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 A B S T R A C T

Context: Due to the proliferation of generative AI models in different software engineering tasks, the research 
community has started to exploit those models, spanning from requirement specification to code development. 
Model-Driven Engineering (MDE) is a paradigm that leverages software models as primary artifacts to automate 
tasks. In this respect, modelers have started to investigate the interplay between traditional MDE practices 
and Large Language Models (LLMs) to push automation. Although powerful, LLMs exhibit limitations that 
undermine the quality of generated modeling artifacts, e.g., hallucination or incorrect formatting. Recording 
modeling operations relies on human-based activities to train modeling assistants, helping modelers in their 
daily tasks. Nevertheless, those techniques require a huge amount of training data that cannot be available 
due to several factors, e.g., security or privacy issues.
Objective: In this paper, we propose an extension of a conceptual MDE framework, called MASTER-LLM, that 
combines different MDE tools and paradigms to support industrial and academic practitioners.
Method: MASTER-LLM comprises a modeling environment that acts as the active context in which a dedicated 
component records modeling operations. Then, model completion is enabled by the modeling assistant trained 
on past operations. Different LLMs are used to generate a new dataset of modeling events to speed up recording 
and data collection.
Results: To evaluate the feasibility of MASTER-LLM in practice, we experiment with two modeling environ-
ments, i.e., CAEX and HEPSYCODE, employed in industrial use cases within European projects. We investigate 
how the examined LLMs can generate realistic modeling operations in different domains.
Conclusion: We show that synthetic traces can be effectively used when the application domain is less 
complex, while complex scenarios require human-based operations or a mixed approach according to data 
availability. However, generative AI models must be assessed using proper methodologies to avoid security 
issues in industrial domains.
. Introduction

The recent proliferation of generative AI systems has dramatically 
mpacted how software is developed, introducing new opportunities 
or automation and decision support across the software development 
ifecycle [1]. Among the various paradigms in software engineering, 
odel-Driven Engineering (MDE) [2] is a well-established approach 
hat uses high-level models as primary artifacts in the software devel-
pment process. This abstraction helps manage complexity, improve 
onsistency, and enables tool-based automation.
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L. Berardinelli).

In this context, the intersection between MDE and Large Language 
Models (LLMs) has drawn increasing attention from the research com-
munity [3], resulting in several proposals supporting different MDE 
tasks [4]. However, while these approaches show potential, LLMs are 
not yet capable of replacing human expertise, especially in tasks that 
require domain-specific knowledge and contextual understanding [5].

Modeling real-world industrial scenarios, in particular, demands 
a deep understanding of the application domain as well as careful 
handling of privacy, security, and intellectual property constraints, 
which often hinder the sharing or reuse of modeling data. 
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Intelligent Modeling Assistants (IMAs) [6] aim to support modelers 
by recommending modeling operations or completing partial models. 
Yet, their effectiveness depends heavily on the availability of train-
ing data, specifically, traces of modeling operations. Unfortunately, 
the scarcity of publicly available training data represents an open 
challenge.

In such a context, this paper presents an extended version of our 
previous work, where we propose MASTER-LLM, a conceptual frame-
work to support Modeling Assistants using Synthetic Trace gEneration 
of modeling opeRations through LLM [7]. In particular, we present a 
more in-depth exploration of the synthetic trace generation of modeling 
operations, including new experimental results and enhanced method-
ologies. In particular, we experiment with six different LLMs using an 
in-context learning strategy [8] to generate modeling operations given 
a graphical model editor capable of collecting modeling event traces. 
We discovered that mixing humans and generated traces is a trade-off 
solution when training models are unavailable.

In this extension, we consider the Computer Aided Engineering 
Exchange (CAEX)1 format and a model-driven editor for CAEX, namely 
the CAEX Modeling System Environment (CAEX MSE), to further in-
vestigate the impact of LLMs in generating modeling operations. In 
particular, we use the additional MSE to validate the generalizabil-
ity of the proposed framework, considering an additional domain, 
i.e., production system automation supported by CAEX. Furthermore, 
we extend the evaluation conducted in the prior work by analyz-
ing the impact of six different application domains. The results show 
that synthetic traces lead to better accuracy scores when the CAEX 
MSE is considered. Contrariwise, manual traces are confirmed to be 
more effective when less complex domains, e.g., HEPSYCODE MSE, are 
considered.

The main contributions of the paper are the following:

• An additional MSE, namely, CAEX, and two LLMs, i.e., Claude 
and Mistral, to assess the generalizability of the MASTER-LLM 
conceptual framework proposed in Muttillo et al. [7];

• A rigorous evaluation including six application domains and sta-
tistical analyses to ensure the robustness of our study;

• A qualitative discussion highlighting critical issues of using gen-
erative AI in industrial modeling;

• A replication package to foster further research in this domain.2

2. Motivating examples

2.1. MDE in electronic design automation domain

To model high-performance embedded systems, dedicated tools 
belonging to Electronic Design Automation (EDA) [10]. With advance-
ments in EDA, new methods and tools have emerged, enabling higher 
abstraction models through MDE approaches. HEPSYCODE3 (HW/SW
CO-DEsign of HEterogeneous Parallel dedicated SYstems) is a proto-
type EDA methodology and tool designed to reduce the design time 
of embedded applications. It uses Eclipse MDE technologies to model 
the behavior of embedded applications with a custom modeling work-
bench compliant with the HEPSYCODE metamodel. The HEPSYCODE 
language allows modeling the system as a network of processes com-
municating through channels.

Fig.  1 represents one real-world example of an embedded appli-
cation called Digital Camera (DC). The main functionalities of the 
application, representing a camera that captures photographs in digital 
memory [11], include acquiring a 64 × 64-pixel image (i.e., ccdpp

1 IEC-62424 CAEX: https://www.iat.rwth-aachen.de.
2 MASTER-LLM Replication Package: https://github.com/hepsycode/

MASTER-LLM-IST.
3 HEPSYCODE official WebSite: https://hepsycode.github.io/.
2 
Fig. 1. HEPSYCODE Graphical Modeling Workbench (a) and trace file generated 
through MER tool (b). The application considered in this scenario is called Digital 
Camera [9].

process), performing a zero-bias adjustment (i.e., cntrl process), com-
pressing the image (i.e., codec process), and transmitting it to an 
external device (i.e., uat process). Data are exchanged through internal 
channels, while testbench and output feedback use additional external 
channels and ports. In this scenario, the HEPSYCODE graphical model-
ing workbench in Fig.  1(a) records the modeler’s action events (i.e., the 
modeling operations), saved in an XES trace file, as shown in Fig.  1(b). 
Some examples of modeling operations performed by the designer are 
the following:

• A behavioral element for simulating the environment has been 
added (marked with a light blue square), along with an element 
for execution feedback (marked with an orange square);

• The main system component (marked with a black square) has 
been added between the environment simulation component and 
the feedback component, with ports that connect the system to 
the feedback through a communication channel (marked with a 
violet square);

• A message has been added to channel ch2 (marked with a green 
square), including its associated parameters and attributes (e.g., 
direction, queue size, rendezvous), with a payload containing 
multiple entries and embedded data (marked with a brown
square).

It is worth noting that modeling operations are inherently sequen-
tial, meaning they follow a specific order during the construction of the 
model. However, multiple traces can represent different realizations of 
the same model. In this context, we shift the focus from dependency 
on a strict sequence of events to ensuring the presence of all required 
events, or at least the majority of them, across synthetic traces. This 
perspective prioritizes completeness and coverage over exact ordering 
and strict dependencies.

2.2. MDE in automotive domain

With increased customer and regulatory emphasis on sustainability, 
Volvo Construction Equipment (Volvo CE), a partner of the AIDOaRt 
project, is working on electrifying its construction machines, including 
battery-electric and fuel-cell technologies. Volvo CE provided an indus-
trial use case whose challenges consisted of fostering the automation 
of the engineering process of Volvo CE vehicles like the Dumper System
(DS) shown in Fig.  2(a).

MDE techniques and practices are explicitly introduced, with mod-
eling tools playing a pivotal role in transforming descriptive engi-
neering artifacts produced by office tools into models. The proposed 

https://www.iat.rwth-aachen.de/go/id/eety/?lidx=1
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Fig. 2. CAEX Graphical Modeling Workbench. A Volvo dumper (A60H version) (a) and 
a model excerpt in the CAEX MSE (b).

solution includes the possibility to use AutomationML4 as modeling 
language, which in turn relies on CAEX1, to model vehicles’ structural 
components and their variants [12].

The canvas in Fig.  1 shows the CAEX MSE and its support for the 
graphical modeling of an instance hierarchy and its internal elements
(IEs) (e.g., dumper body). The right-hand panel is a palette containing 
CAEX modeling elements that are available for editing the model 
(e.g., some possible modeling operations).

2.3. Challenges and open issues

To assist designers, the modeling environment can collect their mod-
eling operations as traces, as shown in the HEPSYCODE Fig.  1(b). These 
traces can help IMAs suggest possible modeling operations at any given 
step, supporting designers as the complexity of the model increases.

Although IMAs can help modelers, several issues need to be care-
fully handled. Among the others, we elicited the following challenges:

ä CH1: Collecting traces is time-consuming:  As shown in this 
section, collecting modeling operations is time-consuming if the system 
exploits a traditional event recorder. Moreover, the time needed to 
produce valuable traces depends strongly on the modeler’s level of 
expertise, given the application domain.

ä CH2: Using external training data may leads to inaccurate 
results : Alternatively, curated modeling datasets [13] can be used 
to synthesize traces to feed IMA as done by Di Rocco et al. [14]. 
Nonetheless, the existing datasets comprise models (and metamod-
els) specifically created for ML tasks without representing realistic 
modelers’ behavior.

ä CH3: Accessing data is often difficult due to privacy is-
sues and industry restrictions. Industries and research institutions 
can handle data differently, according to internal or external regula-
tions [15]. This may impact modeling artifacts available to enable auto-
mated approaches, resulting in a scarcity of training data. In particular, 

4 AutomationML: https://www.automationml.org/.
3 
privacy agreements can negatively affect data disclosing [16], thus pre-
venting researchers from developing accurate automated approaches to 
support industrial practitioners.

ä CH4: Automated tools for capturing modeling operations 
might be lacking. A significant challenge in the MDE domain is the 
lack of automated tools to effectively capture and record modeling 
operations. This limitation complicates the development of integrated 
systems, as these modeling operations are essential for tracking and 
improving the modeling process.

3. Related work

We provide an overview of the state-of-the-art to enlist the closest 
approaches to our work. To the best of our knowledge, there is no 
similar approach that employs LLM to generate synthetic traces in 
the context of an MDE environment. Nevertheless, we describe the 
state-of-the-art of the works that are related to our internal components.

Modeling Trace Recording. Dehghani et al. [17] presented the 
Modeling Event Recorder (MER) tool that captures user interaction 
events through the EMF notification API [18] and saves traces using the 
IEEE eXtensible Event Stream (XES) format [19]. Our approach lever-
ages the MER component to collect traces. Herrmannsdoerfer et al. [20] 
discuss a generic operation recorder for model evolution based on an 
operation metamodel. As MER, it reuses EMF Notifications but neglects 
compatibility with standards like XES. Brosch et al. [21] exploited the 
concept of operation recording to perform model versioning. In partic-
ular, they relied on the tool Operation Recorder previously introduced 
by Herrmannsdoerfer et al. [20].

