
that appear in the motivating example are highlighted in bold face,
to facilitate the presentation in the next subsection. The
s1f4j-api:1.7.25 library is the most frequent one as it appears
6,179 times, thus being encoded with 0, commons-lang:2.6 is en-
coded with ID=1; Meanwhile, jersey-grizzly2:1.11 has ID=35542,
as it counts only 5 times across the corpus. Likewise for APIs,
java/lang/StringBuilder/toString() is the most common API
call, thus ID=0; while beaker/server/Proposer/configuration ()
is very rare, and it is given the ID=60735.%°

9 For the sake of presentation, in the rest of this paper, we call a library or
an API the common name artifact, unless otherwise stated.

10 For the sake of clarity and presentation, we do not present all the related
IDs. The complete list of TPLs and their corresponding IDs is available in the
online appendix.

J. Di Rocco et al.

Input sequence

Information and Software Technology 177 (2025) 107588

Output sequence

—~

G T To LTl s = Lo Ts [oTo [e[a2 T0]

Fig. 3. Input and output sequences for the example in Table 1.

Input sequence

Output sequence

-~
‘20‘u|39‘u|133‘u‘402|u‘88‘:»‘20‘u|39‘u‘155

Tl o[t

Fig. 4. Input and output sequences for the example in Fig. 1.

3.5. Attention and transformer

One of the main challenges in machine translation [20] is to cap-
ture the relationship among words within sentences to learn their
co-occurrence properly. To cope with this problem, the attention model
was conceived as an effective means to associate the mutually rele-
vant parts. For instance, in the following sentence: “The dog does not
play with the ball, because it feels bored”, the word “it” refers to “the
dog” instead of “the ball”. Attention can enforce this relationship, and
Transformer [19] goes one step further, being made of multiple blocks
of encoders/decoders with self-attention modules to obtain promising
performance in NLP. The decoder has an extra attention block, focusing
on the relevant part of the sequence. The embedded words of the input
are fed to the encoder and propagated to all the encoders.

Further details about the transformer architecture can be found in
the original paper introducing it [19].

Thanks to its features, Transformer has the potential to capture the
relationship among libraries or API calls when they are migrated. Both
types of migration are related to time series data, i.e., the transition
over the course of time. Thus, giving proper attention to some entries
in a sequence allows us to catch their collocation, e.g., “okhttp:3.9.1
and \commons=codec:1.10 are migrated from unirest-java:1.4.9’
can be conveniently learnt with attention and transformer.

3.6. Feeder

This component converts an input list of artifacts (TPLs, API calls)
to machine-processable format including (i) sequences; and (ii) ten-
sors. First, by looking up the two dictionaries D; and D,, the Feeper
translates artifacts into a sequence of numbers. Fig. 3 shows the input
and output sequences of the motivating example of Table 1. All the
IDs are retrieved from Dy, i.e., the dictionary for libraries. Migrating
the TPLs of C; to C, now corresponds to translating the input sequence
X=“1_8_9_12_5" to the output sequence Y="“1_8_9_12_37_11", where
“_” represents a space to distinguish between the IDs inside a sequence.

Similarly, the sequences for the code in Fig. 1 are generated by look-
ing up D,, as shown in Fig. 4, i.e., the input sequence corresponds to
the original definition (Fig. 1(a)), while the output sequence represents
the migrated definition (Fig. 1(b)).!!

A transformer consists of several long short-term memory (LSTM)
units [29], and all the IDs need to be converted to one-hot vectors
with 0 and 1 as follows. First, we traverse through all the sequences
to compute O, the length of the longest sequence. Afterward, C,, the
corpus of all the characters used to form the IDs, is built to contain
11 letters for encoding ten numbers, i.e., from O to 9, and the white
space, i.e., C, = {0,1,...,9,}. Then, each character is converted to a
one-hot vector whose length corresponds to the corpus’s number of
characters, i.e., IT = |C,|=11. Finally, a sequence is represented as a
2D matrix of size © x IT1, where each row corresponds to the one-hot
vector of a character within a sequence, and the columns represent the

11 These sequences are produced similarly to the one for library migration.

&
\Q% <&
1

L

1

C

&
© ©O ©o © © © © © © © © ©o ©
© O O O O K O O O O O K M
©C ©O O O R O O O © © © ©o N
©C ©O © © O ©O © © © © © © @
©O O O ©O O O ©O © © © © ©
©C O M O O O O O © © © o o
©O ©O ©O © ©O O O © © © © o &
SO ©O O O O O © © © © ©o o =
©O ©O O ©O O ©O © © © RH O ©o ®
©O ©O ©O ©O ©O ©O O RBH O © © o ©
H = O R O O R O R O R o

Fig. 5. One-hot matrix for X="1_8.9_12_5_".

vocabularies. Sequences, whose length is smaller than ©, are padded
with “_” to fill the gap.

Fig. 5 depicts the matrix representation of X=“1_8_9_12_ 5", i.e.,
the input sequence in Fig. 3. Let © be 12,'? then since len(X) = 10 < O,
the last two rows x;; and x;, are filled with “_".

Finally, given a training corpus of N sequences, Feeper renders all of
them into a suitable format as in Fig. 6. There, each slide corresponding
to a 2D matrix is used to represent data for a sequence, and all the
slides form a tensor of size © x IT x N, that is then provided as input
for the recommendation engine. The data model in Fig. 6 can be used
to represent the input for both for library and API call migration to feed
DeepMig.

3.7. Recommender

This component is built on top of Transformer [19], which contains
blocks of encoders/decoders as shown in Fig. 7. Both the Encoder
and Decoder are chains of LSTM units, each of which is made of
self-attention layers and feed-forward neural networks. The input data
is first fed to a self-attention layer, to better memorize a word by
looking at other related words. Fig. 7 illustrates the Transformer-based
engine [20] to translate the input API sequence to the output one for
the example in Fig. 3. Essentially, the series of the Encoder is used
to transform the input data into numbers, which are then used by
the Decoders to generate the output sequence. DeepMig is suitable for
analyzing a set of existing API function calls and predicting appropriate
replacements. This capability empowers DeepMig to support a wide

12 Note that this is a small value of @ used for illustration purposes only. In
practice, the sequence length © is usually chosen as a large number enough
to capture most of the real-world sequences.

J. Di Rocco et al.

5}
LL
S
=z
5)
- 7
3! i
= &
2 &
<~ &
g &
= : &
S Vocabulary (size=II) <

Fig. 6. Tensor to store data for a complete training set.

1.8.9.12.37.11
’ Enc:der -[Dec;)der k>[
’ Enc:der l \\\:\\(\4 Dec:der l
’ Enc:der l \" Dec:der l
’ Encoder l \\ Decoder l
L) L)
[Decoder]
l

T \:I %

189125 A[Encoder l Decoder

Fig. 7. The Transformer-based recommendation engine.

array of complex API migration scenarios, such asone-to-one, one-to-
many, many-to-one, and many-to-many mappings. Analogously to the
library migration recommender, it is important to clarify that DeepMig
does not explicitly determine which new API function calls replace the
existing ones; it does not directly link new API calls to specific func-
tionalities of the old APIs. Instead, its core functionality is to provide
valuable insights for updating the API function calls across the entire
project. In other words, DeepMig assists developers in systematically
upgrading and modernizing their software applications without proving
API function call mappings.

4. Evaluation

This section describes the empirical study aimed at evaluating Deep-
Mig.

4.1. Research questions

To evaluate DeepMig, we aim to answer the following research
questions.

* RQ;: How well does DeepMig perform in migrating libraries? First,
through literature analysis, we study to what extent the issue
of TPL migration has ever been addressed by state-of-the-art
research. The ultimate goal is to find a suitable comparison base-
line for DeepMig, for what concerns library migration. Second,
we evaluate the ability of DeepMig to migrate libraries using a
real-world dataset collected from Maven.

* RQ,: When can DeepMig generate API migration steps comparable
to those recommended by OpenRewrite? The recommendations by
OpenRewrite can be considered as reference migrations, and we
study under which circumstances DeepMig can produce similar
results obtained with OpenRewrite. This is meaningful in practice
as automatic migration helps users avoid the efforts of developing
static refactoring rules.

Information and Software Technology 177 (2025) 107588

* RQ;: What are the applicability and limitations of using ChatGPT
for API migration? We study the feasibility of using ChatGPT
to support the migration of API function calls. While a direct
comparison of DeepMig with OpenRewrite and ChatGPT is not
possible due to the different nature of the three approaches, we
assess the generated migration in terms of accuracy.

* RQ4: How can DeepMig improve its performance? In code rec-
ommendation, it is important to suggest API calls relevant to
the given development scenario. We evaluate in which context
DeepMig can enhance its performance, providing developers with
more useful code to complete their tasks.

4.2. Baselines for comparison

To the best of our knowledge, no existing approach is able to
recommend both library and code migrations. As a result, we have to
perform the comparison singularly, i.e., evaluating the two types of
migrations using different baselines. This section explains the process
we followed to look for suitable tools to be directly compared with
DeepMig.

4.2.1. Library migration

After a preliminary search, we did not find any approach to deal
with the problem of library migration, which can be used as a bench-
mark for evaluating DeepMig. Thus, we decided to perform a literature
analysis to understand the extent to which the issue of library migration
has been addressed by state-of-the-art research. Though we did not
target a complete, detailed systematic literature review, we followed
existing guidelines for such type of studies in Software Engineering
research [30-32], to cover a wide range of existing work. For the sake
of a reasonable trade-off between efficiency and coverage of state-of-
the-art studies on library migration, we employed a search strategy led
by four W-questions [33], i.e., “Which?” “Where?” “What?” “When?”
explained as follows.

» Which? We performed a comprehensive search using a combina-
tion of automated and manual methods to gather research papers
from a variety of sources, including conferences and journals.
Where? The literature analysis was performed on premier soft-
ware engineering venues including (i) nine conferences: ASE,
ESEC/FSE, ESEM, ICSE, ICSME, ICST, ISSTA, MSR, and SANER;
and (ii) six journals: EMSE, ESWA, IST, JSS, TOSEM, and TSE.
All the considered venues are detailed in Table 3. The Scopus
database'® was chosen for the automatic search, and all the papers
published by a given year of a given venue were retrieved through
the advanced Scopus search and export features. An excerpt of the
queries is shown in Listing 1.

What? Title and abstract of each article were fetched following a
set of predefined keywords.

When? Since automated library migration is a recent research
theme, the search was confined to the most seven recent years,
i.e., from 2017 to 2023.

Starting from the publication venues, we counted 19,834 articles for
the six most recent years, i.e., from 2017 to 2023. We then restricted
our attention to research contributions related only to TPL migration.
Thus, from the collected corpus we narrowed down the scope by
using four sets of keywords as follows: (i) GOAL: “migrat*”, “version*,
or “evolve”; (ii)) SBJ: “librar*”, “TPL”, “third-party”, or ‘“third party;”
(iii) REC: “recommend*”, “suggest”, or “assist;” (iv) TOOL: ‘“‘tool*”,
“approach”, ‘“‘system”, or “methodology”.

13 https://scopus.com

https://scopus.com

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Table 3
Venues considered in the literature analysis.
Acronym Name
ASE The IEEE/ACM International Conference on Automated Software Engineering
ESEC/FSE The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering
ESEM The ACM/IEEE International Symposium on Empirical Software Engineering and
P Measurement
2 ICSE The IEEE/ACM International Conference on Software Engineering
5 ICSME The International Conference on Software Maintenance and Evolution
E ICST The IEEE International Conference on Software Testing, Verification and
© Validation
ISSTA The ACM SIGSOFT International Symposium on Software Testing and Analysis
MSR The IEEE International Working Conference on Mining Software Repositories
SANER The IEEE International Conference on Software Analysis, Evolution and
Reengineering
EMSE Springer Empirical Software Engineering Journal
2 ESWA Elsevier Expert Systems With Applications
g IST Elsevier Information and Software Technology
2 JSS Elsevier Journal of Systems and Software
TOSEM ACM Transactions on Software Engineering and Methodology
TSE IEEE Transactions on Software Engineering

Listing 1: Excerpt of the Scopus query string.

