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A B S T R A C T

Since its launch in November 2022, ChatGPT has gained popularity among users, especially programmers who
use it to solve development issues. However, while offering a practical solution to programming problems,
ChatGPT should be used primarily as a supporting tool (e.g., in software education) rather than as a
replacement for humans. Thus, detecting automatically generated source code by ChatGPT is necessary, and
tools for identifying AI-generated content need to be adapted to work effectively with code. This paper presents
GPTSniffer– a novel approach to the detection of source code written by AI – built on top of CodeBERT. We
conducted an empirical study to investigate the feasibility of automated identification of AI-generated code,
and the factors that influence this ability. The results show that GPTSniffer can accurately classify whether code
is human-written or AI-generated, outperforming two baselines, GPTZero and OpenAI Text Classifier. Also, the
study shows how similar training data or a classification context with paired snippets helps boost the prediction.
We conclude that GPTSniffer can be leveraged in different contexts, e.g., in software engineering education,
where teachers use the tool to detect cheating and plagiarism, or in development, where AI-generated code
may require peculiar quality assurance activities.
1. Introduction

ChatGPT1 (OpenAI, 2023) is a generative Artificial Intelligence (AI)
tool, able to produce convincingly human answers to queries from
users. Since its public release on November 30, 2022, ChatGPT has
attracted the attention of both expert- and non-expert users worldwide,
reaching one million users only five days after the launching. ChatGPT
rises to fame thanks to its ability to provide human-like answers, as
well as to maintain a thread of conversation in a natural way.

One of the areas in which ChatGPT appears to be particularly
promising is its ability to support developers in a variety of tasks (Bu-
caioni et al., 2024), that range from writing source code that ful-
fills a given (natural language) specification, to creating a software
architecture/design, generating tests, or fixing a bug.

Leveraging ChatGPT–as well as some previously-existing AI-based
code generation tools such as GitHub Copilot (GitHub, 2024), OpenAI
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Codex (OpenAI, 2024), or Tabnine (Tabnine, 2023)–to get recommen-
dations for source code solutions is becoming very popular among
developers. This does not happen without risks, as it has been shown
that generative models could provide vulnerable code (EuroPol, 2023;
Pearce et al., 2021), and also there is a wide yet controversial discus-
sion on possible copyright and licensing infringements (Reda, 2023;
StephanieGlen, 2023).

Moreover, when students use ChatGPT or other code generators
during their learning processes, issues on risks and benefits arise, and
this has triggered quite some discussion among educators. On the
positive side, code snippets generated by ChatGPT provide students
with a practical way to complete their assignments. At the same time,
one significant risk is that students would not develop some essential
skills that can be acquired only through self-learning, e.g., critical
thinking and problem-solving. Moreover, handing in code written by
ChatGPT without additional work can be considered a form of fraud.
Such behaviors trigger ethical concerns, as students have their work
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Fig. 1. Two code snippets to display the maximum consecutive increasingly ordered substring.
done without actually performing their own research. Lately, as a
precautionary measure, universities in different countries even imposed
a ban on ChatGPT,2 prohibiting their students from using the system to
enerate homework solutions or to compose essays.

As software engineering researchers, on the one hand, we need
o promote the democratized use of AI tools to facilitate daily pro-
ramming tasks. On the other hand, we believe that it is necessary to
ecognize whether a source code element has been written by AI for
arious reasons, and, in particular (i) from the professional develop-

ment side, dealing with reliability, security, and legal problems; and
(ii) from the educational side, coping with cheating and plagiarism.

Recently, tools such as GPTZero (GPTZero, 2023) and OpenAI Text
Classifier (Classifier, 2023) have been developed to automatically rec-
ognize if a text is written by OpenAI technologies. Unfortunately, we
noticed, by some attempts, that such tools are not necessarily good
at distinguishing between source code written by humans and AI. We
conjecture that the underpinning engine has been trained on natural
language text, rather than source code. This makes it necessary to train
specific classifiers aimed at identifying AI-generated code.

This paper presents an empirical study to investigate the extent to
which it is possible to automatically detect whether a code snippet is
written by ChatGPT or humans, as well as the factors that can influence
this ability. To achieve this, we present GPTSniffer—a machine learning
solution to determine whether a piece of source code has been gener-
ated by ChatGPT. The classification engine is based on CodeBERT (Feng
et al., 2020), a pre-trained model built on top of a code search dataset,
i.e., CodeSearchNet (Husain et al., 2019). To the best of our knowledge,
there is no specific approach able to identify whether source code has
been generated by AI.