Synthetic Data Generation. In MDE, different approaches have 
been developed to ease the data scarcity issue [22], exploiting cluster-
ing, grammar graphs, and random generators. The clustering approach 
usually classifies variable values and relationships between compo-
nents. Then, an instance model is produced from each category to 
represent that category [23]. To generate the model based on graph 
grammars, the graph rules are extracted from the metamodel, and then 
models are generated according to these rules [24]. In the random 
approach, random procedures are used to generate new models [25]. 
Furthermore, Soltana et al. [26] present a viable approach for creating 
system test data using constraint-solving techniques.

The recent advancement of LLMs has motivated the exploration of 
this technology to generate synthetic datasets [27–29].

The most relevant approach to ours was presented by López et al.
[30], where the authors propose the Text2VQL framework, specifically 
designed to transform natural text to queries expressed in the VIA-
TRA Query Language (VQL). To fine-tune two open-source LLMs, i.e., 
DeepSeekCoder and Code Llama, they leverage ChatGPT to generate a 
synthetic dataset comprising pairs of queries and their corresponding 
natural language descriptions.

Overall, we did not find evidence of using LLMs for trace generation 
to train IMAs apart from Muttillo et al. [7].

Existing IMAs in MDE context. Several IMAs have been developed 
to assist modelers in their daily tasks. Above all, model completion 
is the most supported task, leveraging on NLP techniques [31] and 
similarity-based algorithms [32] to recommend missing modeling el-
ements given an incomplete model. Adhikari et al. [33] introduce 
SimVMA, a virtual assistant that analyses an incomplete model and, 
by inspecting similar projects, can suggest pertinent model completion 
elements. Iovino et al. [34] extended the tool named PARMOREL 
to provide personalized and automatic repair suggestions for models 
leveraging reinforcement learning. Di Rocco et al. [14] present NEMO, 
an IMA that forecasts the next modeling operations leveraging the 
LSTM network by relying on a curated dataset of BPMN models. How-
ever, we cannot reuse NEMO in a direct comparison since it is tailored 
for BPMN models. Weyssow et al. [35] proposed a learning-based 
approach that leverages the RoBERTa pre-trained model to suggest rel-
evant metamodel elements. The metamodels are encoded as structured 

https://www.automationml.org/
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Fig. 3. Overview of the MASTER-LLM framework.

trees to train the underlying model and obtain a textual sequential 
representation. Subsequently, a test set is generated using a sampling 
strategy relying on masking where a portion of the input text is ran-
domly modified [36], allowing the model to learn to predict the masked 
text by relying on the contextual remaining words. The employed 
model is then used to predict missing elements and provide the modeler 
with insightful domain concepts. Chaaben et al. [37] leverages the 
GPT-3 model to complete the model under construction using the few-
shot technique. In particular, the model elements are embedded in the 
prompt as structured text. The approach supports both sequence and 
class diagrams, even though there is still room for improvement.

Kulkarni et al. [38] exploits GPT-4 to specify digital twins models. 
The prompt is iteratively refined using the Goal-Measure-Lever (GML) 
metamodel, in which the modeler can define the goals and sub-goals of 
the final system.

Finally, Apvrille and Sultan [39] combine ChatGPT and the online 
TTool framework to complete structural and behavioral SysML models. 
Given the partial SysML and the domain knowledge encoded as a JSON 
request, the TTool framework extracts the GPT’s response and delivers 
it to the modelers. The evaluation shows that the proposed framework 
slightly outperforms students in the modeling tasks, even though the 
results are worse when complex specifications are considered.

While we acknowledge that LLMs can be used as IMAs, our frame-
work focuses on their usage in generating training data for traditional 
approaches, e.g., MORGAN.

4. Proposed approach

Fig.  3 depicts the MASTER-LLM, a conceptual framework to support
Modeling Assistants using Synthetic Trace gEneration of modeling 
opeRations through LLM. The goal is to capture events generated by 
users’ modeling operations and generate traces. Such traces are then 
injected into recommender systems, enabling the generation of person-
alized suggestions for modeling actions most relevant to each designer.
4 
4.1. Modeling System Environment (MSE)

The MSE is a graphical model editor. MDE leverages models as 
core software artifacts. The Meta Object Facility (MOF)5 by the Object 
Management Group (OMG) organizes modeling artifacts into three 
metalayers. Building upon MOF, a modeling framework provides the 
necessary characteristics for working with these modeling artifacts. 
EMF6 is a standard de facto implementation of the MOF architecture. Its 
metamodeling language, Ecore, represents the meta-metamodel layer. 
Using Ecore, developers define custom metamodels.

Formally, we also define the set of M models conforming to the 
Ecore-based metamodel as follows: 
𝑀 = {𝑀1,𝑀2,… ,𝑀𝑗 ,… ,𝑀𝑀} (1)

4.2. Modeling Event Recorder (MER)

Formally, in this paper, we use modeling operations to refer to 
activities performed by users on the Graphical Modeling Workbench to 
create model 𝑀𝑗 compliant with the metamodel. Modeling operations 
generate events captured by a notification mechanism and suitably 
saved as traces by a Modeling Event Recorder 3 . Moreover, 𝛤 (𝑀) is 
the set of traces obtained from modeling operations that realized the 
models 𝑀 , such as: 
𝛤 (𝑀) = {𝜏1(𝑀1), 𝜏2(𝑀2),… , 𝜏𝑗 (𝑀𝑗 ),… , 𝜏𝑀 (𝑀𝑀 )} (2)

To simplify matters, we will remove the internal model notation 
𝜏𝑗 (𝑀𝑗 ) and only keep 𝜏𝑗 as a generic trace. Each trace 𝜏𝑗 can be split 
into 𝑁 events (i.e., single designer modeling operation), as follows: 
𝜏𝑗 ∶= {𝑒𝑗,1, 𝑒𝑗,2,… , 𝑒𝑗,𝑘,… , 𝑒𝑗,𝑁} (3)

Each trace event has a fixed syntax, determined by the MER com-
ponent: 
𝑒𝑗,𝑘 ∶= event ⟨class⟩ ⟨attribute⟩ ⟨eventType⟩ (4)

With the term modeling event recording, we refer to the collection 
of modeling traces through modeling event notification mechanisms.

4.3. Intelligent Modeling Assistant (IMA)

To define the recommender component 9 , we rely on the IMA defi-
nition provided by Mussbacher et al. [6]. In particular, a data acquisition 
layer must be defined to collect the relevant knowledge from external 
sources. In addition, an IMA operates in a context where modelers 
perform their activities, thus producing contextual information that can 
be processed by the IMA. The core component is represented by the
assistant, namely the algorithm used to perform the actual automated 
activities, e.g., suggesting missing elements, retrieving similar modeling 
artifacts, or forecasting the next operations. We focus on IMAs that 
can retrieve relevant modeling operations given a graphical modeling 
environment. Formally, given the modeler’s context (i.e., a model 𝑀𝑗), 
the knowledge acquired from external sources or the modeling context 
(i.e., 𝛤 (𝑀) traces set), and 𝐴 the assistant, the IMA is a function 
defined as follows: 
(𝑀,𝛤 (𝑀), 𝐴) = {𝑂𝑝1, 𝑂𝑝2,… , 𝑂𝑝𝑁} (5)

In the scope of the paper, we consider the past operations 𝛤 (𝑀)
as the unique source of knowledge for the IMA. Given the above-
mentioned definition of an event, an explanatory list of recommenda-
tions 𝑅𝑒𝑐 for a given model (𝑀𝑗 ) is represented below: 

𝑅𝑒𝑐(𝑀𝑗 ) = {𝑅(𝑒𝑗,1), 𝑅(𝑒𝑗,2),… , 𝑅(𝑒𝑗,𝑁 )} (6)

where the list {𝑅(𝑒𝑗,1), 𝑅(𝑒𝑗,2),… , 𝑅(𝑒𝑗,𝑁 )} is the recommended model-
ing operations.

5 MetaObject Facility Specification: https://www.omg.org/mof/.
6 Eclipse Modeling Framework: https://www.eclipse.org.

https://www.omg.org/mof/
https://www.eclipse.org/modeling/emf/
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Fig. 4. Prompt schema and LLM answer example for HEPSYCODE.

4.4. Large Language Model (LLM)

A key phase of using LLMs is the design and execution of the most 
suitable prompt strategy given the goal. Zero-shots represents the basic 
prompt strategy, in which the LLMs are fed with just the query without 
any example of the expected outputs [40]. The query can be expressed 
using natural language or embodying specific keywords that refer to 
the context, e.g., parts of models under development. Few-shots requires 
explanatory outputs in the initial query [41]. In such a way, the task 
can be executed with weak labeling and minimal supervision from 
the developers. Chain-of-Thoughts is a conversational reasoning task to 
assess the ability of a model to maintain coherence and context across a 
series of questions and answers [42]. In such a task, a series of questions 
is posed, with each of them building upon the context established by 
the previous question and answer pair.

In this paper, we adopt the few-shot prompting strategy 5  to gener-
ate modeling operations 6  since it is suitable for obtaining the traces 
using the specified models. Furthermore, we defined 𝛤+(𝑀) as the set 
of LLM synthetic traces (i.e., emulated human modeling operations) 
needed to realize the model 𝑀𝑗 , such as: 

𝛤+(𝑀) = {𝜏+1 (𝑀1), 𝜏+2 (𝑀2),… , 𝜏+𝑗 (𝑀𝑗 ),… , 𝜏+𝑀 (𝑀𝑀 )} (7)

Following modeling event recorder notation, we removed the internal 
model notation 𝜏+𝑗 (𝑀𝑗 ) and only kept 𝜏+𝑗  as a generic synthetic trace. 
Each 𝜏+𝑗  synthetic trace can be split into 𝑁 synthetic events (i.e., single 
LLM human emulated modeling operation), as follows: 
𝜏+𝑗 = {𝑒+𝑗,1, 𝑒

+
𝑗,2,… , 𝑒+𝑗,𝑘,… , 𝑒+𝑗,𝑁 ′} (8)

The LLM is trained on demonstrations (i.e., input–output example 
traces) to emulate the human modeling operation steps using the Few-
Shot In-Context Learning prompting approach 5 . Fig.  4 shows an 
example prompt schema used in this work.

5. Experiment design

This section details the experiment design used in our work. Our 
approach ensures systematic analysis for reliable and reproducible 
results.

5.1. Research questions

Based on the research objectives, we aim to answer the following 
research questions:

ä RQ1: What is the quality of the synthetic traces? To answer this 
question, we assess the quality of the generated traces by applying 
well-founded correctness and diversity metrics. In addition, we assess 
the degree of hallucination by defining a novel metric tailored to the 
context of MDE systems.
5 
ä RQ2: Is synthetic datasets useful for training a lightweight IMA? After 
selecting the best LLM, we trained an existing IMA, i.e., MORGAN [43], 
with human-generated traces, synthetic ones, and a mix of both. In 
particular, the goal is to investigate to what extent synthetic traces 
can be used to replace human ones in real-world scenarios, including 
industrial use cases.