TITLE-ABS () (‘‘librar’’ OR ‘‘TPL’’ OR ‘‘third-party’’ OR ‘‘third party’’ OR ‘‘client’)
AND (‘‘migrat’’ OR ‘‘dependenc’’ OR ‘‘version’’ OR ‘‘evolve’’)

AND (¢ ‘recommend’’ OR ‘‘suggest’’ OR ‘‘assist’’)

AND (““tool’’ OR ‘‘approach’’ OR ‘‘system’’ OR ‘‘methodology’ OR ¢‘framework’’)

AND (LIMIT-TO (PUBYEAR, 2022) OR [...]

OR LIMIT-TO (PUBYEAR, 2017))

4.2.2. Code migration

Through a careful investigation, we found that although various
code migration approaches do exist, e.g., MigrationMiner [34], SOAR
[35] and [36], they are not eligible for the comparison with DeepMig.
As shown in the motivating example in Fig. 1, DeepMig is different
from existing approaches—especially the ones mentioned above-as it
can provide API migrations at the definition level by cohesively con-
sidering the related TPLs. In fact, both SOAR [35,36] cannot perform
migrations at the method level. Thus, no approach can be used for a
direct comparison with DeepMig with respect to API migration.

We came across OpenRewrite,'* an open source project for the
automation of library migrations to enable large-scale distributed code
refactoring for framework migrations, vulnerability patches, and API
migrations in Java. It works by making changes to Abstract Syntax
Trees (AST) representing source code and propagating the modified
trees back to source code. It supports rewriting code by analyzing
and transforming ASTs. OpenRewrite provides six predefined rewrit-
ing rules for TPLs, e.g., the migrations from JUnit'® test assertions
to AssertJ,'® or from log4j' to 51f4j'® logging libraries. These
migrations mainly contain changing statements and updating imports.
The main drawback of rewriting code with OpenRewrite is that devel-
opers have to define specific rules to support migrations as shown in
Fig. 9. In particular, Fig. 9(a) depicts the specification of migrating the
dependencies, while Fig. 9(b) shows the rule to change LogManager
to LoggerFactory APIL Thus, this comparison aims to evaluate
if DeepMig can automate API call migrations, overcoming the main
difficulties caused by manually defined rules for cases that are not yet
covered.

Large Language Models (LLMs) represent a cutting-edge approach in
the automation of software development tasks [37], including the com-
plex challenge of API function call migrations. LLMs such as ChatGPT

14
15
16
17
18

https://docs.openrewrite.org/
http://www.junit.org
https://joel-costigliola.github.io/assertj/
https://logging.apache.org/log4j/2.x/
https://www.slf4j.org/

are trained on diverse datasets encompassing a vast range of pro-
gramming knowledge, which enables them to understand and generate
code [38,39]. ChatGPT, in particular, can provide recommendations on
migrating API function calls by leveraging its extensive training on code
repositories, technical documentation, and forums [40]. ChatGPT oper-
ates by processing natural language and code inputs to generate human-
like text responses. In the refactoring context, AlOmar et al. [41]
studied the interactions between developers and ChatGPT concerning
code refactoring. By analyzing 17,913 exchanges involving refactoring
themes, the study seeks to understand how developers pinpoint areas
for improvement and how ChatGPT meets their needs. This capabil-
ity allows it to suggest code modifications, offer refactoring advice,
and even write new code snippets that comply with the syntax and
semantics of target APIs. For example, in migrating API function calls,
ChatGPT can suggest changes similar to those between different logging
frameworks — like converting log4j syntax to s1f4j — based on
its understanding of the libraries’ documentation and usage patterns
observed in its training data.

Unlike tools like OpenRewrite, which require predefined rules to
perform migrations, LLMs (and ChatGPT) dynamically generate solu-
tions based on the context provided during their interactions. However,
the effectiveness of solutions provided by LLMs like ChatGPT can vary
based on the specificity of the user queries and the model’s exposure
to similar problems during its training. Therefore, while LLMs offer a
promising direction for automating code migration tasks, their success
in specific instances depends on the users’ detailed understanding and
accurate expression of the problem context. When evaluating DeepMig
against other code migration tools, we included ChatGPT (with its GPT-
4 model) as a representative of language model-based approaches. We
used its web chatbot interface with default settings and a temperature
setting of 0.7 to balance creativity and fidelity in the model’s responses.
We also adhered to the system’s default max tokens limit to ensure
concise and contextually relevant responses. The model’s task was to
generate code migrations from prompts based on scenarios also used to
evaluate DeepMig and OpenRewrite. This approach allowed us to assess
how well a state-of-the-art language model supports code migration
tasks compared to DeepMig, without requiring any specialized tuning
or parameter adjustments. It provided insights into the out-of-the-box

https://docs.openrewrite.org/
http://www.junit.org
https://joel-costigliola.github.io/assertj/
https://logging.apache.org/log4j/2.x/
https://www.slf4j.org/

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Listing 2: An explanatory prompt for the illustrative migration task.

<s>

[INST] <<SYS>>You are a code assistant <</SYS>>

Given the following class implementation {{class_code}}

[/INST]

highlight the code changes needed to migrate from log4j to the slf4j library.

</s$>

import org.apache. log4j.Logger;

public class Example {

public class Example {

import org.s\f4j.Logger; 1
import org.slf4j.LoggerFactory; 2

1-to-1
private static final Logger logger = Logger.getLogger (Example.class); '—{ private static final Logger logger = LoggerFactory.getLogger (Example. class);

Static 1
BasicConfigurator.configure();

static T
LoggerContext context = (LoggerContext) LoggerFactory.getILoggerfactory(); 9
ConsoleAppender consoleAppender = new ConsoleAppender(); 10
consoleAppender. setContext context) ; u
PatternLayoutEncoder encoder = new PatternLayoutEncoder(); 12
encoder. setContext (context); 13
encoder. setPattern("sd{HH:mn: 55,555} [%thread] %-Slevel %logger{36} - %msgsn"); 14
encoder.start(); 15
consoleAppender . setEncoder (encoder) ; 16
consoleAppender.start(); 17

18
ch.qos. logback. classic.Logger logger = context.getLogger(“ROOT"); 19
Togger. setLevel(Level.INFO); 20
Logger. addAppender (consoleAppender) ; 2

¥ 2

23

2 public void adjustLogging() { n-to-1

25 logger. setLevel (Level.DEBUG) ;
2 logger. setLevel (Level.INFO) ;
27 }

public void adjustlogging() { 2
// Typically, logging level adjustments are not done through SLF4) APIs directly| 25
/7 They are managed via configuration files or external management tools. 2
) 27

29 public void doSomething() {

30 logger.debug("Doing something");

31 b

32} }

2
public void doSomething() { 29

ogger. debug(“Doing something"); 30
¥ 31
32

Fig. 8. The Transformer-based recommendation engine.

utility of such models in software development contexts. In our evalu-
ation, we fed ChatGPT with the zero-shot prompt strategy according to
the query template reported in Listing 2. While we acknowledge that
more advanced prompt strategies are in place [42,43], within the scope
of this paper, we limit ourselves to the basic one.

To evaluate the GPT-4 migration capabilities, we adopted the fol-
lowing evaluation methodology. First, we used the DeepMig change
detector to identify classes impacted by the migrations. Then, three co-
authors with over 12 years of programming experience in Java asked
ChatGPT to perform the migration using the prompt schema described
in Listing 2. Each generated code migration was independently assessed
by all the evaluators, and disagreements among all evaluators were col-
laboratively discussed until a consensus was reached. For each query,
the involved authors annotated the suggested migration and manually
computed precision and recall. In particular, we computed the number
of true positives (TP), false positives (FP), and false negatives (FN). A
TP occurs when there is an exact match at the signature level, i.e., both
the recommended API and the ground-truth one are perfectly identical.
Instead, a wrong code migration is considered an FP, while a code
migration that differs from the ground truth is an FN.

Upon evaluating API migration strategies, we encountered different
types of function mappings. Fig. 8, shows simple one-to-one map-
pings occurring when replacing basic logging function calls, highlighted
in green, such as switching from log4j’s getLogger() to s1f4j’s
getLogger (). More complex scenarios, such as one-to-many mappings
highlighted in orange, occurred during configuration migration, where
a single setup call in Log4j (e.g., BasicConfigurator.configure()) re-
quired multiple, more granular calls in s1f4j/Logback. Additionally,
many-to-one mappings, highlighted in blue, were seen when mul-
tiple direct log level adjustments in the old API were replaced by
centralized configuration management in the new system. These map-
pings illustrate the varying complexity developers may face during API
transitions.

It is important to point out that DeepMig processes a list of API
function calls and generates the corresponding evolved versions, thus
effectively handling the transformation from an old method definition
to a new one (see Fig. 4). The quality and diversity of the training data
significantly influence the tool’s capability, allowing it to support any
of the previously defined migration classes. Therefore, while DeepMig

is designed to handle all types of migrations, including one-to-one, one-
to-many, many-to-one, and many-to-many, its performance in terms of
accuracy and computational efficiency is largely contingent on the
diversity and richness of the dataset used to train the model.

4.3. Datasets

We collected three different datasets as explained below.

+ Library migration D;. This is a dataset of 122,340 software
projects with 35,543 TPLs has been curated through the process of
mining the Maven Central Repository. To assess the performance
of DeepMig, we collected only software projects that migrate,
delete, add, or update at least one library between their versions.
Then, for each collected software project, we only consider the
consecutive version pairs that maximize the number of library
migrations. D;has been used to train DeepMig so that, given
an input project, it can recommend for each depending TPL the
alternative library to migrate to, if needed.

Code migration D.,. This dataset is used to compare DeepMig
with OpenRewrite. As explained in Section 4.2, OpenRewrite
supports the migration from log4j to s1£4j, two popular logging
libraries, among six predefined migrations. To provide input for
the comparison, Lis Parser scanned the Maven Dependency Graph
(MDG) consisting of 222,478 libraries, 2,407,335 total artifacts
(including versions), and 9,715,699 relationships (including next
and depend links) to identify artifact pairs that had migrated
from log4j to s1f4j at some point. Such a migration pair was
considered owing solely to the fact that many clients replace
log4j with s1f4j. L Parser iterated through the MDG arti-
facts to identify libraries dependent on 1og4j. Upon identifying
an artifact, the next relationships were inspected to detect any
artifact pairs that removed the dependent link from log4j and
added the dependent link to s1£4j. Due to the considerable size
and density of the MDG, L Parser operated continuously for
5 h to extract 50 artifact pairs. Upon thorough analysis of these
collected pairs, all authors concurred that the collected artifact
pairs exemplify representative migration cases from log4j to
s1f4j and agreed on the corpus size. As OpenRewrite works
with source code, we manually linked the Maven artifacts to

J. Di Rocco et al.

type: specs.openrewrite.org/vlbeta/recipe
name: org.openrewrite.java.logging.s1f4j.Log4jToS1f4]
displayName: Migrate Logdj to SLF4)
description: Migrates usage of ...
tags:
- logging
- s1f4j
- log4j
recipelist:
~ org.openrewrite. java. logging. sLf4].Logdj1ToS1f4j1
- org.openrewrite. java. logging.s1f4j.LoggersNamedForEnclosingClass
- org.openrewrite. java.dependencies.RemoveDependency:
groupId: org.apache.logging. log4j
artifactd: logdj-to-sif4j
- org.openrewrite. java.dependencies.AddDependency:
groupId: org.slf4j
artifactld: slf4j-api
version: latest.release
onlyIfUsing: org.apache.logging.l0gdj.*
- org.openrewrite. java.dependencies. Adddependency:
- org.openrewrite. java.dependencies. AddDependency: -
- org.openrevrite. java.dependencies. AddDependency: -
- org.openrewrite. java.dependencies.ChangeDependency: ~
~ org.openrewrite. java. dependencies. UpgradeDependencyVersion:
- org.openrewrite. java. es.

(al) OpenRewrite rule for migrating depe-

fersion:

dencies

Information and Software Technology 177 (2025) 107588

89 type: specs.openrewrite.org/vibeta/recipe

90 name: org.openrewrite.java.logging.s1f4j.Log4j2ToS1f4j1

91 displayName: Migrate Logdj 2.x to SLF4) 1.x

92 description: Transforms usages of Logdj 2.x to leveraging SLF4J 1.x directly.