We evaluated GPTSniffer on two datasets collected from GitHub
and ChatGPT. In the evaluation, we studied how characteristics of
the training and test, and preprocessing steps impact the prediction
performance. Also, we empirically compare GPTSniffer with GPTZero
and OpenAI Text Classifier. The experimental results reveal interesting
outcomes, while GPTSniffer cannot work well given that the train-
ing data and testing data are collected from completely independent
sources, it obtains a perfect prediction by most of the configurations,
where there are pairwise relationships between code written by humans
and generated by ChatGPT.

The main contributions of our work are summarized as follows:

• A novel approach–named GPTSniffer–to the recognition of source
code generated by ChatGPT.

• An empirical evaluation and comparison with two state-of-the-art
baselines, i.e., GPTZero and OpenAI Text Classifier.
2

• The tool developed and the datasets curated through this work
are made available to allow for future research (Nguyen et al.,
2023a).

Paper Structure. Section 2 provides a motivating example, and
the proposed approach is described in Section 3. Section 4 presents
the materials and methods used to conduct an empirical evaluation on
the proposed approach. Afterwards, Section 5 reports and analyzes the
experimental results. We have some discussion and highlight the threats
to validity in Section 6. The related work is reviewed in Section 7, and
the paper is concluded in Section 8.

2. Background and motivations

As outlined in the introduction, concerns related to security, copy-
right/licensing infringement, or education ethics make it particularly
important to identify whether a snippet has been generated by an AI.

In principle, some solutions to cope with this problem exist. For
example, GPTZero is one of the existing systems designed to auto-
matically detect text generated by OpenAI technologies. However, by
testing GPTZero on source code, we notice that the outcome is far from
satisfactory, suggesting how a well-defined text classifier fails to detect
the origin of source code.

Fig. 1 shows an example with two code snippets, which are im-
plemented exactly for the same purpose, i.e., displaying the maxi-
mum consecutive increasingly ordered substring.3 However, one of
them is written by humans (Fig. 1(a)), and the other one is gener-
ated by ChatGPT (Fig. 1(b)). The snippets look pretty standard, i.e.,
they use common API calls, such as chatAt(), substring(), or the
java.util.Scanner package. Essentially, it is not easy to spot any
concrete sign that can be used to recognize the source code’s origin.

We fed the code in Figs. 1(a) and 1(b) to GPTZero, one by one,
and asked for identification. Surprisingly, the platform gave the same
conclusion for both snippets, i.e., ‘‘Your text is likely to be written
entirely by a human’’. This means that the system wrongly classifies
the second snippet. Moreover, GPTZero also added a remark, saying
that: ‘‘Sentences highlighted are more likely to be written by AI ’’. Such
sentences, i.e., lines of code, are marked using yellow in Fig. 1.
By comparing the designated parts in both snippets, we see that
GPTZero evaluates many common code lines as written by AI, e.g.,
public static void main(String[] args) (Line 3) or
System.out.print(‘‘Enter a string:’’); (Line 5). This is in-
teresting as these lines can be written by both humans and ChatGPT.

3 The original snippet is available online: https://bit.ly/3MZCDWy.

https://bit.ly/3MZCDWy
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Fig. 2. System components.
Moreover, affirming that the snippets are ‘‘written entirely by a human’’,
while still highlighting lines that ‘‘are more likely to be written by AI ’’, is
somewhat contradictory, rendering the classification result even more
confusing.

By further testing GPTZero with more code from humans and Chat-
GPT, we witnessed similar outcomes. One likely explanation is that,
while the underlying GPT model of GPTZero has been trained on a large
corpus of text from the Internet (including source code too), it has not
been specifically fine-tuned for source code. Altogether, we see room
for improvement, i.e., the pattern in which commands are written, or
the way comments are generated, are among distinguishable features
that can be used to detect the origin of a snippet. This motivates
us to investigate how well specifically-trained models can effectively
recognize AI-generated code, as it is described in the rest of the paper.

3. Proposed approach

This section describes in detail GPTSniffer—a practical approach to
distinguish code written by humans from that generated by ChatGPT,
leveraging state-of-the-art pre-trained models. While we aim for a
generic architecture with the adoption of various classification engines,
the first version of GPTSniffer is built on top of CodeBERT, inheriting
the well-defined technical foundation from the underlying pre-trained
model. The ultimate aim is to achieve an ideal classification outcome
for source code written in different languages.