5.2. Employed tool components

This section presents the tool components employed in the proposed 
approach.

5.2.1. MSE eclipse-based workbench
The selected MSEs are the HEPSYCODE Modeling Workbench3 (HW/

SW CO-DEsign of HEterogeneous Parallel dedicated SY stems) and the
CAEX Modeling Workbench for CAEX7. HEPSYCODE and CAEX MSEs 
have been developed using the Eclipse EMF as the reference language 
workbench [44] and Sirius to generate its graphical modeling envi-
ronment as a plugin of the Eclipse platform. The main component 
‘‘Eclipse («platform»)’’ in Fig.  3 represents our instantiation of the MOF 
architecture in which EMF and the Sirius plugin are used to create 
the Graphical Modeling Workbench 2 . The latter handles models (𝑀) 
compliant with custom Domain Specific Metamodel 1 . Examples of this 
Graphical Modeling workbench can be found in Pomante et al. [45] 
and Cederbladh et al. [12], which further extend the framework with 
EMF-compliant technologies (e.g., EMF Views [46]).

ä CAEX is a standard for data exchange between engineering tools. 
CAEX allows the storage of hierarchical object information and pro-
vides explicit support for representing objects’ attributes and interfaces 
as well as their relationships, such as inheritance and links among 
interfaces. CAEX is a native XSD-based data format. An XML Schema is 
provided by the standard1. It is used as the top-level data format for 
AutomationML4, a data exchange format used in the manufacturing 
domain that integrates further standards for representing geometry, 
kinematics (COLLADA), and logics (PLCOpen XML) of manufacturing 
systems, which are not considered in this work. The CAEX MSE7 allows 
the modeling of hierarchical structure in CAEX based on a CAEX 
metamodel in EMF6 (caex.ecore), suitably derived from the standard 
CAEX XML Schema (caex.xsd).

ä HEPSYCODE is a framework and prototypal tool to improve 
the design time of embedded applications. HEPSYCODE uses Eclipse 
MDE technologies, SystemC custom simulator implementation, and AI-
augmented algorithms for partitioning activities, all integrated into an 
automatic framework that drives the designer from the first input spec-
ifications to the final solution. The metamodeling language introduced 
in HEPSYCODE, named HEPSY  allows modeling the system’s behav-
ior as a network of processes communicating through unidirectional 
synchronous channels.

5.2.2. Modeling event recorder for EMF-based editors
The MER implementation for EMF-based models and editors is 

presented in Dehghani et al. [17] as subcomponents of a Modeling 
Process Mining Tool [17] 3 . MER is thus implemented as an Eclipse 
plugin that interacts with Sirius-based graphical editors for EMF-based 
models, as the CAEX modeling workbench7 or HEPSYCODE tool3, and 
records users’ modeling traces. Traces are encoded in the IEEE Standard 
for eXtensible Event Stream (XES) [19], which provides an XML schema 
for log encoding. The MER tool also provides an Ecore-based XES 
metamodel for encoding traces as EMF-based models.

7 CAEX MDE Workbench: https://github.com/amlModeling/caex-
workbench/tree/variability.

https://github.com/amlModeling/caex-workbench/tree/variability
https://github.com/amlModeling/caex-workbench/tree/variability
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Fig. 5. Excerpt of MORGAN’s recommendations using Jinja template.

5.2.3. MORGAN
We consider the MORGAN tool [43] as the IMA component in our 

framework. In particular, we modify MORGAN’s architecture by intro-
ducing a Trace parser 4  to extract relevant information from XES traces 
obtained by the MER component 3  [17]. We obtain a textual-based 
representation used by the graph encoder to produce a list of trace 
graphs by extracting different features for each event, i.e., the type 
of event and the affected artifacts. Each graph is constructed using a 
set of Natural Language Preprocessing (NLP) techniques, i.e., stemming 
and dash-removal. Afterward, MORGAN exploits the Weisfeiler-Lehman 
algorithm [47] to provide the ranked list of similar operations given 
an initial XES trace, provided by the Grakel Python library.8 Listing 
1 shows a fragment of MORGAN’s recommendations expressed in the 
MER format for the HEPSYCODE modeling environment. In addition, 
we encapsulated the recommendations in a simple graphical GUI using 
the Jinja library9 to increase usability, as shown in Fig.  5. While a 
complete integration with the existing modeling environments is out 
of the scope of this paper, we will see this as possible future work.

Listing 1: Excerpt of MORGAN’s textual recommendations.
Port pChannels ADD,Message entry ADD, Stimulus

ports ADD

Channel rendezVous SET, Message entry ADD,
Channel pTo SET, Entry name SET, Channel
queueSize SET, Channel name SET, Message
name SET, Channel nFrom SET, Message entry
ADD, Entry type SET.

5.2.4. Large language model
LLM synthetic dataset generation effectively addresses the chal-

lenges of reducing the time and effort to collect traces (CH1), repre-
senting realistic designer behavior (CH2), and overcoming security con-
cerns, privacy regulations, and industry restrictions [16]. By leveraging 
the advanced capabilities of LLMs, our proposed approach provides a 
robust solution for creating high-quality, relevant, and secure datasets, 
thereby enhancing the development and performance of ML models.

We experiment with six pre-trained decoder-only transformers-
based LLMs as the generator component 6  in Fig.  3:

1. Llama 3 [48], developed by Meta;
2. Gemini 1.5 Flash,10 developed by Google DeepMind;

8 GraKeL: https://ysig.github.io/GraKeL/0.1a8/.
9 Jinja Engine: https://jinja.palletsprojects.com/en/stable/.
10 Google, Google Gemini: https://gemini.google.com/app.
6 
Table 1
High-level architecture overview of selected language models.
 Model Layers Params Context Output 
 Windows Tokens 
 Llama 3 80 70B 8K 4K  
 Gemini 1.5 Flash N/A 120Ba 2M 8K  
 Mistral Large N/A 123B 32K 4K  
 Claude 3.5 Sonnet N/A 175Ba 200K 8K  
 GPT-3.5 up to 96a 175Ba 16K 4K  
 GPT-4 N/A 1760Ba 8K 8K  
a The number of parameters and layers is not officially disclosed but was leaked online 
[50].

3. Mistral Large 24.07,11 developed by Mistral AI;
4. Claude 3.5 Sonnet,12 developed by Anthropic;
5. GPT-3.5.13 freely available and developed by OpenAI;
6. GPT-4,14 the professional version of GPT also developed by 
OpenAI.

Table  1 presents a high-level architectural overview of the selected 
LLMs. GPTs, Claude, Mistral, and Gemini are proprietary, meaning their 
underlying details and weights are not shared publicly. Llama 3 is 
an open-source model, offering transparency and flexibility with its 
publicly available architecture and weights. We selected these LLMs 
because they represent the best proprietary and open-source technolo-
gies according to LMSYS LeaderBoard.15 In addition, we experimented 
with LLMs proposed by different providers, thus increasing the gener-
alizability of the approach [49]. In the scope of the paper, we used a 
free web-based interface for all the selected LLMs. Therefore, we cannot 
configure the token size for each of them. Meanwhile, we experimented 
with this limitation in some input and output phase cases. We asked the 
LLM to continue the generation phase in the same chat to cope with 
this, thus preserving the active context.

5.3. Subjects selection and datasets

The population we consider includes both real and synthetic models 
used in two domains: Electronic Design Automation with HEPSYCODE 
and Production System Automation with CAEX/AutomationML. From this 
population, we selected a sample of 15 models for HEPSYCODE and 
20 models for CAEX, which are included in the D1 dataset. Synthetic 
datasets generated through LLM in-context learning are collected in 
the D2 dataset. From the industrial domain, we gathered five real Use 
Case (UC) models for HEPSYCODE (i.e., from Thalés France, Thales 
Alenia Space España, Integrasys, and TEKNE companies) and one real 
UC model for CAEX (i.e., from Volvo CE company), which are included 
in the D3 dataset. All the datasets are presented below.

ä D1 - Real trace dataset: The trace dataset comprises real traces 
generated using HEPSYCODE and CAEX modeling workbenches.

The HEPSYCODE models are embedded systems application models 
taken from the literature, with a total amount of 2379 XES events, as 
described below:

• Synthetic: Four HEPSYCODE synthetic custom applications [51] 
[478 events], called 𝑀𝐻

1 ,𝑀𝐻
2 ,𝑀𝐻

3 , and 𝑀𝐻
4 ;

• Academic: Sequential and Parallel version of Electronic Digital 
Camera [9,51] (Embedded System Design) [282 events], called 
𝑀𝐻

5  and 𝑀𝐻
6 ; three versions of an academic synthetic application 

that uses the Finite Impulse Response (FIR) filter [9] [785 events], 
called 𝑀𝐻

7 , 𝑀𝐻
8 , and 𝑀𝐻

9 ;

11 Le Chat: https://mistral.ai/news/le-chat-mistral/.
12 Claude: https://www.anthropic.com/claude.
13 OpenAI ChatGPT: https://openai.com/chatgpt.
14 OpenAI GPT-4: https://openai.com/index/gpt-4.
15 LMSYS LeaderBoard: https://chat.lmsys.org/.

https://ysig.github.io/GraKeL/0.1a8/
https://jinja.palletsprojects.com/en/stable/
https://gemini.google.com/app
https://mistral.ai/news/le-chat-mistral/
https://www.anthropic.com/claude
https://openai.com/chatgpt
https://openai.com/index/gpt-4
https://chat.lmsys.org/
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• Computer vision and Signal Processing: Two versions of the 
JPEG Encoder [52] [413 events], called 𝑀𝐻

10 and 𝑀𝐻
11 ; Sobel, 

Susan, and Roberts Filters [51–53] [291 events], called 𝑀𝐻
12 , 

𝑀𝐻
13 , and 𝑀𝐻

14 ; Relative Spectral Transform (RASTA) filter to sup-
port Perceptual Linear Prediction (PLP) preprocessing for speech 
signals analysis [52] [130 events], called 𝑀𝐻

15 ;

The CAEX models are 20 synthetic models (e.g., 𝑀𝐶
1 ,𝑀

𝐶
2 ,… ,𝑀𝐶

20) 
that partially cover meta-classes and attributes included in the CAEX 
metamodel (e.g., we do not consider System Unit Classes), thereby 
providing a good dataset for generating recommendations to designers 
for modeling operations in the automotive domain (e.g., the dataset 
created encompasses the classes and attributes utilized for developing 
the considered Volvo CE industrial case study model, as discussed 
below), with a total amount of 807 XES events.

ä D2 - LLM synthetic trace datasets: To evaluate the potential of 
using LLMs in an MDE context to support designers, we created datasets 
of the synthetic traces. For the creation of the datasets, we used the 
same prompt, as shown in Fig.  4, on all the considered LLMs through 
the online query form, as presented in Section 5.2. In particular, 
we used one example model and trace in the ‘‘Input Demonstration’’ 
prompt activity and all the real models from the D1 dataset in the 
‘‘Task’’ prompt activity to generate the synthetic traces.