Note, this currently does not modify “logdj.properties’ files.

93 tags:

9 - logging

95 - sif4j

9% - logdj

97 recipeList:

98 - org.openrewrite. java.ChangeType:

9 oldFullyQualifiedTypeNane: org.apache.logging.logdj.LogManager
newFullyQualifiedTypeNane: org.slf4j.LoggerFactory

~ org.openrewrite. java, ChangeMethodNane:
methodPattern: org.apache. logging.logd].Logger fatal(..)
newMethodName: error

- org.openrewrite. java.ChangeMethodName:
methodPattern: org.apache. logging. logd].Category fatal(..)
newttethodNane: error

- org.openrewrite. java.ChangeType:
oldFullyQualifiedTypeNane: org.apache.logging. log4j.Logger
newFullyQualifiedTypeNane: org.slf4j.Logger

- org.openrewrite. java. logging. s1f4] .ParaneterizedLogging

- org.openrewrite. java. 0gging. ChangeLombokLogAnnotat ion

‘(b) OpenRewrite rule for migrating code

11

Fig. 9. Migration rules with OpenRewrite.

the corresponding version control system repositories. Since each
specific code version needs to be linked onto the Maven artifact
version, we had to filter out five projects as it was impossible
to identify the version control system storing the source code.
Furthermore, five non-Maven Grabie and ANT projects were re-
moved. Among 40 migrations, OpenRewrite could not perform
eleven of them: Three failed because of old Java versions (older
than Java 1.8), while eight migrations were aborted because of
missing dependencies or plugins. We obtained a set of clients for
the experiments, as shown in Table 4. For each client shown in
Table 4, the considered initial and target versions are reported in
columns V; and V,, respectively. The number of files that have
been changed by OpenRewrite and DeepMig during migrations
are reported in columns #OpenRewrite files and #DeepMig files,
respectively. The number of files in the ground-truth, i.e., those
that must be changed during the migrations are reported in the
last column of the table.

Code migration D and D . The dataset D¢ contains clients
with migrations. Starting from the top-popular artifacts,'* MDG
was used to find as many as possible update pairs {c,,c,) where
AL o) # @ and RLi o) # @. This constraint allows us to mine
update pairs that simulate possible migrations. Though we cannot
assert that the update pairs are voluntary library migrations, they
can include new and removed API calls. Eventually, LB PARSER
collected 3699 update pairs counting 16,850 migration pairs. To
understand the impact of frequent definitions on DeepMig, D is
extracted from D consisting of 3953 pairs where each definition
occurs in at least 10 extracted clients.

4.4. Settings and metrics

Concerning the DeepMig hyperparameters, we considered the vo-
cabulary_size (i.e., the total number of unique tokens that the
model’s embedding layer can handle), the sequence_length (i.e., the
length of the input sequences that the model processes in each training
step), and the batch_size (i.e., the number of training examples
used in one forward/backward pass of the model). To ensure the robust-
ness and validity of our Transformer model in practical applications, we
set the hyperparameters as follows: a vocabulary_size of 1500, a
sequence_length of 20, and a batch_size of 64. These settings
were chosen based on their demonstrated effectiveness in balancing
computational efficiency with model performance [8,44], which is
crucial for real-world deployment.

Concerning the automated evaluation, we employed the ten-fold
cross-validation methodology [45] so that we could test the approaches
on the entire dataset and not on a (randomly chosen) test set.

19 https://mvnrepository.com/popular

10

Similarly to recent work [46], we consider Success rate, Precision,
Recall, and the Levenshtein edit distance [47] to evaluate the results.

» For a testing project/definition t, the target set of TPLs, or the
migrated definitions is called ground-truth data GT(t).

* REC(t) is the list of recommended TPLs/API calls for the testing
project/definition t;

 match(t) = GT(t)[| REC(1) is the set of items in the recommended
list that match with the ground-truth data.

We perform the evaluation of DeepMig and compare it with the

baselines using the following metrics [46].

* Success rate. Given a set of T testing projects/definitions, this
metric measures the rate at which a recommendation engine can
return at least a match among the recommended TPLs/API calls
for every testing instance ¢ € T. Success rate only evaluates how
a model can provide a minimum number of matches, and thus
it gives a rough reflection of the results, without saying how
accurate the model is. This is why we require other metrics, as
explained below.

Precision and Recall. Precision P is the ratio of items matching
with the ground-truth data to the total number of recommended
items; i.e., N; recall R is the ratio of items that match with the
ground-truth data to the total number of ground-truth items.
Levenshtein distance. The Levenshtein edit distance [47] be-
tween two strings s; and s, counts the minimum number of
insertions, deletions, and replacements (weighting 2) to obtain
the second string from the first one [48]. This metric is used
to measure the similarity between two sequences of artifacts.
The distance between s; and s, corresponds to the number of
substitutions needed to transform s, to s,, defined as follows.*®

max(i, j) if min(4,j)=0,
Ly o G.j)= Ly s(=L+1 (€]
51,80 \Fs min le,sz G, j=D+1 otherwise.
Ly ,(i—-1j+D+1

In the evaluation, we measured the percentage of the testing in-
stances for which the Levenshtein distance is equal to zero, i.e., when
the recommended sequence and the ground-truth one perfectly match
with each other, and we refer to this percentage as p; .

5. Results

We analyze the experimental results obtained from the evaluation
by answering the research questions in Section 4.1.

20 https://dzone.com/articles/the-levenshtein-algorithm-1

https://mvnrepository.com/popular
https://dzone.com/articles/the-levenshtein-algorithm-1

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Table 4
Clients migrating from 10g4j to 81£4j used for comparing DeepMig and OpenRewrite.
D Client v v, # OpenRewrite files # DeepMig files #GT files
Cl ai.api:libai 1.4.9 1.5.10 2 2 2
Cc2 au.csiro:snorocket-core 2.6.0 2.7.0 9 9 9
c3 be.objectify:objectify-led 1.0.1 1.2 4 3@ 4
Cc4 ca.carleton.gcrc:nunaliit2-adhocQueries 2.0.1 2.0.2 2 2 2
Cc5 ca.carleton.gcre:nunaliit2-auth-cookie 2.0.1 2.0.2 2 2 2
Cc6 ca.carleton.gcrc:nunaliit2-auth-http 2.0.1 2.0.2 4 4 4
c7 ca.carleton.gcrc:nunaliit2-contributions 2.0.1 2.0.2 5 5 5
c8 ca.carleton.gcre:nunaliit2-dbSec 2.0.1 2.0.2 3© 4 4
Cc9 ca.carleton.gcrc:nunaliit2-dbWeb 2.0.1 2.0.2 1 1 1
Cc10 ca.carleton.gcre:nunaliit2-jdbe 2.0.1 2.0.2 1 1 1
Cl1 ca.carleton.gcre:nunaliit2-multimedia 2.0.1 2.0.2 13 13 13
C12 ca.carleton.gcrc:nunaliit2-onUpload 2.0.1 2.0.2 3 3 3
C13 ca.carleton.gcrc:nunaliit2-progress 2.0.1 2.0.2 2 2 2
Cl4 ca.carleton.gcre:nunaliit2-search 2.0.1 2.0.2 2 2 2
C15 ca.carleton.gcre:nunaliit2-upload 2.0.1 2.0.2 3 3 3
Cl6 ca.carleton.gcrc:nunaliit2-utils 2.0.1 2.0.2 1 1 1
C17 com.aerse:uploader 1.14 1.15 3 3 3
C18 com.llsfw:1lsfw-core 2.2-RELEASE 2.3.1-RELEASE 11© 32 32
C19 com.ning:metrics.goodwill-access 0.1.3 0.1.4 3 1@ 1
C20 com.omertron:fanarttvapi 1.4 1.5 7 3@ 7
c21 com.omertron:themoviedbapi 3.3 3.4 42 39@-© 42
Cc22 com.omertron:traileraddictapi 1.4 1.5 5 3@ 5
c23 com.pubnub:pubnub 3.4 3.5.4 o 2 2
C24 net.anotheria:moskito-cdi 2.2.5 2.5.5 2 2 2
C25 org.apache.httpcomponents-client-rel 5.0-alpha2 5.0-betal 10 4@ 10
C26 org.apache.whirr:whirr-core 0.5.0-incubating 0.6.0-incubating 5 2@ 5
c27 org.codemonkey.simplejavamail:simple-java-mail 2.1 2.2 1 1 1
c28 org.jscsi:target 2.2 2.4 17 16@ 17
C29 uk.co.jemos.podam:podam 5.5.1.RELEASE 6.0.2.RELEASE 7 5 7
Total 170 170 191

(a) There are missing files as method signatures changed, e.g., the impacted method declarations have been renamed, moved, or removed; (b) OpenRewrite is not able to migrate
Java files that do not belong to standard maven/gradle project structure; (c) It missed some Java files. By manually inspecting the code, we discovered that these files should be
migrated; (d) OpenRewrite migrated unused imports. This means that the source code of these files does not invoke any log4j API call; (e) OpenRewrite also migrated test classes

not included in the deployed jar, thus Code Analyzer cannot recognize these impacts.

Table 5
Number of papers for the related topics.
GOAL SBJ REC TOOL
2,148 869 3,432 1,755
GOAL U SBJ U REC U TOOL
39

5.1. RQ,: How well does DeepMig perform in migrating libraries?

Searching for suitable baselines. The process described in Sec-
tion 4.2.1 resulted in a corpus of 39 papers. After carefully reading
the titles and abstracts of the resulting work, we selected 14 papers
that appeared to propose approaches for dealing with the challenge
of library migration. Finally, these papers are examined to identify
potential baselines for comparison with DeepMig, and are reported as
Table 5.

Moller and Torp [49] developed a model-based variant of type
regression testing to find breaking changes by automatically generating
tests from a reusable API model. This is not related to library migration
as DeepMig does. SoftMon [50] is built on top of NLP techniques to
compare the codebases of two separate applications to locate the exact
set of functions that are disproportionately responsible for differences
in performance. SoftMon was not conceived to migrate third-party
libraries, and thus, it cannot be used as a baseline for the evaluation
of DeepMig.

Chen et al. [51] presented an unsupervised deep learning-based ap-
proach to embed both API usage semantics and API description (name
and document) semantics into vector space for mapping API between
third-party libraries. Based on deep learning models trained using tens
of millions of API call sequences, method names and comments of
2.8 million methods from 135,127 GitHub projects, the proposed tool

11

obtains better performance than the baseline, i.e., a deep learning
or traditional information retrieval (IR) methods for inferring likely
analogical APIs.

Ochoa et al. [52] proposed an extended version of the japicmp tool,
called Maracas, to detect breaking changes (BCs) between two versions
of a TPL. To this end, the approach performs static analysis on the Java
bytecode by considering a large corpus of Maven artifacts. Even though
Maracas is similar to DeepMig, the tool is focused on identifying BCs
rather than applying the actual migration.

In our prior work [8], we developed DeepLib to recommend TPL
upgrading. The system analyzes migration history from several projects
and predicts a set of future versions, leveraging long short-term mem-
ory recurrent networks. This is different from what is provided by
DeepMig, whose recommendations contain both upgrading and migra-
tion.

Ponta et al. [53] introduced an approach to the identification,
assessment, and mitigation of vulnerabilities in open-source software.
Their approach takes a code-centric perspective and merges static
and dynamic analyses to evaluate the accessibility of vulnerable seg-
ments within libraries employed by an application, whether directly
or indirectly. By considering the usage context, the approach provides
developers with valuable support in making informed decisions regard-
ing non-vulnerable library versions. In the end, the approach by [53]
is implemented as a tool named Vulas, that embodies the code-centric
and usage-based methodology. Hence, whenever non-vulnerable library
versions are accessible, an update to one of these versions stands as the
recommended solution to rectify vulnerable application dependencies.
In contrast to DeepMig, Vulas is different as it does not provide support
for recommendations that encompass both the upgrading and migration
aspects simultaneously.