As shown in Fig. 2, the GPTSniffer architecture consists of three
main components, i.e., Extractor, Tokenizer, and Classifier. To train the
classification engine, input data is collected from two data sources, i.e.,
GitHub and ChatGPT: while the former is a huge store of human-written
code, the latter provides code generated by AI. Through the Extractor
component, the input data is then undergone different preprocessing
steps to enrich the training corpus. Tokenizer is employed to encode
data for providing input to the Classifier component, which performs
the training to yield the final model. Such a model can then be used
to perform a prediction for unseen code snippets. The GPTSniffer
components are described in the following subsections.

3.1. Extractor

Empirical studies have shown that source code features such as
package names, class names, code comments, or import directives
are the unique features to identify the so-called coding style (Bosu
et al., 2015; Li et al., 2022; Ogura et al., 2018). We conjecture that
style-related features can be an effective means to distinguish snippets
written by humans from those generated by ChatGPT.

The Extractor component collects and prepares suitable data to train
GPTSniffer. The ultimate aim is to create different derivations of the
original code snippets, allowing the classifier to learn from diverse
coding styles. The Extractor implements a set of rewriting rules, defined
by adopting regular expressions. Given that an artifact, e.g., imports,
package names, or code comments, matches the regular expression, it
3

can either be removed or replaced with one that resembles a certain
coding style. It is important to note that the Extractor currently provides
the rewriting rules that allow us to create the settings defined in Sec-
tion 4.5, i.e., rewriting class names, and removing package definition,
imports, and comments. As an example, Fig. 3 depicts two rewriting
rules used by the Extractor component, and the remaining ones are
provided in our online replication package for reference.

3.2. Tokenizer

Once preprocessed by the Extractor, the source code is provided as
input to the Tokenizer component, which transforms the code into a
proper format that can then be consumed by CodeBERT. In particular,
the input code is split into independent units called tokens, and padded
with signaling tokens to separate the snippet from each other.

For instance, given the class in Fig. 4, the Tokenizer parses and
transforms it into the sequence shown in Listing 1.

Listing 1: The transformed sequence.
BOS, public, class, Example, {, public, static,

void, main, (, String, [, ], args, ), {, int, x,
=, 5, ;, int, y, =, 7, ;, int, z, =, x, +, y, ;,
System, ., out, ., println, (, z, ), ;, }, },
EOS

in which BOS and EOS are the two special tokens to signal the begin-
ning and end of the sequence. The resulting sequence is then fed as
input to the classification to perform the training and prediction.

3.3. Classifier

CodeBERT has been pre-trained on CodeSearchNet (Husain et al.,
2019), a code search dataset with more than 2M bimodal code-
documentation pairs and 6.4M unimodal code snippets written in
different languages, including Java, and Python. Classifier is built on
top of CodeBERT,4 and run with Pytorch. In this respect, it inherits
the well-founded technical features from the original model. Starting
from the sequence of tokens generated by Tokenizer, Classifier uses
a series of encoding layers to transform it into a fixed-length vector
representation. Each encoding layer performs a series of computations
on the input sequence to generate a new sequence of vectors that
captures different aspects of the input’s context.

4. Empirical study design and methodology

This section describes the empirical evaluation to study the GPTSnif-
fer ability to detect ChatGPT-generated snippets, and investigate the
factors that impact on such ability.

4 We make use of the CodeBERT pre-trained model provided by
Huggingface (https://huggingface.co/microsoft/codebert-base).

https://huggingface.co/microsoft/codebert-base
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Fig. 3. Example of the rewriting rules.
Fig. 4. Example input code.

4.1. Research questions

We study the performance of GPTSniffer through a series of exper-
iments to answer the following research questions:

• RQ𝟏: How do the input data and the preprocessing settings impact
on the GPTSniffer prediction performance? Using three datasets
collected from GitHub and ChatGPT, we conducted a series of
experiments to identify the characteristics of the training data
that can influence the accuracy of GPTSniffer, also under different
preprocessing configurations.