ä D3 - Industrial dataset: HEPSYCODE and CAEX have also been 
used and validated through several industrial UC studies from European 
Projects, covering 4 domains (i.e., Avionics, Smart Cities, Space, and 
Automotive) as follows:

• H2020-ECSEL-2016-1-RIA AQUAS16

– 𝐔𝐂𝟏 ‘‘Air Traffic Management System’’ [54] from Integrasys in 
Spain (domain: Smart Cities, 161 events);

– 𝐔𝐂𝟐 ‘‘Space Multicore Architecture with standard Space Satel-
lite tasks’’ [54] from Thales Alenia Space España in Spain (do-
main: Space, 125 events);

– 𝐔𝐂𝟑 ‘‘Space Multicore Architecture with Onboard Security En-
cryption Tasks’’ [54] from Thales Alenia Space España in Spain 
(domain: Space, 200 events);

• H2020-ECSEL-2016-1-RIA MegaM@aRt217

– 𝐔𝐂𝟒 ‘‘Flight Management System’’ [55] from Thalés in
France (domain: Avionics, 388 events);

• H2020 ECSEL 2020-2-RIA AIDOaRT18

– 𝐔𝐂𝟓 ‘‘Agile process and Electric/Electronic Architecture of a 
vehicle for professional applications’’ [56] from TEKNE in Italy 
(domain: Automotive, 205 events)

– 𝐔𝐂𝟔 ‘‘Data modeling to support product development cost and 
efficiency’’ [12] from Volvo CE in Sweden (domain: Automo-
tive, 120 events)

The total amount of XES events for the HEPSYCODE industrial 
models is 1079 for 𝐔𝐂𝟏, 𝐔𝐂𝟐, 𝐔𝐂𝟑, 𝐔𝐂𝟒, and 𝐔𝐂𝟓, spanning over three 
different EU projects. Furthermore, the CAEX industrial model has 120 
total XES events from the Volvo CE AIDOaRt 𝐔𝐂𝟔

18.
Noteworthy, the CAEX models created for the Volvo CE case study 

use rather small subsets of CAEX metamodel, i.e., InstanceHierar-
chy, InternalElement, Port metaclasses, to create hierarchical 
structures of components and their variants (typically referred to as 
150%-models [57]), without modeling interconnections (e.g., using
InternalLink) or other advanced modeling concepts such as roles 
and libraries1. As a result, the D1 dataset reflects the modeling prob-
lem complexity, involving only nesting without links, thus creating 
hierarchical nodes without arcs.

16 AQUAS EU Project: https://aquas-project.eu/.
17 MegaM@aRt2 EU Project: https://megamart2-ecsel.eu/.
18 AIDOaRT EU Project: https://sites.mdu.se/aidoart.
7 
5.4. Evaluation metrics for LLM synthetic trace data

Synthetic data generated from LLMs inherently faces several data 
limitations that must be acknowledged and addressed. As an inherent 
characteristic, LLMs may inadvertently propagate inaccuracies or biases 
present in their pre-training data, leading to outputs that may not 
always align with factual or unbiased information. Moreover, synthetic 
data generated by LLMs can sometimes not only be inaccurate but also 
completely fictitious or disconnected from reality, a phenomenon often 
referred to as ‘‘hallucination’’.

The quality of the synthetic traces can be assessed in terms of
correctness, diversity, and hallucination metrics.

5.4.1. Trace correctness metric
The Correctness metric measures whether the data instance is related 

to the given label. Existing approaches for measuring correctness can 
be divided into two categories: automatic evaluation and human eval-
uation. Human evaluation has been conducted by prompt engineers to 
self-tune the Few-shot In-Context Learning component.

Automatic evaluation has been implemented to check the correct-
ness of event syntax using the following metric: 

𝐶(𝜏+𝑗 ) =

∑𝑁 ′

𝑘=1 𝑐(𝑒
+
𝑗,𝑘)

|𝜏+𝑗 |
,

where 𝑐(𝑒+𝑗,𝑘) =

{

1 if 𝑒+𝑗,𝑘 has correct syntax
0 otherwise

(9)

This metric can be evaluated on the full 𝜏+𝑗  synthetic trace, while 
it is possible to cluster the metrics w.r.t syntax features (i.e., MER 
metamodel classes and attributes).

It is worth noting that we have not enforced strict dependencies on 
the order of synthetic events because the same model can be built in 
different ways using various sequences of actions. However, we have 
ensured that key semantic dependencies are respected in the synthetic 
modeling operations. This approach allows for flexibility in the traces, 
representing different valid ways of constructing a model while ver-
ifying essential structural and semantic requirements. For example, 
communication links between classes are only added when at least 
two classes exist, and structural elements that include or depend on 
other elements are verified to ensure their dependencies are satisfied. 
Additionally, we ensured that SET events follow the corresponding 
ADD events to maintain semantic consistency. To achieve this, we 
implemented a Python script to validate these semantic relationships.

5.4.2. Trace diversity metric
Diversity measures the difference between a chunk of text and an-

other in the generated instances. In this work, we evaluate differences 
between 𝜏+𝑗  synthetic traces generated by LLMs and real 𝜏𝑗 traces 
generated by designers using the MER component. The considered 
metrics are the following:

ä Edit-based similarities, also known as distance-based, measure 
the minimum number of single-character operations (e.g., insertions, 
deletions, or substitutions) required to transform one string into an-
other.

Levenshtein: The Levenshtein distance 𝑑𝑖𝑠𝑡(𝜏𝑗 , 𝜏+𝑗 ) between 𝜏𝑗 and 
𝜏+𝑗  is the minimum number of single-character edits (insertions, dele-
tions, or substitutions) required to change one trace into the other, 
defined as follows: 

LEV(𝜏𝑗 , 𝜏+𝑗 ) = 1.0 −
𝑑𝑖𝑠𝑡(𝜏𝑗 , 𝜏+𝑗 )

𝑚𝑎𝑥(|𝜏𝑗 |, |𝜏+𝑗 |)
(10)

Longest Common substrings (LCS): The maximum-length com-
mon events subsequence LCS(i,k) of 𝜏𝑗 and 𝜏+𝑗 , considering only char-
acters insertion and deletion, where i and k represent the prefix length 

https://aquas-project.eu/
https://megamart2-ecsel.eu/
https://sites.mdu.se/aidoart
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of trace string 𝜏𝑗 [𝑖] ∈ 𝜏𝑗 and 𝜏+𝑗 [𝑘] ∈ 𝜏+𝑗 , respectively, is given by: 

𝐿𝐶𝑆(𝑖, 𝑘) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑖 = 0 ∨ 𝑘 = 0
𝐿𝐶𝑆(𝑖 − 1, 𝑘 − 1) + 1 if 𝑖, 𝑘 > 0 ∧ 𝜏𝑗 [𝑖] = 𝜏+𝑗 [𝑘]
0 if 𝑖, 𝑘 > 0 ∧ 𝜏𝑗 [𝑖] ≠ 𝜏+𝑗 [𝑘]

(11)

Jaro–Winkler: The Jaro Similarity is calculated using the following 
formula: 

JARO(𝜏𝑗 , 𝜏+𝑗 ) =
⎧

⎪

⎨

⎪

⎩

0 if m = 0
1
3

(

𝑚
|𝜏𝑗 |

+ 𝑚
|𝜏+𝑗 |

+ 𝑚−𝑡
𝑚

)

Otherwise
(12)

where m is the number of matching characters between 𝜏𝑗 and 𝜏+𝑗  and 
t is half the number of transpositions.

ä Among the token-based similarity function, we consider:
Jaccard: measure the size of the intersection divided by the size of 

the union of the strings, as follows: 

JACCARD(𝜏𝑗 , 𝜏+𝑗 ) =
|𝜏𝑗 ∩ 𝜏+𝑗 |

|𝜏𝑗 | + |𝜏+𝑗 | − |𝜏𝑗 ∩ 𝜏+𝑗 |
(13)

Overlap: measures the similarity between two strings, calculated as 
the size of their intersection divided by the size of the smaller string: 

OVERLAP(𝜏𝑗 , 𝜏+𝑗 ) =
|𝜏𝑗 ∩ 𝜏+𝑗 |

min(|𝜏𝑗 |, |𝜏+𝑗 |)
(14)

Sorensen-Dice: evaluate twice the number of elements common to 
both traces divided by the sum of the number of elements in each trace, 
as follows: 

DICE(𝜏𝑗 , 𝜏+𝑗 ) =
2|𝜏𝑗 ∩ 𝜏+𝑗 |

|𝜏𝑗 | + |𝜏+𝑗 |
(15)

Q-Gram: count the number of occurrences of different q-grams in 
the two traces. Given a trace 𝜏𝑗 and let 𝑣 ∈ 𝛹 𝑞 a q-gram, the total 
number of occurrences of v in 𝜏𝑗 , denoted by G(𝜏𝑗 [𝑣]), is obtained by 
sliding a window of length q over the trace tokens. Given two traces 𝜏𝑗
and 𝜏+𝑗 , the Q-gram similarity is described as follows: 

Q-GRAM(𝜏𝑗 , 𝜏+𝑗 ) = 1 −

∑

𝑣∈𝛹𝑞 |𝐺(𝜏𝑗 )[𝑣] − 𝐺(𝜏+𝑗 )[𝑣]|
∑

𝑣∈𝛹𝑞 𝑚𝑎𝑥(𝐺(𝜏𝑗 )[𝑣], 𝐺(𝜏+𝑗 )[𝑣])
(16)

The more q-grams two traces have in common, the more closely related 
they are.

Cosine: similarity between two non-zero vectors of an inner product 
space that measures the cosine of the angle between them, as follows: 

COSINE(𝜏𝑗 , 𝜏+𝑗 ) = 𝑐𝑜𝑠(𝜃) =
𝜏𝑗 ⋅ 𝜏+𝑗

‖𝜏𝑗‖ ⋅ ‖𝜏+𝑗 ‖
(17)

where 𝜏𝑗 ⋅ 𝜏+𝑗  is the dot product between the vector 𝜏𝑗 and 𝜏+𝑗 , and 
‖𝜏𝑗‖ represents the Euclidean norm of the vector 𝜏𝑗 . The resulting 
measure of similarity spans from −1, signifying complete opposition, 
to 1, indicating absolute identity. A value of 0 signifies orthogonality 
or decorrelation, while values in between denote varying degrees of 
similarity or dissimilarity. For text matching, the attribute vectors 𝜏𝑗
and 𝜏+𝑗  are the term frequency vectors of the traces.

These edit- and token-based diversity metrics can be used to evalu-
ate how well LLMs can emulate both the designer’s modeling approach 
and patterns, as well as human-based modeling approaches.

5.4.3. Trace hallucination metric
In the scope of the paper, we define hallucination as the number of 

additional operations, namely non-realistic events, generated compared 
to the human ones by specifying the following metric: 

𝐻(𝜏𝑗 , 𝜏+𝑗 )⟨event⟩ =

∑𝑁 ′

𝑘=1(Synthetic Events 𝑒+𝑗,𝑘 of type ⟨event⟩)
∑𝑁

(18)

𝑘=1(Real Events 𝑒𝑗,𝑘 of type ⟨event⟩)

8 
This metric can be evaluated on the full 𝜏+𝑗  synthetic trace file and 
𝜏𝑗 real trace file, as well as for all the considered events, classes, 
attributes, or specific event types (e.g., ADD or SET). If these metrics 
are greater than 1, then the LLM produces an incorrect synthetic trace 
file (i.e., hallucination results, the LLM adds more classes or attributes 
than those present in the real trace model).