LibHarmo [54] was proposed as an interactive, effort-aware tech-
nique to harmonize inconsistent library versions in Java Maven projects.
LibHarmo’s objective is to propose harmonized versions that require

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

0.59 059 060 062 0.60 058 0.58 0.60 0.60 0.61
For Fo2 Fos Fos Fos Fos For Fos Foo Fio
Fig. 10. RQ,: Success rate on D;.
minimal harmonization efforts by considering factors like the reduction __ Cross validation
R . R . Precision Recall
in the number of calls made to library APIs that experience deletions 100
and modifications in the harmonized version. Similar to the other
presented approaches, LibHarmo does not address the challenge of
migrating from a library to a new one. 0.75
By reviewing the existing studies, we did not encounter any tools

offering the exact type of recommendations provided by DeepMig. goso
Thus, we paid attention to approaches that explicitly contain the word @
“migration” in their name. MigrationAdvisor [5] is the most recent tool,
and it was compared with MigrationMiner [4,34,55] and [24]-two 0.25
well-established baselines. Among others, we noticed that Migration-
Miner can be an eligible tool for the evaluation of DeepMig. Migration- 8.0

Miner is available in two versions, i.e., (i) a demo version accessible
through a website; and (ii) a replication package. The former accepts
an input query and retrieves directly the list of the most promising
libraries. The latter is an offline version and provides a restful back-end.
Since the training data used for the website is hidden, we cannot com-
pare DeepMig with the online version. Next, we tried with the offline
version which requires a local database. To conduct a fair comparison,
using the same amount of input data is necessary. However, this is not
possible as the format of the database is not disclosed. This is further
confirmed when we carefully checked the threats to validity section and
the GitHub documentation of MigrationMiner. Eventually, we conclude
that the comparison with MigrationMiner could not be done by any means.

Summary. By thoroughly investigating the related work, we realize that
there exist no tools that provide both library and code migration together
as DeepMig does. While MigrationMiner is a potential baseline for library
migration, the way it is released prevents us from performing a fair
comparison with DeepMig.

Evaluation using a real-world dataset. To evaluate DeepMig, we
ran it on D;, i.e., the curated dataset for library migration. For this
comparison, we use success rate, precision, and recall as the evaluation
metrics since they have been widely applied for this purpose [8].

The success rate scores obtained DeepMig for all the ten folds are
shown in Fig. 10. Overall, the scores are always greater than 0.50, i.e.,
for Fy;—F(, success rates range from 0.58 to 0.62. This means that
over half of the testing instances get at least a matched library. To
further validate the performance, we consider the precision and recall
scores obtained by DeepMig in Fig. 11. Through a manual analysis of a
selection of recommended migrations, it appears that DeepMig suggests
a larger number of concurrent libraries to be migrated compared to
the libraries that a software project have been actually migrated. The
motivation for this is mostly driven by the higher recall rates compared
to precision.

Answer to RQ,. DeepMig recommends suitable migrations for a complete
set of libraries invoked by a project. More than a half of the projects under
consideration get correct migration for at least a library.

5.2. RQ,: When can DeepMig generate API migration steps comparable to
those recommended by OpenRewrite?

To compare DeepMig and OpenRewrite, we ran them on D¢, (a set
of 29 migrating clients updating from 1ogj to s1£4j), and compared

12

Fig. 11. RQ,: Precision, recall on D, .

their results according to the metrics described in Section 4.4. Two co-
authors of this paper — who have more than 12 years of programming
experience — applied the OpenRewrite pre-defined rules meticulously.
The code migration advised by OpenRewrite for all the clients was in-
dividually analyzed by each evaluator. In case there was inconsistency
in the evaluation, we discussed together to reach a final consensus. A
client is denoted as “rewritten” if its code has been successfully changed
to the modification performed by OpenRewrite.

We counted the number of times OpenRewrite performs an accurate
modification at the same code method where DeepMig recommends an
update. The accuracy of a code change is determined by comparing
each rewritten client with the authentic one downloaded from Maven.
A true positive is recorded when there is an exact match at the signature
level, i.e., both the recommended API and the ground-truth one are
perfectly identical.

At the same time, we experimented DeepMig, i.e., for each trial,
one client was used as a test set, while training data was extracted
from the remaining 28 clients, measuring the performance of every
impacted method. Table 6 reports the average precision and recall
scores plus/minus their standard deviation (SD) for all the considered
clients.?! The table shows that OpenRewrite achieves an ideal perfor-
mance, i.e., the majority of the scores are greater than 0.90, with many
of them reaching 1.0. The performance of DeepMig is lower than that of
OpenRewrite. Only for C26 DeepMig outperforms OpenRewrite, getting
0.87 as precision and recall.

We manually inspected the suggested migrations by DeepMig to un-
derstand which migration scenarios listed in Section 2.2 are supported.
Given the high similarity of 1og4j and s1f4j, there are a few distinct
patterns that have been applied in migrating API function calls. A one-
to-one scenario occurs when directly replacing a single API function,
exemplified by substituting Log4j’s LogManager .getLogger () with
s1f4j’s LoggerFactory.getLogger (). This transition represents a
straightforward equivalence between the two libraries, providing a
clear, direct mapping that maintains the same functionality with min-
imal complexity. Conversely, a many-to-one migration involves consol-
idating multiple operations into a single, more efficient function. For
example, replacing the log4j call log.debug(‘¢..?’.: ’’ + <any>)
with 81f4j’s log.debug(‘‘...’’, <any>) is an example of the

21 An SD equal to 0.00 means that there is only one impacted client.

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Table 6

RQ,: Precision and recall obtained with OpenRewrite (OR) and DeepMig (DM).
Client Cl C2 Cc3 Cc4 Cc5
Approach DM OR DM OR DM OR DM OR DM OR
Precision 0.35 + 0.21 1.00 + 0.00 0.22 + 0.20 0.92 + 0.08 0.50 + 0.00 1.00 + 0.00 0.75 + 0.00 1.00 + 0.00 0.75 + 0.00 1.00 + 0.00
Recall 0.64 + 0.69 1.00 + 0.69 0.32 + 0.36 0.88 + 0.12 0.88 + 0.19 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00
Client c6 c7 C8 (6°] C10
Approach DM OR DM OR DM OR DM OR DM OR
Precision 0.75 + 0.00 1.00 + 0.00 0.37 + 0.31 0.96 + 0.08 0.44 + 0.21 1.00 + 0.00 0.75 + 0.00 1.00 + 0.00 0.57 + 0.00 1.00 + 0.00
Recall 1.00 + 0.00 1.00 + 0.00 0.43 + 0.40 0.94 + 0.12 0.48 + 0.36 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 0.68 + 0.16 1.00 + 0.00
Client Cl1 C12 C13 Cl4 C15
Approach DM OR DM OR DM OR DM OR DM OR
Precision 0.67 + 0.11 1.00 + 0.00 0.23 + 0.35 1.00 + 0.00 0.37 + 0.53 1.00 + 0.00 0.62 + 0.18 1.00 + 0.00 0.67 + 0.14 1.00 + 0.00
Recall 0.98 + 0.07 1.00 + 0.00 0.27 + 0.48 1.00 + 0.00 0.50 + 0.70 1.00 + 0.00 0.80 = 0.28 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00
Client C16 C17 C18 C19 C20
Approach DM OR DM OR DM OR DM OR DM OR
Precision 0.75 + 0.00 1.00 + 0.00 0.44 + 0.10 1.00 + 0.00 0.36 + 0.13 1.00 + 0.00 0.50 + 0.00 1.00 + 0.00 0.58 + 0.12 1.00 + 0.00
Recall 1.00 + 0.00 1.00 + 0.00 0.83 + 0.28 1.00 + 0.00 0.42 + 0.28 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 0.97 + 0.04
Client C21 Cc22 Cc23 C24 C25
Approach DM OR DM OR DM OR DM OR DM OR
Precision 0.52 + 0.09 0.99 + 0.02 0.30 + 0.27 1.00 + 0.00 0.50 + 0.00 0.87 + 0.18 0.00 + 0.00 1.00 + 0.00 0.56 + 0.21 1.00 + 0.00
Recall 0.86 + 0.16 0.99 + 0.01 0.60 + 0.54 0.98 + 0.01 0.50 + 0.00 0.83 + 0.23 0.00 + 0.00 1.00 + 0.00 0.73 + 0.31 1.00 + 0.00
Client C26 Cc27 C28 C29
Approach DM OR DM OR DM OR DM OR
Precision 0.87 + 0.18 0.32 + 0.55 0.50 + 0.00 1.00 + 0.00 0.47 + 0.08 1.00 + 0.00 0.40 + 0.14 1.00 + 0.00
Recall 0.87 + 0.17 0.26 + 0.46 1.00 + 0.00 1.00 + 0.00 0.93 + 0.17 1.00 + 0.00 0.73 = 0.36 1.00 + 0.00

many-to-one scenario. This migration not only replaces the logging
function but also integrates string concatenation into the logging frame-
work’s variable substitution mechanism, reducing the need for explicit
string operations and enhancing performance.

We explain the low accuracy of DeepMig by the data availability.
Essentially, while OpenRewrite does not need any data for training as it
relies only on fixed migration rules, DeepMig is highly dependent on ex-
isting updating API definitions from the training clients. Computing the
Spearman’s rank correlation coefficient index, we obtained p,=0.1610
with p-value=0.018 and pz = 0.3149 with 2.589¢~ for the correlation
between the frequency of occurrences of the testing definitions and
the obtained precision and recall scores, respectively. This indicates
that there is a positive correlation between the amount of available
training data and DeepMig’s performance, i.e., the more data there is,
the better accuracy DeepMig can gain. In this respect, we conclude that
the recommendations provided by DeepMig will be improved if it is
trained with more input data, covering several migration steps.

Answer to RQ,. In general, OpenRewrite works better compared to
DeepMig, recommending more relevant migrations. Nevertheless, DeepMig
can obtain a comparable recommendation when there is enough data
available for learning.

a context window of 8 K tokens.”? Remarkably, we observed that
in one case, ChatGPT provides the wrong migration for the project
com.aerse:uploader:1.15, i.e., it suggests Apache http instead of
s1f4j. Our intuition is that the peculiar context of the project leads to
this erroneous generation. Thus, the active context plays an important
role and needs to be carefully selected before querying the LLM.
Notably, the recall score is negatively affected by a high number
of FN. By carefully investigating those cases, we realize that Chat-
GPT migrates several slf4j using string formatting. For instance, the
function logger.error(‘‘Unable to parse image conversion
threshold: ’’ + s); is migrated with logger.error(‘ ‘Unable to
parse image conversion threshold: ’’, s);.On the one hand,
this is not a disruptive change since the semantics is not affected. On
the other hand, developers’ code that belongs to our ground-truth is
not adopting such refactoring. Therefore, we mark this case as an FN
in the scope of this evaluation.

Answer to RQ;. Our experiment shows that ChatGPT is capable of
supporting the considered migration scenarios with high precision, albeit
with low recall scores by various configurations. Moreover, it has some
certain limitations in handling the application context due to the limited
token window and decompiling issues.

5.3. RQ;: What are the applicability and limitations of using ChatGPT for
API migration?

Using the same dataset in the previous research question, we inves-
tigate the capabilities of ChatGPT (with its GPT-4 model) to perform
the same task covered by DeepMig and OpenRewrite. Similar to what
was done before, we compute the metrics outlined in Section 4.4 using
the evaluation process described in Section 4.2.2. Table 7 summarizes
the obtained results. Overall, ChatGPT is able to perform the requested
migration in most of the cases, i.e., the precision is equal to 1.00 for
the majority of the examined clients. Nevertheless, the recall scores
are low by various configurations, e.g., C8, C13, and C14 (to name
a few), with a recall below 0.60. Moreover, we notice that ChatGPT
fails in generating the migrated class for some client projects, i.e.,
C2, C25, C26, and C28. This is related to the number of tokens that
ChatGPT can process for a single prompt, i.e., the GPT-4 model has

13

5.4. RQ,: How can DeepMig improve its performance?

The results in RQ, indicate that while OpenRewrite outperforms
DeepMig, our proposed approach can provide comparable recommen-
dations to those of OpenRewrite for some clients. Nevertheless, the
results achieved by DeepMig are considerably low in different testing
instances. We conjecture that this happens due to the lack of training
data. DeepMig requires API calls useful to the development scenario
with code migration. Therefore, this research question analyzes under
which conditions DeepMig can enhance its accuracy.