• RQ𝟐: To which extent can GPTSniffer detect ChatGPT-generated
source code on the paired dataset under different preprocessing set-
tings? In this case we put GPTSniffer under a particularly favor-
able scenario, i.e., the presence of paired snippets (human vs.
AI) in the training data, and investigated how GPTSniffer would
perform in such a scenario under different code preprocessing
configurations. This also aims to test the ability of GPTSniffer to
detect code altered by prompt engineering.

• RQ𝟑: How does GPTSniffer compare with GPTZero and OpenAI Text
Classifier in recognizing ChatGPT-generated source code? Using a
set of common queries, we compare GPTSniffer with GPTZero
(GPTZero, 2023) and OpenAI Text Classifier (Classifier, 2023) two
state-of-the-art systems for identifying whether a text is generated
by AI, including ChatGPT, or written by humans.

4.2. Data collection

To simulate real-world scenarios, we collected data from different
sources, as GPTSniffer is expected to detect code written by different
developers. Also, we considered source code obtained by querying
ChatGPT under different conditions. The retrieval was performed fol-
lowing the process depicted in Fig. 5, i.e., we conducted two separate
phases to obtain both unpaired and paired snippets, explained as
follows.

4.2.1. Unpaired snippets ( )
To test the generalizability of GPTSniffer, we generated a set of

additional queries to fetch code from ChatGPT. Such queries cover a
wide range of tasks, from simple to complex ones, aiming to study
the usefulness of GPTSniffer. The final corpus consists of 137 snippets,
and they are summarized in Table 1. We gather representative samples
from several common programming fields, such as Algorithms, File
management, Networks, Search & sort, to name a few. This aims at
ensuring a balanced distribution, as well as diversity among different
types of tasks. We have established queries that do not require any
contextual knowledge on the project under development, and their
outcomes can be implemented independently. An example of a query is
4
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as follows: ‘‘Can you write a Java program to implement the binary search
algorithm?’’

Moreover, we independently collected 137 human-written snip-
pets being most starred from GitHub Gist.5 The GitHub API provides
the functionality to determine the most starred Java gists.6 Gists con-
taining fewer than 100 lines of code were excluded from the filtering
process. To gather a comparable volume of AI-generated data, a total
of 137 snippets that have received the highest number of stars were
ultimately extracted.

Unlike the paired snippets—that will be described in Section 4.2.2,
the unpaired ChatGPT-generated and human-written snippets are not
related to each other. This simulates real use cases, where data is
supposed to be collected from various repositories, and there exists no
pairwise relationship between the snippets.

4.2.2. Paired snippets ()
We consider problem implementations from a book on Java pro-

gramming (Liang, 2003). Such a book has a supporting GitHub repos-
itory (Dulaney, 2023), storing the proposed solutions to the end-of-
chapter exercises. We suppose that these snippets might have been
used as training data for ChatGPT, though we have no trace of that.
Each code snippet is associated with a task assignment, placed at the
beginning of the snippet as a source code comment. An example of such
an assignment is shown in Fig. 6.

By manually scrutinizing them, we noticed that not all of the
snippets are eligible for our experiments, as there are many of them
containing only the assignment, without any code. Thus, these were
not selected for the experiments. Eventually, we obtained a corpus
containing 601 human-written snippets.

Starting from these human-written snippets, we extracted the task
assignments and used them as queries. The queries were then split
among the co-authors of this paper, that directly interacted with Chat-
GPT to retrieve generated solutions to the assignments. Fig. 7 shows
an example of interacting with ChatGPT for the corresponding query
transformed from the task assignment in Fig. 6. In particular, the
prompt is formulated as follows: ‘‘Write a java program that sorts an
ArrayList of elements.’’

After this step, we got a corpus of 609 ChatGPT-generated snip-
pets. Although the queries have been extracted from 601 human-
written snippets, we got a few ChatGPT implementations more as some
of them are split among different snippets.

4.2.3. Prompt engineered snippets ()
Large language models (LLMs), including ChatGPT, have demon-

strated their ability to mimic language styles (Ozkaya, 2023). To mit-
igate potential biases, and ensure that the code does not evidently
appear as computer-generated, we deliberately crafted the code gener-
ated by ChatGPT with prompt engineering (Wang et al., 2023) as shown
in Table 2, by following two different strategies as given below.

• Prompts with a related ChatGPT interaction history 1: To assess
the effect of masking the programming style in the query, we
curated an additional test dataset comprising 100 task assign-
ments randomly chosen from  . After that, we reopened the
corresponding chat threads, and asked ChatGPT to rewrite the
code snippets to make them appear more resemble to code written
by real developers.