5.5. Evaluation metrics for modeling recommendations

Concerning the produced recommendations, we set up an automatic 
evaluation of accuracy metrics aiming at mimicking the modeler’s be-
havior. In the scope of this paper, we define the True Positive (TP) as 
the correct recommended operation, False Positive (FP) as the wrong 
operation, and False Negatives (FN) as the operations that should 
be included in the recommendations but actually are not. Given these 
definitions, we define Precision (PR), Recall (REC), and F1-score (F1)
as follows:
PR = TP

TP + FP (19)

REC = TP
TP + FN (20)

F1 = 2 × PR × REC
PR + REC (21)

Concerning the assessed modeling operations, we evaluate the ap-
proach using two different parameters, i.e., context ratio (CR) and
cutoff (CO) as done by Muttillo et al. [7]. The first parameter repre-
sents the number of operations captured at a certain timestamp, i.e., 
past operations. In the scope of the paper, we mimic three different 
stages of models, i.e., early stage, medium, and almost complete, 
considering three thresholds, i.e., 𝐶𝑅1 = 0.2, 𝐶𝑅2 = 0.5, and 𝐶𝑅3 =
0.8 of the original testing model. Similarly, we vary the number of 
recommended operations by setting the CO parameters with 𝐶𝑂1 = 3, 
𝐶𝑂2 = 5, and 𝐶𝑂3 = 10 operations as thresholds. Thus, we derived nine 
different configurations, i.e., 𝐶1.1, 𝐶1.2, 𝐶1.3, 𝐶2.1, 𝐶2.2, 𝐶2.3, 𝐶3.1, 𝐶3.2, 
𝐶3.3.

For instance, configuration 𝐶1.2 represents the situation where the 
system recommends few operations in an early stage of development, 
i.e., 𝐶𝑂1 = 3 and 𝐶𝑅2 = 0.5, respectively.

Each configuration has been evaluated using the 5-fold cross-
validation since it is a well-founded strategy to evaluate ML-based 
recommender systems automatically [58]. In particular, we split the 
operations into train, test, and Ground Truth (GT) data by resembling 
the MORGAN original setting presented by Di Sipio et al. [43]. The train 
traces are used to feed the underpinning graph kernel engine and are 
compared with the testing ones. We obtained the GT data by relying on 
the CR parameter to vary the number of already performed operations. 
Concretely, augmenting CR reduces the number of operations to be pre-
dicted, i.e., the GT operations. We eventually use the test and GT data 
to compute the accuracy using the metrics presented in Section 5.4. 
To avoid any bias in the evaluation, we randomize the testing and 
GT operations, thus assuming that there is no temporal relationship 
between them. In addition, we analyze the time required to perform 
(i) the loading of training traces and encoding them in a graph-based 
format and (ii) the recommendation for all the testing operations.

5.6. Experimental variables

To answer 𝑅𝑄1, the synthetic datasets used for recommendations 
are the independent variable, with treatments or variations for this 
independent variable depending on the LLMs (i.e., OpenAI, Meta, Mis-
tral, Anthropic, and Google).

For 𝑅𝑄2, the nine configurations from Section 5 are the indepen-
dent variable. We analyze two aspects: training data size and using 
synthetic data to replace human-generated operations. To support the 
first aspect, we run a 5-fold validation on three datasets. Concerning 
the second aspect, we create a new synthetic dataset, 𝐷 , from human 
2
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traces in 𝐷1. Additionally, we mix 50% of traces from 𝐷1 and 𝐷2 to 
form the 𝐷𝑚05 dataset. The treatments depend on the dataset types 
(human-generated, LLM-generated, and mixed).

For the domain analysis, the independent variable is the dataset 
type (𝐷1, 𝐷2, and 𝐷𝑚05). In addition, we derive two datasets by mixing 
different ratios of synthetic and real traces, i.e., 𝐷𝑚02 and 𝐷𝑚08, where 
the ratios of synthetic traces are 0.2 and 0.8 out of the total number, 
respectively. The treatments or variations depend on the industrial use 
cases.

5.7. Experimental hypotheses

ä 𝐑𝐐𝟏: The null hypotheses for 𝐑𝐐𝟏 are related to metrics defined 
above. The null hypothesis for the correctness metric states that the 
mean correctness metric value 𝜇𝐶𝑜𝑟𝑟

𝐿𝐿𝑀𝑖
 of the 𝑖th LLM is lower than 0.95. 

In contrast, the alternative hypothesis states that their mean value is 
greater than 0.95. 
𝐻𝐶𝑜𝑟𝑟

0 ∶ 𝜇𝐶𝑜𝑟𝑟
𝐿𝐿𝑀𝑖

< 0.95 ∀𝑖 = 1,… , 𝑘

𝐻𝐶𝑜𝑟𝑟
𝐴 ∶ 𝜇𝐶𝑜𝑟𝑟

𝐿𝐿𝑀𝑖
> 0.95 ∀𝑖 = 1,… , 𝑘

(22)

The null hypothesis checks if the generated synthetic traces are 
syntactically incorrect. Rejecting it allows us to assess the quality of 
the synthetic dataset in terms of syntax.

For diversity metrics, we aim to determine if some LLMs perform 
better than others by comparing their distributions and statistical val-
ues. The null hypothesis states that the mean diversity metric values 
across different LLMs are the same, while the alternative hypothesis 
tests whether at least two LLMs have different mean diversity metrics. 
𝐻𝐷𝑖𝑣

0 ∶ 𝜇𝐷𝑖𝑣
𝐿𝐿𝑀1

= 𝜇𝐷𝑖𝑣
𝐿𝐿𝑀2

= ⋯ = 𝜇𝐷𝑖𝑣
𝐿𝐿𝑀𝑘

𝐻𝐷𝑖𝑣
𝐴 ∶ ∀𝑖 ≠ 𝑗 ∃ 𝑖, 𝑗 = 1,… , 𝑘 | 𝜇𝐷𝑖𝑣

𝐿𝐿𝑀𝑖
≠ 𝜇𝐷𝑖𝑣

𝐿𝐿𝑀𝑗

(23)

Finally, we conducted a statistical analysis to evaluate the halluci-
nation metric for all LLMs. The null hypothesis states that the average 
hallucination value is greater than 1 for each LLM, while the alternative 
hypothesis asserts the opposite. 
𝐻𝐻𝑎𝑙𝑙

0 ∶ 𝜇𝐻𝑎𝑙𝑙
𝐿𝐿𝑀𝑖

> 1 ∀𝑖 = 1,… , 𝑘

𝐻𝐻𝑎𝑙𝑙
𝐴 ∶ 𝜇𝐻𝑎𝑙𝑙

𝐿𝐿𝑀𝑖
< 1 ∀𝑖 = 1,… , 𝑘

(24)

This test is designed to determine whether the effect of hallucination 
is mitigated or not, and whether it can be deemed negligible. By 
evaluating these hypotheses, we aim to establish if hallucinations in 
the models can be safely ignored.

ä 𝐑𝐐𝟐: The dataset created through human-based modeling op-
erations (i.e., 𝐷1) is compared to the dataset generated by the LLM 
(i.e., 𝐷2) and the mixed human-LLM dataset (i.e., 𝐷𝑚05), using the 
mean precision, recall, and F1 values. To represent the combina-
tions considered, 𝑜𝑝𝑡 ∈ 𝐷 × 𝐶 refers to the Cartesian product of 
the datasets 𝐷 = {𝐷1, 𝐷2, 𝐷𝑚05} and the configuration set 𝐶 =
{𝐶1.1, 𝐶1.2, 𝐶1.3, 𝐶2.1, 𝐶2.2, 𝐶2.3, 𝐶3.1, 𝐶3.2, 𝐶3.3}. Therefore, 𝐻𝐿𝐿𝑀,𝑜𝑝𝑡 mea-
sures the impact of the LLM-generated synthetic dataset on IMA perfor-
mance compared to the human-generated dataset. The null hypothesis 
for 𝐑𝐐𝟐 tests whether the mean values of precision, recall, and F1 are 
equal across all configurations and datasets. 
𝐻𝐿𝐿𝑀,𝑜𝑝𝑡

0 ∶ 𝜇𝑜𝑝𝑡
𝐷1

= 𝜇𝑜𝑝𝑡
𝐷𝑚05

= 𝜇𝑜𝑝𝑡
𝐷2

𝐻𝐿𝐿𝑀,𝑜𝑝𝑡
𝐴 ∶ 𝜇𝑜𝑝𝑡

𝐷1
≠ 𝜇𝑜𝑝𝑡

𝐷𝑚05
OR 𝜇𝑜𝑝𝑡

𝐷1
≠ 𝜇𝑜𝑝𝑡

𝐷2
OR

𝜇𝑜𝑝𝑡
𝐷𝑚05

≠ 𝜇𝑜𝑝𝑡
𝐷2

(25)

Finally, we aim to determine if IMA performs better in certain 
use cases by comparing distributions and statistical values. The null 
hypothesis states that the mean IMA metric values for the different use 
cases are the same. 
𝐻𝐼𝑀𝐴

0 ∶ 𝜇𝐼𝑀𝐴
𝑈𝐶1

= 𝜇𝐼𝑀𝐴
𝐷𝑈𝐶2

= 𝜇𝐼𝑀𝐴
𝐷𝑈𝐶3

= 𝜇𝐼𝑀𝐴
𝐷𝑈𝐶4

= 𝜇𝐼𝑀𝐴
𝑈𝐶5 = 𝜇𝐼𝑀𝐴

𝑈𝐶6 (26)
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The alternative hypothesis tests whether at least two UCs have 
different mean IMA metrics, as follows: 
𝐻𝐼𝑀𝐴

𝐴 ∶ ∀𝑖 ≠ 𝑗 ∃ 𝑖, 𝑗 = 1,… , 6 | 𝜇𝐼𝑀𝐴
𝑈𝐶𝑖

≠ 𝜇𝐼𝑀𝐴
𝑈𝐶𝑗

(27)

5.8. Experimental plan

To address the RQs, we designed an experiment plan to evaluate the 
effectiveness of LLMs in generating synthetic traces for MDE systems 
and their potential to replace human-generated traces. The experiments 
are described below.

For 𝑅𝑄1, we conducted a single-factor experiment with multiple 
treatments, using datasets generated by different LLMs. We com-
pared them using correctness, diversity, and hallucination metrics to 
see if LLM-generated traces differ significantly from human-generated 
ones. For 𝑅𝑄2, we conducted a multi-factor experiment with multi-
ple treatments, training MORGAN with human-generated traces (𝐷1), 
LLM-generated traces (𝐷2), and a mixed dataset (𝐷𝑚05). The goal was 
to assess whether synthetic traces can replace human-generated ones 
in real-world scenarios. For the domain analysis, we evaluated the 
practical use of LLM-generated traces in real industrial settings. We 
conducted another multi-factor experiment with multiple treatments
across various datasets, including mixed datasets (i.e., 𝐷𝑚02, 𝐷𝑚05, 
𝐷𝑚08). The goal was to determine how well LLM-generated traces could 
be applied in industrial environments.