We evaluated DeepMig using D¢ and D, . The former is a diverse
dataset, as it contains migrations from several clients, while the latter
is a subset of D with more frequent definitions. The use of these datasets

22 https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

J. Di Rocco et al.

Table 7
Precision and Recall scores obtained with the migrations performed by ChatGPT.

Information and Software Technology 177 (2025) 107588

Client ID # migrations TP l FP l FN I Prec l Recall
c1 2 2 | 0 | 1 | 1.00 | 0.67
Cc2 0 ChatGPT is not able to provide any migrated code
c3 8 6 0 2 1.00 0.75
c4 5 5 0 0 1.00 1.00
C5 4 4 0 0 1.00 1.00
C6 15 9 0 6 1.00 0.60
c7 10 8 0 2 1.00 0.80
c8 4 3 0 7 1.00 0.30
co 1 1 0 0 1.00 1.00
C10 3 3 0 0 1.00 1.00
c11 20 12 0 B 1.00 0.60
c12 3 3 0 0 1.00 1.00
c13 4 2 0 2 1.00 0.50
Cl4 4 2 0 2 1.00 0.50
C15 7 4 0 3 1.00 0.57
Cl6 2 1 0 1 1.00 0.50
c17 7 4 2 1 0.67 0.80
c18 20 10 0 10 1.00 0.50
C19 3 3 0 0 1.00 1.00
€20 4 1 2 1 0.33 0.50
c21 27 27 0 0 1.00 1.00
C22 13 3 0 10 1.00 0.23
c3 6 2 0 4 1.00 0.33
C24 2 2 0 0 1.00 1.00
C25 0 ChatGPT is not able to provide any migrated code
C26 0 ChatGPT is not able to provide any migrated code
c27 2 1 0 [1 [1 [0.50
C28 0 ChatGPT is not able to provide any migrated code
C29 8 6 [0 [2 [1 [0.75
Answer to RQ,. When it is fed with migrations executed by a large number
- of clients, DeepMig substantially improves its prediction, getting a perfect

0.94-000.94 910.94-000.93-00.94.00 94.00(94.00¢ 9400 94.000.98.99 match for several testing instances.

V/ Z V/ Z Z 7 V V % 7

AL LT

% % % % % % % é % % 6. Discussion

T T30 T30 0 0 50 T30 D % %

For Fos Fos Foi Fos Foo For Fos Foo Fio We discuss the main characteristics of DeepMig, including its lim

Fig. 12. RQ,: Success rate for D.

is to study the impact of frequently seen training data on the final
performance. The success rate scores for all the ten folds, i.e., Fy;-Fqq,
are shown in Fig. 12. DeepMig achieves very good performance across
all the testing folds, i.e., the success rate scores for D are always larger
than 0.93. This means that almost all the testing instances get at least a
matched API Such a performance is further improved with D¢, : Except
for the last fold, DeepMig achieves a success rate of 1.0. »

The precision and recall scores obtained from this experiment are
shown using violin boxplots in Fig. 13. Such diagrams provide a more
informative indication of the distribution’s shape [56], highlighting the
magnitude of the density. On D, the scores in Fig. 13(a) range from
0.75 to 0.95, corresponding to a high prediction accuracy. By D,
the scores in Fig. 13(b) converge to the upper part of the diagram,
and many of them stay close to the 1.0 level, implying an optimal
performance.

Finally, we investigate whether the recommended set of API calls
also matches the ground-truth data with respect to the order in which
they appear. To this end, the percentage of recommendations getting
0 as Levenshtein distance (p;) is computed and shown in Fig. 14. For
D, the scores range from 0.43 to 0.48, implying that nearly half of the
testing definitions achieve a perfect match in the recommendations. p;
is greatly enhanced when we consider D, i.e., apart from Fy,, the
scores are always greater than 0.84, reaching 0.90 as the maximum
value. Altogether, we conclude that DeepMig considerably increases its
performance even on a small dataset but with more frequent defini-
tions (D¢), compared to using a bigger dataset but with less frequent
definitions (D).

itations, and highlight the threats to the validity of the empirical
evaluation we have performed to evaluate DeepMig.

6.1. The feasibility of DeepMig and its limitations

Based on the results of RQ,, we noticed that the performance of
DeepMig is inferior to that of OpenRewrite for several clients in our
test set. This, however, does not harm the benefits of DeepMig. In fact,
we do not try to claim that DeepMig can provide better migration plans
compared to OpenRewrite. Compared to state-of-the-art approaches,
DeepMig has the following benefits:

1. The value of DeepMig lies in its ability to automate the migration,
i.e., without the need to develop any predefined rules. The latter
is a drawback of OpenRewrite as it needs user-defined rewriting
rules for each library migration. More importantly, as shown
in the evaluation, when being fed with enough data, DeepMig
is able to produce comparable recommendations with those of
OpenRewrite. We faced difficulties in curating suitable data for
the training, and this is the main reason why we did not get
very good results with DeepMig on the considered datasets. We
conjecture that if substantial effort is spent to collect data, our
approach will be able to provide more accurate results.

2. Large Language Models (LLMs), including GPT-4, are resource-
intensive, both computationally and financially. In order to train
and test such models, one needs to rely on computing resources,
or rely on third-party APIs, hence, in several scenarios, hav-
ing to cope with privacy concerns. Instead, DeepMig is more
lightweight, therefore both its training and inference require less
resources than LLMs.

DeepMig is data-driven and its prediction capability relies heavily
on (i) the availability; and (ii) the quality of the training data. This

14

J. Di Rocco et al.

Information and Software Technology 177 (2025) 107588

Metric
Precision Recall
1.00- Y
0.75
e
80.50
(]
0.25
0.00-

(b) D¢,

Fig. 13. RQ,: Precision and Recall.

Metric
Precision Recall
1.00-
0.75
o
80.50
(7]
0.25
0.00
(a) D¢
0.86 0.86 090 086 o085 090 089 087 085
0.47. (),46:’180;8 0.47 047 044 043 047 045 0.46
D
00 7 09 % 707
FOI F02 F03 FﬂA FOS FOG F07 FOR FO.Q Fln

Fig. 14. RQ,: Testing instances getting O as Levenshtein (p,).

is confirmed by the outcomes of RQ,, enforcing the view from RQ,:
DeepMig has the potential to boost its performance if it is fed with suit-
able data. Since DeepMig works on top of the Transformer, it properly
captures the relationship among the API calls within a definition. Being
transformer-based, DeepMig might further improve its performance if
it is equipped with well-founded techniques developed for machine
translation. Moreover, as reported in Section 4, we were able to collect
the mapping only for method migrations, thus it can be confirmed
that DeepMig is capable of handling specific categories of migrations,
specifically those involving internal method invocations. The investi-
gation did not include an examination of DeepMig’s ability to execute
various forms of migration, such as those that need modifications to the
client project’s architecture. Although DeepLib does not succeed on the
TPL migration dataset, its potential should not be neglected. The tool
works well with library upgrading [8], and we suppose that a fusion of
DeepLib and DeepMig can be a practical solution to library migration
and upgrading.

Concerning the experiment presented in RQ;, we acknowledge that
ChatGPT, as generic LLMs, can be used to cover the same tasks of Deep-
Mig and OpenRewrite. However, we report the following limitations:

» Fixed context. As discussed in the experiment, ChatGPT and sim-
ilar LLMs have a fixed input context window, which significantly
restricts the amount of code or documentation they can analyze
at one time. This limitation becomes particularly problematic in
projects consisting of more than 10 files, each with hundreds of
lines of code. The LLM cannot load and process huge contexts
effectively, which can result in an incomplete understanding and
subsequent analysis of the project, leading to potentially inac-
curate assessments of impacted classes. We anticipate that this
limitation can be handled by using fine-tuning as done in prior
works [57-59]. We see this as a possible future work.
Decompiling issues. LLMs, like ChatGPT, lack the capability
to decompile code or directly inspect affected classes within a
compiled binary. This inability restricts its use in scenarios where
source code is not directly available or needs to be inferred from
binaries, limiting its applicability in certain legacy systems or
tightly compiled environments.

In this respect, we envision a combined usage of traditional tools
such as DeepMig or OpenRewrite and cutting-edge generative Al mod-
els to overcome the identified issues.

6.2. Threats to validity

We identify the following threats that may affect our findings.

« Threats to construct validity concern the settings used to evaluate
the systems, i.e., if they mimic a real application scenario. To
this aim, we leverage data collected from real cases of migrations
from Maven. Still, testing with data from other open sources
that are popularly used by developers, e.g., GitHub, will help us
further evaluate the considered systems. The selection of DeepLib
as the baseline for TPL migration might be subject to external
validity, i.e., the conclusions may or may not hold for other rec-
ommenders. We could not find any suitable baselines, as the most
probable tools cannot be changed to work with other datasets.
The comparison of DeepMig with OpenRewrite on the migration
pairs from logj to s1f4j may not be valid for other TPL pairs.
We encountered difficulties in collecting data for other migration
pairs supported by OpenRewrite as there are just a few clients
performing them.

Threats to internal validity are the confounding factors that might
have an impact on the results. To compare with OpenRewrite,
we directly executed the migrations through the available open-
source project. This aims to remove any bias during the evalu-
ation. Moreover, we also tried different sets of hyperparameters
for training the Transformer, attempting to simulate real-world
scenarios. In addition, we have performed a thorough analysis for
hyperparameter calibration as explained in Section 4.4. However,
we cannot exclude that there could be values for which Deep-
Mig achieves better performances. Concerning RQ,, the usage of
ChatGPT may lead to incorrect migration due to the discussed
limitations. To mitigate this, three co-authors manually checked
the migration, computed the metrics, and reported any deviation
from the expected output.

Threats to external validity are the generalizability of our results
with respect to additional datasets and programming languages.
In this paper, we evaluated using datasets from Maven, and with
source code written in Java. Our findings may not generalize
to other types of artifacts out of the scope of our evaluation.
Additional work is required to study the feasibility of DeepMig
on other datasets and languages.

7. Related work
This section reviews the most related work by paying attention to
library migration, code migration, and notable applications of trans-

former models in software engineering.

15

J. Di Rocco et al.
7.1. Library upgrading and migration

MigrationHelper [6] is a recent approach to the recommendation
of library migrations. It formulates the task as a mining and ranking
problem. Given a TPL, the system first mines target library candidates
and then ranks them according to a combination of different designed
metrics. SimilarAPI [60] employs an unsupervised RNN to recommend
mapping between Java libraries by employing an API knowledge base
extracted from GitHub repositories. Such data feeds the underpinning
network to predict a ranked list of possible mappings given an initial
TPL. [61] proposed EvoPlan, a system to provide upgrade plans for
TPLs. EvoPlan exploits the experience of other projects that performed
similar migrations to recommend the plan to consider when upgrad-
ing the current version to a more stable one. Similarly to EvoPlan,
DeepLib [8] was conceived to recommend TPL upgrading. The system
analyzes migration history from several projects and predicts a set of
future versions, leveraging long short-term memory recurrent networks.
SemDiff [62] is a tool that recommends adaptive changes at the API
level. The system first analyzes the set of changes that have been per-
formed in terms of methods by identifying the operations, e.g., deletion
of methods. Afterward, a source repository was built to store the chain
of method calls. SemDiff eventually exploits such data to adapt the
underpinning project by considering the discovered API changes.

AURA [63] (AUtomatic change Rule Assistant) is an approach that
combines text similarity with call dependency detection strategy to
adapt a client project to a set of changes. Being built on top of a multi-
iteration algorithm, the approach generates changing rules to apply the
discovered changes.

LibSync [64] exploits graph-based data structures to identify and
update APIs of two different library versions. Given the input project,
the system identifies the map between the two APIs and retrieves the
corresponding code snippets. Then, the graph-based representation is
employed to capture the mutual relationships. Finally, LibSynch makes
use of the learned adaptation patterns to recommend the locations and
edit operations for adapting API usage.