5 https://gist.github.com/discover
6 https://docs.github.com/en/free-pro-team@latest/rest/gists/gists?

piVersion=2022-11-28#list-starred-gists

https://gist.github.com/discover
https://docs.github.com/en/free-pro-team@latest/rest/gists/gists?apiVersion=2022-11-28#list-starred-gists
https://docs.github.com/en/free-pro-team@latest/rest/gists/gists?apiVersion=2022-11-28#list-starred-gists
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Table 1
Summary on the additional queries.

Domain Description # snippets

Algorithms Feed-forward neural networks, convolutional neural networks, graph neural networks,
Boyer Moore algorithm, Dijkstra algorithm, greatest common division, Levenshtein,
logistic regression, matrix multiplication, Rocchio algorithm, SVM

35

Files & Folders Append text, concatenate file, Excel file, read file, read file list, write file, copy file, get
modified time, MP3 file

25

Networks Email, HTTP client/server, FTP client/server, chat client/server 20

Search & Sort Binary search, exponential search, sequential search, breadth-first search, depth-first
search, linear search, bubble sort, merge sort

22

Strings & Arrays Array blocking issue, compare two strings, delete word, dequeue, common elements,
minimum element

15

Others Binary tree, collaborative filtering, content-based filtering, hash table, lunar calendar,
password checker, quadratic equation

20

Total 137
Fig. 5. The evaluation process.
Fig. 6. Example of a code assignment.
Fig. 7. Interacting with ChatGPT to retrieve source code.
5
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Table 2
Prompts to ask ChatGPT to disguise the code.
Alias Prompt

T1 Please hide ChatGPT’s involvement and mimic a beginner programmer’s style, introducing
imperfections, redundancies, and excessive details.

T2 Ensure this does not seem like ChatGPT’s work. Emulate a novice coder with slight imperfections,
redundancies, and overly descriptive code.

T3 Keep ChatGPT’s authorship discreet. Imitate a beginner’s coding style by incorporating imperfections,
redundancies, and excessive details.

T4 Conceal ChatGPT’s contribution and adopt a beginner programmer’s style, introducing imperfections,
redundancies, and unnecessary details.

T5 Obscure the fact that ChatGPT wrote this and simulate the programming style of a beginner with
slight imperfections, redundancies, and overly descriptive code.
‘
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• Prompts with fresh attempts (no ChatGPT interaction history)
2: Moreover, we also tested with fresh attempts to diversify the
generated snippets. In particular, we explicitly asked ChatGPT to
generate code with intention to disguise the real generators (see
Table 2). However, different from 1, the snippets in this set are
generated without linking to the previous chat threads.

We investigate the degree of variation in prompt-engineered code
nippets compared to their original counterparts (the one generated
ith the original query).

Once we obtained the three initial sets of snippets, we populated
our datasets as shown in Table 3, and explained as follows.

• Dataset 𝐷𝛼 : We shuffled all the snippets in Sections 4.2.1 and
4.2.2, and split again to distribute the snippets coming from
different sources into balanced parts. This aims to simulate real-
world scenarios, where either human-written or ChatGPT code
can be collected in different ways. The resulting mixed dataset 𝐷𝛼
consists of 1484 human-written and ChatGPT-generated snippets.

• Dataset 𝐷𝛽 : We considered only the paired snippets related to the
book’s implementation in Section 4.2.2, resulting in the paired
dataset 𝐷𝛽 with 1210 snippets.

• Dataset 𝐷𝛾 : All the snippets in 𝐷𝛽 are used for training, while the
snippets in 1 are for testing the ability of GPTSniffer to detect
code generated with prompt engineering. 𝐷𝛾 contains in total a
set of 1310 snippets.

• Dataset 𝐷𝛿 : All the snippets in 𝐷𝛽 are used for training, while
the snippets in 2 are for testing the ability of GPTSniffer to
detect code generated with prompt engineering, using no history
of interactions. 𝐷𝛿 contains in total a set of 1510 snippets.