The experimental steps included: (1) collecting real models and 
traces, (2) generating synthetic datasets using LLMs, (3) applying cor-
rectness, diversity, and hallucination metrics, (4) training and evaluat-
ing MORGAN with different data configurations, and (5) validating the 
approach in real-world industrial use cases.

5.9. Data analysis

First, we use descriptive statistics, shown through boxplots, violin 
plots, and density plots, to assess metrics for LLM-generated synthetic 
trace data.

Next, data normality is evaluated using Q-Q plots and the Shapiro–
Wilk test (significance level 0.05). If data is normally distributed, we 
use one-sample and independent t-tests to assess the hypothesis. If not, 
the non-parametric Wilcoxon-Mann–Whitney Rank-Sum test is used 
to evaluate potential differences between the samples. The data is 
independent due to the use of different LLMs, which also applies to 
the Wilcoxon test.

Additionally, to identify significant differences among metrics, we 
conducted Fisher’s and Welch’s One-Way ANOVA tests, which account 
for equal or varying variances among LLM groups, respectively. The 
one-way ANOVA is considered a robust test against the normality 
assumption. However, we choose to check the results from the one-way 
ANOVA with the nonparametric Kruskal–Wallis H Test, which does not 
require the assumption of normality. For a detailed analysis of metric 
group differences, we further utilized the Games-Howell test for post-hoc 
analysis.

5.10. Experiment execution

We ran our experiment, considering all the tools and the evaluation 
approaches, on a single Ubuntu 22.04.2 LTS (GNU/Linux 6.5.0-44-
generic x86 64) with a PC equipped with an Intel® Xeon CPU E3-1225 
v5 @ 3.30 GHz, 32 GB system memory, 128 KB LI cache, 1 MB 
L2 cache, and 8 MB L3 cache. The quality of the synthetic data 
has been assessed from the perspectives of diversity, correctness, and 
hallucination, measured using quantitative metrics through the python-
text-distance19 library version 0.1.6 and Python version 3.11.4. All 
the statistical analyses have been performed using Jamovi20 software 
version 2.3.28.0.

19 Pytextdist: https://pypi.org/project/pytextdist/.
20 Jamovi: https://www.jamovi.org/.

https://pypi.org/project/pytextdist/
https://www.jamovi.org/


V. Muttillo et al. Information and Software Technology 186 (2025) 107806 
Fig. 6. Synthetic data quality evaluation diversity results for HEPSYCODE and CAEX. The violin plots show the distribution of points with the scatter plot. The small black squares 
in the center of the boxplots represent the mean.
6. Results

6.1. RQ1: What is the quality of the synthetic traces?

To answer this research question, we evaluate the quality of the 
generated synthetic data using the considered LLMs and the evaluation 
approach presented in Section 5.

6.1.1. Correctness evaluation
To assess the correctness of the generated data, we apply two 

activities, prompt engineering and automatic trace evaluation.
Prompt engineering was conducted by prompt engineers in com-

ponent 5  of Fig.  3. In this activity, prompt engineers selected input 
and output examples, analyzed the MSE context and task (synthetic 
trace creation), and refined prompts to ensure high-quality results with 
correct syntax, sufficient events, and no inaccuracies. The basic prompt 
structure in Fig.  4 was realized in a short time. Therefore, we proceeded 
to the human data cleaning activities in component 7  (e.g., remove 
unwanted text and/or characters and format the files).

The automatic validation was performed following Eq. (9) in com-
ponent 8  (i.e., the Quality Checker). The mean values for all the LLM 
are greater than 0.95, while the 25% percentile and the 75% percentile 
belong to 1.00, and the confidence interval ranges from 0.984 to 1. 
To test the experimental hypothesis for correctness, we first check the 
normality assumptions and then apply the appropriate statistical test. 
10 
The results for normality testing show that the 𝑝-value is lower than 
0.001, so we can reject the null hypothesis of the normality of the 
dataset, and we use the one-sample Wilcoxon-Mann–Whitney Rank-
Sum t-test. This test confirms that the correctness 𝐶(𝜏+𝑗 ) is greater than 
95% with p-values < 0.001 for all LLMs and MSEs under consideration. 
Therefore, we can reject the null hypothesis 𝐻𝐶𝑜𝑟𝑟

0  and we can assess 
that all the LLMs can accurately emulate, from a syntactic point of view, 
the generation of reference traces under the considered configuration 
with a syntactic accuracy greater than 95%.

Finally, the check on semantic dependencies did not detect any 
violations, confirming that all the LLMs are capable of generating valid 
sequences of modeling operations.

6.1.2. Diversity evaluation
Concerning the diversity, we evaluate differences between 𝜏+𝑗  syn-

thetic traces generated by LLMs and real 𝜏𝑗 traces generated by design-
ers using the diversity metrics defined in Section 5.4.2, from Eq. (10) 
to Eq. (17). Fig.  6 presents the violin plot results with the point distri-
butions related to each considered metric value. The plots show that 
all the LLMs behave similarly except for GPT-4, Claude, and Mistral, 
which have metric values closer to the median (i.e., lower variance) 
for the HEPSYCODE workbench.

To identify significant differences among metrics and test the exper-
imental null hypothesis 𝐻𝐷𝑖𝑣

0 , we conducted Fisher’s and Welch’s One-
Way ANOVA tests along with the Kruskal–Wallis H test, as stated in Sec-
tion 5.9. This analysis reveals substantial differences in the Levenshtein, 
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Fig. 7. Barplots comparing the number of human modeling operations and LLM-generated synthetic data events for each model.
LCS, Overlap, Jaro, Cosine, and Q-Gram metrics for HEPSYCODE and 
Cosine for CAEX across at least one LLM (p-values < 0.05).

For a detailed analysis of metric group differences, we conducted a 
post-hoc analysis using the Games-Howell test, which provided p-values 
for each metric group combination. The results indicate significant 
differences between pairs of LLMs with p-values less than 0.05. In the 
HEPSYCODE scenario, significant differences were observed between 
Claude and GPT-4, Claude and Llama 3, as well as Claude and Mistral 
for the Levenshtein and LCS metrics. For the Overlap metric, significant 
differences were found between Claude and all the other LLMs, as well 
as between Mistral and the other LLMs. Regarding the Jaro metric, 
significant differences were identified between Claude, Gemini, GPT-
3.5, and Llama 3, and among Mistral, Llama 3, and GPT-3.5. For the 
Q-Gram metric, significant differences were observed between Claude, 
Gemini, GPT-3.5, and Llama 3, as well as between GPT-4 and Llama 
3, and Mistral and Llama 3. Finally, the Cosine metric revealed signif-
icant differences between Claude and Llama 3. In the CAEX scenario, 
significant differences were identified in the Cosine21 metric between 
Gemini and Llama 3. These findings align with the visual inspection 
of violin plots in Fig.  6 and suggest that the LLMs differ significantly 
across several metrics, especially in the EDA domain.

Finally, we want to determine which of the LLMs considered in the 
previous combinations is the best in terms of the mean metric values. To 
do this, we applied the non-parametric Wilcoxon-Mann–Whitney Rank-
Sum test, as it is appropriate for comparing two independent groups 
when the assumptions of normality are not met. In the HEPSYCODE 
scenario, Claude outperforms GPT-4 in the Levenshtein, Q-gram, and 
Cosine metrics. Claude also outperforms Llama 3 and Mistral Large 
in the Levenshtein, Jaro, Q-gram, and Cosine metrics. Additionally, 
Claude outperforms Gemini and GPT-3.5 in the Jaro and Q-gram met-
rics. GPT-4 outperforms Claude and Mistral in the Overlap metric and 
outperforms Gemini and GPT-3.5 in the Jaro and Q-gram metrics. 
Moreover, GPT-4 also outperforms Llama 3 in the Jaro, Q-gram, and 
Cosine metrics. Mistral outperforms Gemini in the Q-gram metric, 
while Gemini surpasses Mistral in the Overlap metric. Mistral also 

21 Note that Kruskal–Wallis was higher than 0.05, but we still found some 
differences in at least two LLMs with the post-hoc analysis.
11 
outperforms GPT-3.5 in the Jaro and Q-gram metrics and demonstrates 
better performance compared to Llama 3 in the Jaro, Q-gram, and 
Cosine metrics. For the CAEX metrics, Gemini 1.5 Flash and GPT-3.5 
outperform Llama 3 70B across Q-Gram and Cosine metrics. However, 
when comparing Claude 3.5 Sonnet, Mistral Large, GPT-3.5, GPT-4, and 
Gemini 1.5 Flash, there is not enough evidence to conclude that one 
LLM is definitively better or worse than another in terms of diversity 
metrics.

This analysis confirms that Claude, Mistral, and GPT-4, the most 
recent models with the highest number of parameters, outperform the 
other LLMs in the evaluated similarity measures within the HEPSY-
CODE EDA domain. Meanwhile, in the CAEX scenario, no significant 
differences were observed among the LLMs.

6.1.3. Hallucination evaluation
Before evaluating the effects of hallucination, we analyze the num-

ber of events generated by LLMs. Fig.  7 shows a barplot comparison of 
human modeling operations and LLM-generated synthetic events. The 
data indicates that as model complexity increases, reflected in a higher 
number of human modeling operations, LLMs tend to deviate more 
significantly from human patterns, leading to greater discrepancies 
and potential hallucinations. This divergence is particularly evident in 
highly complex models such as 𝑀𝐻

12 , 𝑀𝐻
14 , 𝑀𝐻

15 , and 𝑀𝐶
20. These results 

highlight the importance of further research to identify the causes 
of these inconsistencies and to develop strategies for improving the 
alignment of LLM outputs with human behavior.

Furthermore, automatic evaluation of non-realistic events has been 
implemented considering the Hallucination metric defined in Eq. (18) 
in Section 5.4.3. Table  2 shows the statistics related to the hallucination 
metrics. The Confidence Interval (CI) of the mean assumes that sample 
means follow a t-distribution with N-1 degrees of freedom.