Differently from DeepMig, these approaches do not recommend
replacing a complete set of TPLs.

7.2. Automated approaches to support API migration

MigrationMiner [34] is an automated tool to detect code migrations
between two Java TPLs. Given a project, it discovers any migration
performed between the two TPLs and returns a collection of code
changes, plus a set of related API documentation. Differently from
DeepMig, MigrationMiner produces a list of code changes in a human-
readable fashion. The code changes are not automatically performed:
This task is left to the developer.

RAPIM [4] relies on semantic similarity to suggest method map-
pings during migration. The system employs text engineering tech-
niques combined with SVM model to predict valid mappings given a
pair of TPLs. M3 [65] supports the semantic-based migration of C li-
braries employing behavioral models. The CAnDL language is employed
to discover patterns and apply API constraints to perform the actual
migration. APIMigrator [16] exploits information in the mobile app’s
codebase to migrate API usage in Android apps. Given a target app and
its description, the tool searches for the corresponding migration exam-
ples and transforms them into generic patches, which are eventually
applied to perform the required migration using differential testing.

Patternika [66] is a practical solution to the automatic migration
of APIs. The tool follows four main tasks: it mines AST-based patterns
from library migration samples, automatically filters out irrelevant
ones, manually creates and modifies migration patterns, and finally
automatically applies patterns to patch the source code. SOAR [35]
combines NLP models trained over API documentation with program
synthesis to migrate and refactor APIs automatically. Patternika [66] is
a practical solution to the automatic migration of APIs. The tool follows

16

Information and Software Technology 177 (2025) 107588

four main tasks: it mines AST-based patterns from library migrations
samples, automatically filters out irrelevant ones, manually creates and
modifies migration patterns, and finally automatically applies patterns
to patch the source code. The migration capability was validated by
testing different libraries, e.g., s1£4j to 1log4j, or java.utils to
s1f4j, to cite a few. [36] employed two tools produced by Google,
i.e., Error Prone and Refaster to refactor Java programs. To prove the
approach’s feasibility, the authors successfully migrated RxJava code
to Reactor with a method coverage of 99%. DeepMig is different from
these aforementioned approaches as it can provide API migrations at
the definition level by taking into consideration the related TPLs in a
cohesive manner. Both SOAR [35] and [36] cannot perform migration
at the method level. A comparison with OpenRewrite demonstrated
that DeepMig can generate comparable migration plans.

7.3. Application of transformer models in software engineering.

Recently, Transformer has gained traction from the SE community,
being used in different tasks [67-69].

Mastropaolo et al. [57] investigate the usage of the T5 model to
support four different SE tasks, i.e., automatic bug-fixing, injection
of mutants, generation of assert statement, and code summarization.
To enable such multi-task learning, the authors first preprocess four
different datasets to fine-tune the original T5 model. Afterward, the
overall performance of the enhanced model was been increased by
varying the learning rate. The results show that the T5 is capable of
outperforming existing baselines in each considered task.

Specifically designed for Python language, PYMT5 [70] is a text-
to-text transfer transformer that predicts methods from natural lan-
guage descriptions and summarizes code into docstrings. After a pre-
training phase, the approach exploits the CodeT5 model to generate
both method signatures and bodies.

IntelliCode Compose [71] exploits transformers to support multilin-
gual code completion using a pre-trained multilayer generative model,
namely GPT-C. First, the source code is encoded as a sequence of
tokens by using a custom parser to create a vocabulary. Then, the
model training is computed offline by exploiting a tailored data-parallel
implementation to generate snippets of code. IntelliCode decodes the
predicted sequences and generates snippets of code belonging to dif-
ferent languages, i.e., Javascript, Python, Typescript, and Javascript.
Similarly, [72] present TravTrans, a GPT-2 transformer model that
analyzes the syntactic structure to perform automated code comple-
tion. The system is capable of extracting path-based relations from
the sequence of code tokens, thus predicting relevant code elements
given an active context. A Transformer-Based Code Classifier (TBCC)
was proposed to categorize code snippets by splitting the whole AST
into multiple sub-trees [73]. The underpinning network makes use of
attention mechanisms to (i) classify code snippets written in C; and (ii)
detect software clones in Java snippets.

The most relevant work to DeepMig is CodeGen4Lib [74]. It has
been proposed to support the generation of third-party libraries from
the natural language description of the task. To this end, the approach
generates two different types of library-related artifacts i.e., the import
and the corresponding code snippets. To support the former type, the
system exploits the BM25 information retrieval algorithm by relying on
the initial query. The latter has been covered by using the CodeT5 trans-
former model. The automated evaluation confirms that CodeGen4Lib is
suitable for generating high-quality code coherent with the generated
libraries.

Overall, we can see that while transformer models have been ap-
plied in different domains, its applications in Software Engineering are
still in their infancy. To the best of our knowledge, DeepMig is the first
tool that employs a transformer model to recommend library and code
migration.

J. Di Rocco et al.
8. Conclusion and future work

This paper presented a framework, named DeepMig, that supports
the combined migration of Third-Party Libraries (TPLs) and API meth-
ods. Based on a literature review, we found that DeepMig is the
first approach capable of recommending dual migration to software
projects.

We have conducted an empirical evaluation aimed at assessing the
recommendation performances achieved by DeepMig. The empirical
study results show that:

. DeepMig can recommend both TPL and API migration, providing
developers with a practical tool to migrate entire projects.

. On the evaluation dataset, over 50% of the studied projects get
a correct migration for at least a library.

. When being compared with a state-of-the-art tool OpenRewrite,
DeepMig is outperformed by DeepMig for most of the clients
because of the limited training available.

. However, if the training set is enlarged, DeepMig is able to
achieve nearly perfect predictions.

For future work, we plan to evaluate DeepMig with data coming
from other ecosystems such as GitHub. Moreover, in the evaluation
reported in this paper, we managed to collect the mapping only for
method migrations. Therefore, we could only confirm that DeepMig
can deal with this type of migration. We will investigate whether
DeepMig can be applied to other types of migration. Moreover, we plan
to investigate the applicability of DeepMig to different programming
languages, given that they make available a tailored package manager.
For instance, we can extend it to Python, for which we intend to support
PyPI,%* a premier Python library repository hosting over 500,000 third-
party open-source packages and over 5,000,000 of library versions.
We aim to crawl the most popular packages and analyze their inter-
dependent relationships to assess the feasibility and effectiveness of
our methodology in diverse ecosystems. Last but not least, we plan
to improve the recommendation engine with other advanced machine
translation techniques, e.g., investigate the combination of traditional
techniques with LLMs, mitigating existing issues highlighted in both
approaches.

CRediT authorship contribution statement

Juri Di Rocco: Writing - original draft, Validation, Software, Method-
ology, Data curation, Conceptualization. Phuong T. Nguyen: Writing
- review & editing, Writing — original draft, Supervision, Methodology,
Investigation, Formal analysis, Conceptualization. Claudio Di Sipio:
Writing — original draft, Validation, Software, Data curation. Riccardo
Rubei: Writing — original draft, Validation, Software, Methodology,
Data curation. Davide Di Ruscio: Writing — review & editing, Writing
— original draft, Supervision, Methodology, Investigation, Funding ac-
quisition, Conceptualization. Massimiliano Di Penta: Writing — review
& editing, Writing — original draft, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The used data are available on Github.

23 https://pypi.org/

17

Information and Software Technology 177 (2025) 107588

Acknowledgments

This work has been partially supported by the EMELIOT national
research project, which has been funded by the MUR under the PRIN
2020 program (Contract 2020W3A5FY). The work has been also par-
tially supported by the European Union-NextGenerationEU through the
Italian Ministry of University and Research, Projects PRIN 2022 PNRR
“FRINGE: context-aware FaiRness engineerING in complex software sys-
tEms” grant n. P2022553SL. We acknowledge the Italian “PRIN 2022”
project TRex-SE: “Trustworthy Recommenders for Software Engineers”,
grant n. 2022LKJWHC. We thank the anonymous reviewers for their
valuable comments and suggestions that helped us improve the paper.

References

[1] R.G. Kula, D.M. German, A. Ouni, T. Ishio, K. Inoue, Do developers update
their library dependencies?: An empirical study on the impact of security
advisories on library migration, Empir. Softw. Eng. 23 (1) (2018) 384-417,
http://dx.doi.org/10.1007/s10664-017-9521-5.

C. Vendome, M.L. Véasquez, G. Bavota, M. Di Penta, D.M. Germén, D. Poshy-
vanyk, When and why developers adopt and change software licenses, in: 2015
IEEE International Conference on Software Maintenance and Evolution, ICSME
2015, Bremen, Germany, September 29 - October 1, 2015, 2015, pp. 31-40,
http://dx.doi.org/10.1109/ICSM.2015.7332449.

C. Vendome, D.M. German, M. Di Penta, G. Bavota, M.L. Vasquez, D. Poshy-
vanyk, To distribute or not to distribute?: why licensing bugs matter, in:
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 268-279,
http://dx.doi.org/10.1145/3180155.3180221.

H. Alrubaye, M.W. Mkaouer, I. Khokhlov, L. Reznik, A. Ouni, J. Mcgoff, Learning
to recommend third-party library migration opportunities at the API level, Appl.
Soft Comput. 90 (2020) 106-140.

H. He, Y. Xu, X. Cheng, G. Liang, M. Zhou, MigrationAdvisor: Recommend-
ing library migrations from large-scale open-source data, in: 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Pro-
ceedings, ICSE-Companion, 2021, pp. 9-12, http://dx.doi.org/10.1109/ICSE-
Companion52605.2021.00023.

H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, M. Zhou, A multi-metric ranking approach
for library migration recommendations, in: 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER, 2021, pp. 72-83,
http://dx.doi.org/10.1109/SANER50967.2021.00016.

C. Teyton, J.-R. Falleri, X. Blanc, Automatic discovery of function mappings
between similar libraries, in: 2013 20th Working Conference on Reverse En-
gineering, WCRE, 2013, pp. 192-201, http://dx.doi.org/10.1109/WCRE.2013.
6671294,

P.T. Nguyen, J. Di Rocco, R. Rubei, C. Di Sipio, D. Di Ruscio, DeepLib: Machine
translation techniques to recommend upgrades for third-party libraries, Expert
Syst. Appl. 202 (2022) 117267, http://dx.doi.org/10.1016/j.eswa.2022.117267,
URL https://www.sciencedirect.com/science/article/pii/S0957417422006388.

E. Derr, S. Bugiel, S. Fahl, Y. Acar, M. Backes, Keep me updated: An empirical
study of third-party library updatability on android, in: B.M. Thuraisingham, D.
Evans, T. Malkin, D. Xu (Eds.), ACM Conference on Computer and Communi-
cations Security, ACM, 2017, pp. 2187-2200, URL http://dblp.uni-trier.de/db/
conf/ccs/ces2017.html#DerrBFA017.

Y. Duan, L. Gao, J. Hu, H. Yin, Automatic generation of non-intrusive updates for
third-party libraries in android applications, in: 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District,
Beijing, China, September 23-25, 2019, USENIX Association, 2019, pp. 277-292,
URL https://www.usenix.org/conference/raid2019/presentation/duan.

J. Huang, N. Borges, S. Bugiel, M. Backes, Up-to-crash: Evaluating third-party
library updatability on android, in: 2019 IEEE European Symposium on Security
and Privacy, EuroS P, 2019, pp. 15-30, http://dx.doi.org/10.1109/EuroSP.2019.
00012.

J. Visser, A. van Deursen, S. Raemaekers, Measuring software library stability
through historical version analysis, in: Proceedings of the 2012 IEEE International
Conference on Software Maintenance, ICSM ’12, IEEE Computer Society, USA,
2012, pp. 378-387, http://dx.doi.org/10.1109/I1CSM.2012.6405296.

Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, Y. Liu, An empirical
study of usages, updates and risks of third-party libraries in java projects, in:
2020 IEEE International Conference on Software Maintenance and Evolution,
ICSME, 2020, pp. 35-45, http://dx.doi.org/10.1109/ICSME46990.2020.00014.
A. Decan, T. Mens, E. Constantinou, On the impact of security vulnerabilities in
the npm package dependency network, in: Proceedings of the 15th International
Conference on Mining Software Repositories, MSR ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 181-191, http://dx.doi.org/10.1145/
3196398.3196401.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

https://pypi.org/
http://dx.doi.org/10.1007/s10664-017-9521-5
http://dx.doi.org/10.1109/ICSM.2015.7332449
http://dx.doi.org/10.1145/3180155.3180221
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb4
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb4
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb4
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb4
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb4
http://dx.doi.org/10.1109/ICSE-Companion52605.2021.00023
http://dx.doi.org/10.1109/ICSE-Companion52605.2021.00023
http://dx.doi.org/10.1109/ICSE-Companion52605.2021.00023
http://dx.doi.org/10.1109/SANER50967.2021.00016
http://dx.doi.org/10.1109/WCRE.2013.6671294
http://dx.doi.org/10.1109/WCRE.2013.6671294
http://dx.doi.org/10.1109/WCRE.2013.6671294
http://dx.doi.org/10.1016/j.eswa.2022.117267
https://www.sciencedirect.com/science/article/pii/S0957417422006388
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017
https://www.usenix.org/conference/raid2019/presentation/duan
http://dx.doi.org/10.1109/EuroSP.2019.00012
http://dx.doi.org/10.1109/EuroSP.2019.00012
http://dx.doi.org/10.1109/EuroSP.2019.00012
http://dx.doi.org/10.1109/ICSM.2012.6405296
http://dx.doi.org/10.1109/ICSME46990.2020.00014
http://dx.doi.org/10.1145/3196398.3196401
http://dx.doi.org/10.1145/3196398.3196401
http://dx.doi.org/10.1145/3196398.3196401

J. Di Rocco et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

N. Deshpande, M.W. Mkaouer, A. Ouni, N. Sharma, Search-based third-party
library migration at the method-level, in: J.L. Jiménez Laredo, J.I. Hidalgo,
K.O. Babaagba (Eds.), Applications of Evolutionary Computation, Springer
International Publishing, Cham, 2022, pp. 173-190.

M. Fazzini, Q. Xin, A. Orso, Apimigrator: An API-usage migration tool for android
apps, in: Proceedings of the IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems, MOBILESoft 20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 77-80, http://dx.doi.org/10.1145/
3387905.3388608.

M. Lamothe, W. Shang, Exploring the use of automated API migrating techniques
in practice: An experience report on android, in: Proceedings of the 15th
International Conference on Mining Software Repositories, MSR ’18, Association
for Computing Machinery, New York, NY, USA, 2018, pp. 503-514, http://dx.
doi.org/10.1145/3196398.3196420.

M. Lamothe, W. Shang, When APIs are intentionally bypassed: An exploratory
study of api workarounds, in: 2020 IEEE/ACM 42nd International Conference on
Software Engineering, ICSE, 2020, pp. 912-924.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L.
Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS 17,
Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 6000-6010.

D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to
align and translate, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015, URL http://arxiv.org/abs/1409.0473.

J. Di Rocco, P.T. Nguyen, C. Di Sipio, R. Rubei, D. Di Ruscio, M. Di
Penta, DeepMig: Supporting repository, 2023, https://github.com/MDEGroup/
DeepMig/. (Online; Accessed 31 August 2023).

D.L. Parnas, Information Distribution Aspects of Design Methodology, Tech. rep,
Departement of Computer Science, Carnegie Mellon University, Pittsburgh, 1971.
M.P. Robillard, What makes APIs hard to learn? Answers from developers, IEEE
Softw. 26 (6) (2009) 27-34.

C. Teyton, J.-R. Falleri, X. Blanc, Mining Library Migration Graphs, in: 2012
19th Working Conf. on Reverse Engineering, 2012, pp. 289-298, http://dx.doi.
org/10.1109/WCRE.2012.38.

H. Alrubaye, M.W. Mkaouer, A. Ouni, On the use of information retrieval to
automate the detection of third-party java library migration at the method level,
in: 2019 IEEE/ACM 27th International Conference on Program Comprehension,
ICPC, 2019, pp. 347-357, http://dx.doi.org/10.1109/1CPC.2019.00053.

A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, O. Barais, The maven
dependency graph: a temporal graph-based representation of maven central, in:
2019 IEEE/ACM 16th International Conference on Mining Software Repositories,
MSR, IEEE, 2019, pp. 344-348.

B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M.J. Steindorfer, J.J. Vinju,
M3: A general model for code analytics in rascal, in: 1st International Workshop
on Software Analytics, IEEE, Piscataway, 2015, pp. 25-28, http://dx.doi.org/10.
1109/SWAN.2015.7070485.

J. Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus, Fine-grained and
accurate source code differencing, in: ASE, ACM, 2014, pp. 313-324.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735-1780.

B.A. Kitchenham, P. Brereton, Z. Li, D. Budgen, A.J. Burn, Repeatability of
systematic literature reviews, in: 15th International Conference on Evaluation
& Assessment in Software Engineering, EASE 2011, Durham, UK, 11-12 April
2011, Proceedings, 2011, pp. 46-55, http://dx.doi.org/10.1049/ic.2011.0006.
S.G. MacDonell, M.J. Shepperd, B.A. Kitchenham, E. Mendes, How reliable are
systematic reviews in empirical software engineering? IEEE Trans. Softw. Eng.
36 (5) (2010) 676-687, http://dx.doi.org/10.1109/TSE.2010.28.

C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: M.J. Shepperd, T. Hall, I. Myrtveit
(Eds.), 18th International Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, London, England, United Kingdom, May 13-14, 2014,
ACM, 2014, pp. 38:1-38:10, http://dx.doi.org/10.1145/2601248.2601268.

H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Inf. Softw. Technol. 53 (6) (2011) 625-637.

H. Alrubaye, M.W. Mkaouer, A. Ouni, MigrationMiner: An automated detection
tool of third-party java library migration at the method level, in: 2019 IEEE
International Conference on Software Maintenance and Evolution, ICSME, 2019,
pp. 414-417, http://dx.doi.org/10.1109/ICSME.2019.00072.

A. Ni, D. Ramos, A.Z.H. Yang, I. Lynce, V. Manquinho, R. Martins, C. Le
Goues, SOAR: A synthesis approach for data science API refactoring, in: 2021
IEEE/ACM 43rd International Conference on Software Engineering, ICSE, 2021,
pp. 112-124, http://dx.doi.org/10.1109/ICSE43902.2021.00023.

R. Ossendrijver, S. Schroevers, C. Grelck, Towards automated library migrations
with error prone and refaster, in: Proceedings of the 37th ACM/SIGAPP Sym-
posium on Applied Computing, SAC 22, Association for Computing Machinery,
New York, NY, USA, 2022, pp. 1598-1606, http://dx.doi.org/10.1145/3477314.
3507153.

18

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Information and Software Technology 177 (2025) 107588

A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J.M. Zhang,
Large language models for software engineering: Survey and open problems, in:
2023 IEEE/ACM International Conference on Software Engineering: Future of
Software Engineering (ICSE-FoSE), IEEE Computer Society, Los Alamitos, CA,
USA, 2023, pp. 31-53, http://dx.doi.org/10.1109/ICSE-FoSE59343.2023.00008,
URL https://doi.ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.00008.
D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, B. Myers, Using an LLM
to help with code understanding, in: Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ICSE ’24, Association for
Computing Machinery, New York, NY, USA, 2024, http://dx.doi.org/10.1145/
3597503.3639187.

P. Vaithilingam, T. Zhang, E.L. Glassman, Expectation vs experience: Evaluating
the usability of code generation tools powered by large language models, in:
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing
Systems, in: CHI EA ’22, Association for Computing Machinery, New York, NY,
USA, 2022, http://dx.doi.org/10.1145/3491101.3519665.

J. Liu, C.S. Xia, Y. Wang, L. Zhang, Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation, Adv.
Neural Inf. Process. Syst. 36 (2024).

E.A. AlOmar, A. Venkatakrishnan, M.W. Mkaouer, C.D. Newman, A. Ouni, How
to refactor this code? An exploratory study on developer-ChatGPT refactoring
conversations, in: 2024 IEEE/ACM 21st International Conference on Mining
Software Repositories, MSR, 2024, pp. 202-206.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E.H. Chi, Q.V. Le, D.
Zhou, Chain-of-thought prompting elicits reasoning in large language models, in:
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, NeurIPS 2022, New Orleans, la, USA, November
28 - December 9, 2022, 2022, URL http://papers.nips.cc/paper _files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4- Abstract-Conference.html.

X. Li, S. Yuan, X. Gu, Y. Chen, B. Shen, Few-shot code translation via task-
adapted prompt learning, J. Syst. Softw. 212 (2024) 112002, http://dx.doi.org/
10.1016/j.jss.2024.112002, URL https://www.sciencedirect.com/science/article/
pii/S0164121224000451.

S. Casola, I. Lauriola, A. Lavelli, Pre-trained transformers: an empirical
comparison, Mach. Learn. Appl. 9 (2022) 100334, http://dx.doi.org/10.
1016/j.mlwa.2022.100334, URL https://www.sciencedirect.com/science/article/
pii/S2666827022000445.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and
model selection, in: 14th International Joint Conference on Artificial Intelligence,
Morgan Kaufmann Publishers Inc., San Francisco, 1995, pp. 1137-1143.

P.T. Nguyen, J.D. Rocco, C.D. Sipio, D.D. Ruscio, M.D. Penta, Recommending API
function calls and code snippets to support software development, IEEE Trans.
Softw. Eng. (2021) 1, http://dx.doi.org/10.1109/TSE.2021.3059907.

V. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals, Soviet Phys. Doklady 10 (1966) 707.

N. Babar, Levenshtein algorithm, https://dzone.com/articles/the-levenshtein-
algorithm-1. (Online; Accessed 21 August 2023).

A. Moller, M.T. Torp, Model-based testing of breaking changes in node.js
libraries, in: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, in: ESEC/FSE 2019, Association for Computing Machinery,
New York, NY, USA, 2019, pp. 409-419, http://dx.doi.org/10.1145/3338906.
3338940.

S.S. Singh, S.R. Sarangi, SoftMon: A tool to compare similar open-source software
from a performance perspective, in: Proceedings of the 17th International
Conference on Mining Software Repositories, MSR 20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 397-408, http://dx.doi.org/10.1145/
3379597.3387444.

C. Chen, Z. Xing, Y. Liu, K.O.L. Xiong, Mining likely analogical APIs across
third-party libraries via large-scale unsupervised API semantics embedding, IEEE
Trans. Softw. Eng. 47 (3) (2021) 432-447, http://dx.doi.org/10.1109/TSE.2019.
2896123.

L. Ochoa, T. Degueule, J.-R. Falleri, J. Vinju, Breaking bad? Semantic versioning
and impact of breaking changes in maven central: An external and differentiated
replication study, Empirical Softw. Engg. 27 (3) (2022) http://dx.doi.org/10.
1007/5s10664-021-10052-y.

S.E. Ponta, H. Plate, A. Sabetta, Beyond metadata: Code-centric and usage-
based analysis of known vulnerabilities in open-source software, in: 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, IEEE Computer Society, 2018, pp.
449-460, http://dx.doi.org/10.1109/ICSME.2018.00054.

K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, X. Peng, Interactive, effort-
aware library version harmonization, in: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, in: ESEC/FSE 2020, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 518-529, http://dx.doi.
org/10.1145/3368089.3409689.

http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb15
http://dx.doi.org/10.1145/3387905.3388608
http://dx.doi.org/10.1145/3387905.3388608
http://dx.doi.org/10.1145/3387905.3388608
http://dx.doi.org/10.1145/3196398.3196420
http://dx.doi.org/10.1145/3196398.3196420
http://dx.doi.org/10.1145/3196398.3196420
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb18
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb18
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb18
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb18
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb18
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb19
http://arxiv.org/abs/1409.0473
https://github.com/MDEGroup/DeepMig/
https://github.com/MDEGroup/DeepMig/
https://github.com/MDEGroup/DeepMig/
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb22
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb22
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb22
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb23
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb23
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb23
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/ICPC.2019.00053
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb26
http://dx.doi.org/10.1109/SWAN.2015.7070485
http://dx.doi.org/10.1109/SWAN.2015.7070485
http://dx.doi.org/10.1109/SWAN.2015.7070485
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb28
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb28
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb28
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb29
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb29
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb29
http://dx.doi.org/10.1049/ic.2011.0006
http://dx.doi.org/10.1109/TSE.2010.28
http://dx.doi.org/10.1145/2601248.2601268
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb33
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb33
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb33
http://dx.doi.org/10.1109/ICSME.2019.00072
http://dx.doi.org/10.1109/ICSE43902.2021.00023
http://dx.doi.org/10.1145/3477314.3507153
http://dx.doi.org/10.1145/3477314.3507153
http://dx.doi.org/10.1145/3477314.3507153
http://dx.doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.00008
http://dx.doi.org/10.1145/3597503.3639187
http://dx.doi.org/10.1145/3597503.3639187
http://dx.doi.org/10.1145/3597503.3639187
http://dx.doi.org/10.1145/3491101.3519665
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb40
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb40
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb40
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb40
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb40
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb41
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://dx.doi.org/10.1016/j.jss.2024.112002
http://dx.doi.org/10.1016/j.jss.2024.112002
http://dx.doi.org/10.1016/j.jss.2024.112002
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://www.sciencedirect.com/science/article/pii/S0164121224000451
https://www.sciencedirect.com/science/article/pii/S0164121224000451
http://dx.doi.org/10.1016/j.mlwa.2022.100334
http://dx.doi.org/10.1016/j.mlwa.2022.100334
http://dx.doi.org/10.1016/j.mlwa.2022.100334
https://www.sciencedirect.com/science/article/pii/S2666827022000445
https://www.sciencedirect.com/science/article/pii/S2666827022000445
https://www.sciencedirect.com/science/article/pii/S2666827022000445
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb45
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb45
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb45
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb45
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb45
http://dx.doi.org/10.1109/TSE.2021.3059907
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb47
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb47
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb47
https://dzone.com/articles/the-levenshtein-algorithm-1
https://dzone.com/articles/the-levenshtein-algorithm-1
https://dzone.com/articles/the-levenshtein-algorithm-1
http://dx.doi.org/10.1145/3338906.3338940
http://dx.doi.org/10.1145/3338906.3338940
http://dx.doi.org/10.1145/3338906.3338940
http://dx.doi.org/10.1145/3379597.3387444
http://dx.doi.org/10.1145/3379597.3387444
http://dx.doi.org/10.1145/3379597.3387444
http://dx.doi.org/10.1109/TSE.2019.2896123
http://dx.doi.org/10.1109/TSE.2019.2896123
http://dx.doi.org/10.1109/TSE.2019.2896123
http://dx.doi.org/10.1007/s10664-021-10052-y
http://dx.doi.org/10.1007/s10664-021-10052-y
http://dx.doi.org/10.1007/s10664-021-10052-y
http://dx.doi.org/10.1109/ICSME.2018.00054
http://dx.doi.org/10.1145/3368089.3409689
http://dx.doi.org/10.1145/3368089.3409689
http://dx.doi.org/10.1145/3368089.3409689

J. Di Rocco et al.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

H. Alrubaye, M.W. Mkaouer, A. Ouni, On the use of information retrieval to
automate the detection of third-party java library migration at the method level,
in: 2019 IEEE/ACM 27th International Conference on Program Comprehension,
ICPC, 2019, pp. 347-357, http://dx.doi.org/10.1109/ICPC.2019.00053.

J.L. Hintze, R.D. Nelson, Violin plots: A box plot-density trace synergism,
Amer. Statist. 52 (2) (1998) 181-184, http://dx.doi.org/10.1080/00031305.
1998.10480559, arXiv:https://amstat.tandfonline.com/doi/pdf/10.1080/
00031305.1998.10480559, URL https://amstat.tandfonline.com/doi/abs/10.
1080/00031305.1998.10480559.

A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader Palacio, D. Poshyvanyk, R.
Oliveto, G. Bavota, Studying the usage of text-to-text transfer transformer to
support code-related tasks, in: 2021 IEEE/ACM 43rd International Conference
on Software Engineering, ICSE, 2021, pp. 336-347, http://dx.doi.org/10.1109/
ICSE43902.2021.00041.

F. Zhang, B. Chen, Y. Zhao, X. Peng, Slice-based code change representation
learning, in: 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER, 2023, pp. 319-330, http://dx.doi.org/10.1109/
SANERS56733.2023.00038.

A. Zlotchevski, D. Drain, A. Svyatkovskiy, C.B. Clement, N. Sundaresan, M.
Tufano, Exploring and evaluating personalized models for code generation, in:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, in: ESEC/FSE 2022,
Association for Computing Machinery, New York, NY, USA, 2022, pp. 1500-
1508, http://dx.doi.org/10.1145/3540250.3558959, URL https://doi-org.univaq.
idm.oclc.org/10.1145/3540250.3558959.

C. Chen, SimilarAPI: Mining Analogical APIs for Library Migration, in: 2020
IEEE/ACM 42nd International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), 2020, pp. 37-40, ISSN: 2574-1926.

R. Rubei, D. Di Ruscio, C. Di Sipio, J. Rocco, P. Nguyen, Providing upgrade
plans for third-party libraries: A recommender system using migration graphs,
Appl. Intell. 52 (2022) http://dx.doi.org/10.1007/s10489-021-02911-4.

B. Dagenais, M.P. Robillard, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011)
19:1-19:35.

W. Wu, Y. Guéhéneuc, G. Antoniol, M. Kim, AURA: a hybrid approach to identify
framework evolution, in: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, ACM, 2010, pp. 325-334.

H.A. Nguyen, T.T. Nguyen, G.W. Jr., A.T. Nguyen, M. Kim, T.N. Nguyen, A graph-
based approach to API usage adaptation, in: Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA.

19

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Information and Software Technology 177 (2025) 107588

B. Collie, P. Ginsbach, J. Woodruff, A. Rajan, M.F. O’Boyle, M3: Semantic API
migrations, in: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE, 2020, pp. 90-102.

E. Blech, A. Grishchenko, I. Kniazkov, G. Liang, O. Serebrennikov, A. Tatarnikov,
P. Volkhontseva, K. Yakimets, Patternika: A pattern-mining-based tool for auto-
matic library migration, in: IEEE International Symposium on Software Reliability
Engineering, ISSRE 2021 - Workshops, Wuhan, China, October 25-28, 2021, IEEE,
2021, pp. 333-338, http://dx.doi.org/10.1109/ISSREW53611.2021.00098.

C. Watson, N. Cooper, D.N. Palacio, K. Moran, D. Poshyvanyk, A Systematic
Literature Review on the Use of Deep Learning in Software Engineering Research,
ACM Trans. Softw. Eng. Methodol. 31 (2) (2022) 32:1-32:58, http://dx.doi.org/
10.1145/3485275, URL https://dl.acm.org/doi/10.1145/3485275.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, H.
Wang, Large Language Models for Software Engineering: A Systematic Literature
Review, 2023, http://dx.doi.org/10.48550/arXiv.2308.10620, URL arXiv:2308.
10620[cs].

R. Tufano, L. Pascarella, G. Bavota, Automating Code-Related Tasks Through
Transformers: The Impact of Pre-training, 2023, http://dx.doi.org/10.48550/
arXiv.2302.04048, URL arXiv:2302.04048[cs].

C.B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, N. Sundaresan, PyMT5:
multi-mode translation of natural language and Python code with transformers,
2020, http://dx.doi.org/10.48550/arXiv.2010.03150, URL arXiv:2010.03150[cs].
A. Svyatkovskiy, S.K. Deng, S. Fu, N. Sundaresan, IntelliCode compose: Code
generation using transformer, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 1433-1443.

S. Kim, J. Zhao, Y. Tian, S. Chandra, Code prediction by feeding trees to
transformers, in: 2021 IEEE/ACM 43rd International Conference on Software
Engineering, ICSE, 2021, pp. 150-162, http://dx.doi.org/10.1109/ICSE43902.
2021.00026.

W. Hua, G. Liu, Transformer-based networks over tree structures for code
classification, Appl. Intell. 52 (8) (2022) 8895-8909, http://dx.doi.org/
10.1007/s10489-021-02894-2, URL https://link.springer.com/10.1007/s10489-
021-02894-2.

M. Liu, T. Yang, Y. Lou, X. Du, Y. Wang, X. Peng, CodeGen4Libs: A Two-Stage
Approach for Library-Oriented Code Generation, 2023.

http://dx.doi.org/10.1109/ICPC.2019.00053
http://dx.doi.org/10.1080/00031305.1998.10480559
http://dx.doi.org/10.1080/00031305.1998.10480559
http://dx.doi.org/10.1080/00031305.1998.10480559
http://arxiv.org/abs/https://amstat.tandfonline.com/doi/pdf/10.1080/00031305.1998.10480559
http://arxiv.org/abs/https://amstat.tandfonline.com/doi/pdf/10.1080/00031305.1998.10480559
http://arxiv.org/abs/https://amstat.tandfonline.com/doi/pdf/10.1080/00031305.1998.10480559
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
http://dx.doi.org/10.1109/ICSE43902.2021.00041
http://dx.doi.org/10.1109/ICSE43902.2021.00041
http://dx.doi.org/10.1109/ICSE43902.2021.00041
http://dx.doi.org/10.1109/SANER56733.2023.00038
http://dx.doi.org/10.1109/SANER56733.2023.00038
http://dx.doi.org/10.1109/SANER56733.2023.00038
http://dx.doi.org/10.1145/3540250.3558959
https://doi-org.univaq.idm.oclc.org/10.1145/3540250.3558959
https://doi-org.univaq.idm.oclc.org/10.1145/3540250.3558959
https://doi-org.univaq.idm.oclc.org/10.1145/3540250.3558959
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb60
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb60
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb60
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb60
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb60
http://dx.doi.org/10.1007/s10489-021-02911-4
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb62
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb62
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb62
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb63
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb64
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb65
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb65
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb65
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb65
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb65
http://dx.doi.org/10.1109/ISSREW53611.2021.00098
http://dx.doi.org/10.1145/3485275
http://dx.doi.org/10.1145/3485275
http://dx.doi.org/10.1145/3485275
https://dl.acm.org/doi/10.1145/3485275
http://dx.doi.org/10.48550/arXiv.2308.10620
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
http://dx.doi.org/10.48550/arXiv.2302.04048
http://dx.doi.org/10.48550/arXiv.2302.04048
http://dx.doi.org/10.48550/arXiv.2302.04048
http://arxiv.org/abs/2302.04048
http://dx.doi.org/10.48550/arXiv.2010.03150
http://arxiv.org/abs/2010.03150
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb71
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://dx.doi.org/10.1007/s10489-021-02894-2
http://dx.doi.org/10.1007/s10489-021-02894-2
http://dx.doi.org/10.1007/s10489-021-02894-2
https://link.springer.com/10.1007/s10489-021-02894-2
https://link.springer.com/10.1007/s10489-021-02894-2
https://link.springer.com/10.1007/s10489-021-02894-2
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb74
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb74
http://refhub.elsevier.com/S0950-5849(24)00193-9/sb74

	DeepMig: A transformer-based approach to support coupled library and code migrations
	Introduction
	Motivation and background
	Terminology
	Motivating example

	Proposed approach
	Lib Parser
	Code Analyzer
	Change Detector
	Artifact Mapper
	Attention and transformer
	Feeder
	Recommender

	Evaluation
	Research questions
	Baselines for comparison
	Library migration
	Code migration

	Datasets
	Settings and metrics

	Results
	RQ1: How well does DeepMig perform in migrating libraries?
	RQ2: When can DeepMig generate API migration steps comparable to those recommended by OpenRewrite?
	RQ3: What are the applicability and limitations of using ChatGPT for API migration?
	RQ4: How can DeepMig improve its performance?

	Discussion
	The feasibility of DeepMig and its limitations
	Threats to validity

	Related work
	Library upgrading and migration
	Automated approaches to support API migration
	Application of Transformer Models in Software Engineering.

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