Based on Table  2, GPT-4 and Claude 3.5 Sonnet are the only LLMs 
with better values than the others for HEPSYCODE scenario, with an 
IQR equal to 0, and with SE, SD, and Variance lower than all other 
LLMs. Notably, for GPT-4, the hallucination metric stays at 1 up to 
the 95th percentile and increases only marginally to 1.02 at the 99th 
percentile, highlighting a significantly reduced impact of hallucination. 
In the CAEX scenario, GPT-3.5 and GPT-4 are the best-performing 
LLMs, with a median of 1.00, along with a moderate variance of 0.261 
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Fig. 8. Synthetic data quality evaluation hallucination results for HEPSYCODE and CAEX. The violin plots show the distribution of points in the scatter plot. The small black 
squares in the center of the box plots represent the mean.
Table 2
Event hallucination metric results.
 HEPSYCODE
 LLM N 𝜇 SE CI-L CI-U Median 95th 99th SD Variance IQR  
 Gemini 364 0.881 0.02400 0.834 0.929 1.000 1.64 2.00 0.458 0.2096 0.337 
 GPT-3.5 364 0.900 0.03422 0.823 0.967 1.000 2.00 3.00 0.653 0.4262 0.500 
 GPT-4 364 0.890 0.01391 0.863 0.918 1.000 1.00 1.02 0.265 0.0704 0.000 
 Llama 3 364 0.652 0.03062 0.592 0.713 0.558 1.50 2.69 0.584 0.3413 0.822 
 Claude 364 0.982 0.00783 0.966 0.997 1.000 1.00 1.42 0.149 0.0223 0.000 
 Mistral 364 1.017 0.03726 0.944 1.090 1.000 1.33 1.41 0.711 0.5052 0.000 
 CAEX
 LLM N 𝜇 SE CI-L CI-U Median 95th 99th SD Variance IQR  
 Claude 214 0.868 0.0519 0.765 0.970 1.000 2.00 2.44 0.759 0.576 0.500 
 GPT-3.5 214 0.502 0.0349 0.433 0.570 0.437 1.12 2.00 0.511 0.261 1.000 
 GPT-4 214 0.809 0.0375 0.735 0.883 1.000 1.78 2.00 0.548 0.301 0.656 
 Llama 3 214 0.760 0.0462 0.669 0.851 1.000 1.78 2.87 0.676 0.457 0.741 
 Mistral 214 0.885 0.0601 0.766 1.003 1.000 2.00 4.94 0.880 0.774 0.550 
 Gemini 214 0.777 0.0538 0.671 0.883 1.000 2.00 3.81 0.787 0.619 1.000 
𝜇: Mean; SE: Standard Error; SD: Standard Deviation; IQR: Interquartile range; CI-L: 95% Confidence Interval Lower Bound; CI-U: 95% Confidence 
Interval Upper Bound; 95th: 95% Percentile; 99th: 99% Percentile;
and 0.301, respectively. Furthermore, GPT-3.5 and GPT-4 exhibit the 
lowest values at both the 95th and 99th percentiles, suggesting that 
they are the best LLMs to mitigate the effects of hallucination in the 
CAEX scenario.

The results for normality testing show that the 𝑝-value is lower than 
0.001 for all the LLM under consideration, so we can reject the null 
hypothesis of the normality of the dataset, and we use the one-sample 
Wilcoxon-Mann–Whitney Rank-Sum t-test to address 𝐻𝐻𝑎𝑙𝑙

0 . Applying 
the Wilcoxon One Sample T-Test for all the LLMs and the HEPSYCODE 
and CAEX scenarios, we get a 𝑝-value < 0.001, allowing us to reject 
𝐻𝐻𝑎𝑙𝑙

0 . This result confirms that the mean number of synthetic modeling 
operations generated by the LLMs is statistically significantly less than 
1. This finding suggests that, on average, the effects of hallucination 
are mitigated, demonstrating a closer alignment between LLM outputs 
and human behavior.

Finally, Fig.  8 presents the synthetic data quality evaluation hallu-
cination results for HEPSYCODE and CAEX, considering single events, 
classes, attributes, and specific types of modeling operations (i.e., ADD 
and SET). The boxplots confirm previous findings, showing that GPT-4 
and Claude are the LLMs that perform best in mitigating the effects of 
hallucination at least in the HEPSYCODE scenario.

We also calculate the total evaluation time by summing the time 
needed to complete each activity, from creating a domain-specific 
metamodel to generating a final dataset for training IMAs. Moreover, 
12 
using the PC configuration presented in Section 5.10, the total time 
for modeling and trace collection in MSE was approximately 150 min, 
while the time for generating models using the six LLMs and performing 
validation was approximately 25 min.

6.2. RQ2: Is synthetic datasets useful for training a lightweight IMA?

LLM analysis. To obtain 𝐷2, we use the in-context few-shots learning 
setting described in Section 4 by relying on GPT-4, as it represents 
one of the best models according to the conducted evaluation in the 
previous research question. In addition, we analyze the recommenda-
tion capabilities in suggesting operations that affect (i) classes and (ii) 
attributes, resembling the original MORGAN experiment in Di Sipio 
et al. [43]. Fig.  9 shows the results obtained by MORGAN in recom-
mending class and attribute operations considering the three datasets 
and the nine configurations in HEPSYCODE and CAEX scenarios.

To identify significant differences among configurations and test 
the experimental null hypothesis 𝐻𝐿𝐿𝑀,𝑜𝑝𝑡

0 , we conducted Fisher’s and 
Welch’s One-Way ANOVA tests along with the Kruskal–Wallis H test, 
as stated in Section 5.9. This analysis reveals substantial differences 
in the configuration for HEPSYCODE and CAEX across at least one 
configuration (p-values < 0.001). These findings align with the visual 
inspection of box plots in Fig.  9.

For a detailed analysis of configuration differences, we conducted a 
post-hoc analysis using the Games-Howell test, which provided p-values 
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Fig. 9. Recommendations results for HEPSYCODE (H-) and CAEX (C-). The green diamond-shaped marker represents the mean.
for each metric group combination. All results are freely available in the 
replication package repository2.

Specifically, in recommending class operations, the system performs 
better when real traces are used across all the configurations con-
sidered, as presented in Section 5. In particular, configurations 𝐶3.1, 
𝐶3.2, and 𝐶3.3 result in better performance. Moreover, while the value 
obtained by MORGAN using synthetic traces is slightly less accurate 
compared to the human dataset for HEPSYCODE, there is an improve-
ment in performance for CAEX when using synthetic data compared to 
real traces.

Nonetheless, we report that the results obtained using the synthetic 
datasets are similar to the ones obtained in the original MORGAN paper 
in which the same algorithm has been tested using a curated modeling 
13 
dataset, i.e., ModelSet [13]. While we acknowledge that the purpose 
is different, i.e., it was used to support model completion, the study 
highlights the importance of curating and preprocessing training data 
for ML-based IMAs.

Intuitively, powerful LLMs like GPT-4 can be used to generate 
modeling operations when real traces are not available. This claim is 
confirmed by analyzing the results obtained for 𝐷𝑚05 where the results 
are slightly increased compared to synthetic traces. On the one hand, 
we report that using only half of the real traces has limited impact. 
On the other hand, a small portion of synthetic data can contribute 
to enabling IMAs focused on recommending modeling operations. It is 
worth noting that we consider MORGAN as the IMA component in this 
paper. Thus, we anticipate that using other IMAs can lead to better 
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Fig. 10. Total recommendations results scatterplot for the different dataset D1 (Manual), D2 (GPT4) and Dm05 (Mixed).
performance (e.g., NEMO by Di Rocco et al. [14]). Concerning the 
configurations, we report that increasing both the CR and CO values 
contributes to increasing the overall performance of MORGAN. This is 
quite expected since the MORGAN’s engine is based on a graph kernel 
similarity [47] that benefits from more training data.

A similar trend in performance accuracy can be observed for rec-
ommending attribute operations summarized in Fig.  9. As expected, 
the accuracy is lower compared to class operations due to the higher 
variability in defining modeling operations. Concerning the impact of 
synthetic operations, the results confirm that 𝐷1 offers better perfor-
mance for HEPSYCODE, even though the delta between the synthetic 
data is lower than the class recommendations, while synthetic datasets 
lead to better MORGAN performances in the CAEX scenario. It is worth 
mentioning that the obtained performance is in line with state-of-the-
art IMAs [32] used in modeling completion tasks. Furthermore, we 
report that the NEMO approach by Di Rocco et al. [14], the most 
relevant approach to our work, achieves 0.60 in accuracy on a curated 
dataset. In this respect, our approach employs traces extracted from 
real-world models.

Fig.  10 shows a scatterplot of total recommendations across dif-
ferent datasets, along with the distributions of Precision and Recall. 
LOESS regression lines [59] are added to highlight trends, with shaded 
areas representing standard error variability. In the CAEX scenarios, the 
addition of synthetic data, especially in combination with real data, 
improves overall performance, as shown by Precision distributions, 
14 
Recall distributions, and trend lines. Contrarily, in the HEPSYCODE 
scenario, performance decreases with synthetic data, though results 
remain within an acceptable range. This highlights the importance 
of meta-model complexity and scenario-specific considerations when 
integrating synthetic data, as its impact can vary depending on the 
underlying characteristics of the datasets and the specific meta-model.

Finally, we evaluated the time needed to compute the training and 
testing phase considering only the MORGAN tool, thus excluding the 
time to generate the traces. Overall, the time to load and encode the 
training traces is equal to 0.07 s on average for each fold, while 7 s 
are required to perform the recommendation phase. In addition, we 
analyze the time required to generate the synthetic traces. By running 
a prompt using the chatGPT service, we report that the generation of a 
single trace takes approximately 0.73 s.

Domain analysis. To evaluate the impact of different application do-
mains, we run MORGAN on Dataset 𝐷3 using the previous datasets as 
training, i.e., 𝐷1, 𝐷𝑚02, 𝐷𝑚05, 𝐷𝑚08, and 𝐷2 considering the novel 
CAEX MSE.

Concretely, we used 𝐷3 datasets as the validation set of our ap-
proach, aiming to evaluate how the produced data can be used in 
different application domains. Fig.  11 depicts the results obtained 
for HEPSYCODE and CAEX. Notably, we used configuration 𝐶3.3 to 
compute the results, as it is one of the configurations that offers the 
best performance, as shown in the previous research question.
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Fig. 11.  Validation results for the considered MSEs on dataset 𝐷3 for the different dataset D1 (Manual), D2 (GPT4), Dm02, Dm05, and Dm08 (Mixed).
Fig. 12. Synthetic Data IMA Metric Results for CAEX and HEPSYCODE into the industrial domain. The violin plots show the distribution of points with the scatter plot. The small 
black squares in the center of the boxplots represent the mean.
In contrast to the results of 𝑅𝑄2, the human-based traces are not 
the best training set for MORGAN, while the usage of synthetic data im-
proves the whole performance for recommended operations in different 
industrial contexts. In addition, we see that the operations generated 
by the GPT-4 model tend to decrease the recall values, while human-
generated traces have higher precision values on average in the CAEX 
and HEPSYCODE scenarios. Therefore, mixing human and synthetic 
traces can represent an adequate trade-off to reduce the number of 
false negatives. This is confirmed by analyzing the results obtained with 
the novel datasets, i.e., 𝐷𝑚02 and 𝐷𝑚08. Concerning the time needed 
for the recommendations, it is worth noticing that the training time 
is reduced from 7 to 2 s on average as we are using MORGAN pre-
trained weights to perform the recommendations activity. Therefore, 
the computation times are similar to those presented in 𝑅𝑄2 to perform 
the testing phase.

Concerning the experimental hypotheses, we evaluate differences 
between use cases using the IMA metrics defined in Section 5.5. Fig. 
12 presents the violin plot results with the point distributions related 
to each considered IMA metric value. The plots show that all the UCs 
behave similarly except for 𝑈𝐶4 and 𝑈𝐶6, which have metric values 
closer to the median (i.e., lower variance) for the HEPSYCODE and 
CAEX workbench.

To identify significant differences among metrics and test the ex-
perimental null hypothesis 𝐻𝐼𝑀𝐴

0 , we conducted Fisher’s and Welch’s 
One-Way ANOVA tests along with the Kruskal–Wallis H test, as stated 
15 
in Section 5.9. This analysis reveals substantial differences in precision 
and recall for class and attributes (p-value < 0.05 for all the cases), 
while F1 has substantial differences in class but not in attributes.

For a detailed analysis of metric group differences, we conducted 
a post-hoc analysis using the Games-Howell test, which provided p-
values for each metric group combination. Specifically, in the attributes
scenario, significant differences were observed in the precision of 𝑈𝐶6
compared to 𝑈𝐶1, 𝑈𝐶3, 𝑈𝐶4, and 𝑈𝐶5, and in the recall of 𝑈𝐶6
compared to 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, 𝑈𝐶4, and 𝑈𝐶5. Therefore, in the classes
scenario, significant differences were observed in the precision of 𝑈𝐶6
compared to 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, and 𝑈𝐶4, in the recall of 𝑈𝐶6 compared 
to 𝑈𝐶3 and 𝑈𝐶5, and in the F1 of 𝑈𝐶6 compared to 𝑈𝐶4. There were 
no significant differences among the F1 in the attributes scenario.

Finally, we want to determine which of the UCs considered is the 
best in terms of the IMA mean metric values. To do this, we applied the 
non-parametric Wilcoxon-Mann–Whitney Rank-Sum test, as it is appro-
priate for comparing two independent groups when the assumptions of 
normality are not met. In the attributes scenario, 𝑈𝐶6 is outperformed 
by all other UCs in precision. Therefore, 𝑈𝐶1 outperforms 𝑈𝐶4 in 
recall and F1, while 𝑈𝐶4 outperforms 𝑈𝐶5 in precision. Finally, 𝑈𝐶6
outperforms 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, 𝑈𝐶4 in recall, while 𝑈𝐶6 outperforms 
𝑈𝐶4 and 𝑈𝐶5 in F1. In the classes scenario, 𝑈𝐶6 is outperformed by all 
other UCs in precision, and by 𝑈𝐶4 in F1. Therefore, 𝑈𝐶6 outperforms 
𝑈𝐶 , 𝑈𝐶 , 𝑈𝐶 , and 𝑈𝐶  in recall.
1 2 3 5
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7. Discussion

In this section, we present a discussion of the findings from our 
study, specifically addressing the research questions outlined earlier 
(i.e., 𝑅𝑄1, 𝑅𝑄2, and 𝑅𝑄3).

7.1. Answer and reflections on 𝑅𝑄1

The results in Section 6.1 show that the traces generated by the 
LLMs are very similar to those generated by a human, especially con-
sidering GPT-4 and Claude, which have the best statistical results and 
reduced hallucination effects in the EDA domain. In the CAEX scenario, 
no differences were observed in the results across the different LLMs, 
except for Llama 3 70B, which shows the worst performance. Moreover, 
the hallucination metric is never mitigated in the CAEX scenario, so 
this perturbation in the dataset must be taken into account. It is worth 
noting that, although the effects of hallucination are mitigated, the 
model complexity introduces challenges related to the coverage of the 
model itself and the correct number of events generated by LLMs. 
These issues could potentially impact the performance of recommender 
systems. However, these results demonstrate that LLMs can be used 
as tools to emulate modeling operations that a human could perform, 
offering a fairly reliable level of accuracy. This suggests a promising 
potential for LLMs to support designers in modeling activities in various 
complex domains.

7.2. Answer and reflections on 𝑅𝑄2

The analysis of our results in Section 6.2 provides significant in-
sights into the use of LLM-generated synthetic datasets for training 
an IMA. Specifically, the impact of synthetic datasets appears to vary 
depending on the complexity of the domain and the comprehensiveness 
of the available real datasets.

For the HEPSYCODE workbench, the real dataset was extensive 
enough to cover the HEPSYCODE metamodel’s classes and attributes. 
The results suggest that synthetic datasets did not significantly en-
hance IMA performance. This is demonstrated by the hallucinations, 
diversity, and correctness metrics, where synthetic traces generated 
by GPT-4 closely match previous real-world outcomes. Thus, LLM-
generated synthetic traces may come in handy where the real dataset is 
comprehensive and fully represents the domain’s complexity. However, 
synthetic traces can expand the training set more quickly than human-
based modeling activities while maintaining the accuracy of other 
state-of-the-art tools.

In contrast, the CAEX environment presented a more complex do-
main, characterized by richer and more intricate syntax and semantics, 
allowing the definition of various application domains. Here, the use of 
LLM-generated synthetic traces proved beneficial as it addressed gaps 
not covered by the real dataset, improving IMA performance. This is 
confirmed by the hallucination metric, which consistently exceeded 
a value of 2 across all LLMs used. The higher hallucination metric 
indicates that LLMs were able to produce a greater number of events 
and modeling operations than those present in the real dataset. Despite 
the divergence from real-world data, these synthetic traces were syn-
tactically accurate and did not introduce bias into the IMA. Instead, 
they contributed to enhanced overall performance by covering a wider 
range of modeling operations.

The domain analysis shows that 𝑈𝐶6 has the lowest precision but 
the highest recall. Furthermore, when comparing 𝑈𝐶  to 𝑈𝐶  (i.e., from 
6 5
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the automotive domain), similar outcomes are observed across other 
UCs, indicating that performance is not influenced by the application 
domain (e.g., 𝑈𝐶5 and 𝑈𝐶6), but rather by the specific MSE, the 
underlying metamodel, and the complexity of the domain.

The findings also reveal that, for CAEX, the use of a synthetic dataset 
reduces precision but enhances tolerance to false negatives. The high 
precision and low recall observed in HEPSYCODE, contrasted with the 
low precision and high recall in CAEX, are attributed to the dataset 
size and domain complexity. In the case of HEPSYCODE, we utilized 
a large, real-world dataset with several case studies that covered the 
entire metamodel. The results suggest that while the synthetic dataset 
improves precision, it does so at the cost of recall. However, this 
trade-off is acceptable, as the outcomes are consistent with previous 
real-world studies.

In contrast, for CAEX, the greater complexity of the domain pre-
vented us from fully covering the metamodel. Consequently, the syn-
thetic models generated were unable to capture the full complexity, 
and the use of synthetic data did not enhance the IMA’s precision. 
This is because the synthetic traces introduced bias into the dataset, 
making it less suitable for real-world industrial applications. In practice, 
LLMs generate synthetic traces that are syntactically accurate but often 
include cases not present in real data, i.e., high hallucination rates, 
leading to the generation of additional events and modeling operations. 
As a result, synthetic datasets differ significantly from real ones, and 
in industrial settings, the introduction of unrealistic traces decreases 
precision, although it does reduce the likelihood of false negatives by 
increasing recall.

Concretely, the provided recommendations might be useful in differ-
ent application domains, thus assisting modelers in different real-world 
scenarios. In addition, we demonstrate that our approach can be used in 
different application contexts, thus representing a suitable alternative 
to cope with CH3 and CH4 discussed in Section 2. Concretely, IMAs can 
be trained with synthetic traces that are not identical but similar to the 
target ones, thus overcoming privacy issues in an industrial context.

8. Limitations

This section discusses the limitations of the proposed framework. A 
first limitation concerns the possible hallucination of incorrect opera-
tions, which can lead the IMA component to process unsuitable data. 
Although we mitigated this risk by experimenting with six popular 
LLMs and evaluating the generated data with well-founded metrics, 
hallucination remains an intrinsic challenge. Additionally, we did not 
address the removal of operations, which could introduce biases in the 
computation of the hallucination metric.

Another aspect relates to the evaluation of the IMA component 
itself. The computed metrics might lead to inaccuracies. To reduce 
this risk, we designed three different configurations simulating varying 
levels of completion and validated the outcomes through a 5-fold 
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cross-validation using established statistical indices. All experiments 
were randomized and conducted in an isolated environment, allowing 
repeated executions with identical prompts across different LLMs to 
ensure accurate comparisons.

The generalizability of our framework is also a concern, as results 
may vary when considering different modeling tools. We addressed 
this partially by validating the approach using distinct, well-established 
modeling components for each architectural block (i.e., the modeling 
environment, the trace recorder, and the IMA assistant), and by exploit-
ing an additional modeling dataset from several EU projects, thus cov-
ering different domain applications, as discussed in 𝑅𝑄2. Nonetheless, 
further validations on a broader set of modeling tools and application 
domains are needed.

Moreover, reconstructing complete models from the generated
traces is currently infeasible, as the traces lack essential semantic 
information necessary to capture the full model structure and behavior, 
as shown in Section 4.2. Although our diversity metrics assess structural 
variety and alignment, they do not guarantee end-to-end consistency. 
Enriching traces with semantic details is a promising direction for 
future work [17].

Another potential improvement concerns the learning strategy. 
While our approach relies on prompt-based in-context learning, fine-
tuning LLMs on domain-specific, high-quality traces could enhance 
accuracy and reasoning capabilities. However, this is constrained by the 
scarcity of publicly available traces, especially in industrial contexts. 
Future work will explore LLM fine-tuning strategies to overcome this 
limitation [60].

Finally, we used the Goal-Question-Metric (GQM) approach to 
prevent inadequate pre-operational explication of constructs. We ad-
dressed mono-operation bias by introducing multiple variations of 
independent variables across 𝑅𝑄1 and 𝑅𝑄2, including different LLMs, 
dataset configurations, and a mix of human-generated and LLM-
generated datasets. This approach provided a broader representation 
and enhanced the generalizability of our results. To mitigate mono-
method bias, we applied a range of metrics across experiments, i.e., 
multiple metrics and multi-factor experiments using mixed datasets.

Overall, when analyzing the results of our experiment, we used the 
appropriate statistical tests to prevent any errors, biases, or violated 
assumptions. Additionally, we created a replication package to enable 
others to reproduce our work and confirm our methods and results. 
Despite all these efforts, residual limitations remain and call for further 
empirical replication.

9. Conclusion

This paper proposes MASTER-LLM, a conceptual framework to sup-
port automated activities in the context of MDE, leveraging modeling 
event recorders, intelligent modeling assistants, and large language 
models. In particular, we used prominent LLMs to generate synthetic 
traces using an in-context few-shot prompt engineering strategy, aiming 
at resembling human-style operations. The findings of the study demon-
strate that LLMs can be used to generate traces in a specific format, even 
though the evaluated assistant suffers from degradation of performance 
when delivering recommendations.

In future work, we plan to investigate how synthetic traces impact 
qualitative aspects such as internal regulations, privacy concerns, and 
security issues. Additionally, we aim to generate multiple traces from 
the same model to evaluate how this affects the overall metrics and 
performances (e.g., using different prompt formats). Furthermore, we 
intend to include additional modeling assistants and LLMs that account 
for long-range temporal dependencies. Last but not least, we will 
deploy MASTER-LLM by integrating the complete set of components 
and collecting feedback from modelers.
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