It is worth noting that 𝐷𝛼 , 𝐷𝛽 , 𝐷𝛾 , and 𝐷𝛿 are not independent,
as 𝐷𝛼 is a combination of re-shuffled 𝐷𝛽 , plus additional data; while
𝐷𝛾 is made of 𝐷𝛽 together with the prompt engineered snippets 1;
and eventually 𝐷𝛿 is curated on top of 𝐷𝛽 with the fresh prompt
engineered snippets 2. The goal of having different types of datasets
is to study the generalizability of GPTSniffer in detecting code coming
from heterogeneous sources. By counting the number of lines of code
(LOC) for all the snippets collected from humans and ChatGPT by
unpaired  , and paired  snippets, we see that most of the snippets
have a small LOC, i.e., lower than 80. Only a few of them are longer
than 100 LOC. As for the code written by humans, there are some
considerably long snippets, with up to 1200 LOC. More details about
the distribution of the LOCs are available in Fig. 8.

4.3. Comparison with the baselines

The comparison with the baselines was performed using the paired
snippets  (see Section 4.2.2) for which each human-written snippet
has a counterpart generated by ChatGPT.

GPTZero and OpenAI Text Classifier are different with respect to
the length of the input data they can handle. OpenAI Text Classifier
accepts only text with more than 1000 characters, and GPTZero can
handle shorter text with at least 250 characters. For this reason, we
6

Table 3
Number of collected code snippets.

Snippets ChatGPT Humans

Unpaired snippets  137 137
Paired snippets  609 601
Prompt engineered snippets 1 100 –
Prompt engineered snippets 2 300 –
𝐷𝛼 =  ∪  1484
𝐷𝛽 ≡  1210
𝐷𝛾 ≡  ∪ 1 1310
𝐷𝛿 ≡  ∪ 2 1510

had to create two separate lists of queries. In particular, for comparing
GPTZero with GPTSniffer, 50 snippets of small size were chosen for
each of the two categories ‘‘Human’’, and ‘‘ChatGPT ’’. For comparing
OpenAI Text Classifier with GPTSniffer, there were 50 snippets of more
than 1000 characters for each of the two categories ‘‘Human’’, and
‘ChatGPT ’’.

.4. Evaluation settings and metrics

We split the data using the 80:10:10 ratio, i.e., 80%, 10%, and 10%
f the data are used for training, validation, and testing, respectively.
or each testing snippet, before being fed as input to the prediction
ngine, its real category, i.e., either ‘‘Human’’ or ‘‘ChatGPT ’’ is removed
o use as ground-truth data. For every testing snippet, we evaluated
t by comparing its actual category with the predicted one returned
y GPTSniffer, and computed the number of True positives (TP), False
ositives (FP), False negatives (FN), and True negatives (TN) (Dalianis,
018).

• True positives (TP): the snippets that are classified to their correct
category;

• False positives (FP): the snippets classified to a category that does
not match with the real one;

• False negatives (FN): the snippets that should have been classified
into a category, but they are classified to the other category;

• True negatives (TN): the snippets that are not classified to a
category and they also do not belong to that category.

The final performance is evaluated using Accuracy, Precision, Re-
all, and F1-score, defined as follows.

.4.1. Accuracy
It measures the ratio of correctly classified snippets to the total

umber of snippets for all the considered categories, computed as
ollows.

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑃 + 𝑇𝑁|
|𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁|
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Fig. 8. Number of lines of code (LOC) for the considered datasets.
4.4.2. Precision, recall, and F1-score
Given a category, Precision measures the fraction of correctly clas-

sified items to the total number of items; Recall is the ratio of actual
positive cases that are correctly classified; F1-score (or F1) is a harmonic
combination of the two aforementioned metrics.

𝑃 =
|𝑇𝑃 |

|𝑇𝑃 + 𝐹𝑃 |
;

𝑅 =
|𝑇𝑃 |

|𝑇𝑃 + 𝐹𝑁|

;

𝐹1 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅

In the evaluation, we also make use of macro average, and weighted
average score of these metrics. The former is the arithmetic mean of all
the scores for the two categories, while the latter weighs the varying
degree of importance of the categories in a dataset.

In RQ3, to compare GPTSniffer with GPTZero and OpenAI Text Clas-
sifier, we use McNemar’s test (McNemar, 1947), which is a proportion
test for paired samples. As we perform multiple comparisons, 𝑝-values
are adjusted using Holm’s correction (Holm, 1979). McNemar’s test is
complemented by the Odds Ratio (OR) effect size measure.

4.4.3. Levenshtein ratio
The Levenshtein distance (Levenshtein, 1966) provides a numerical

value representing the number of single-character edits required to
change the original snippet into its generated counterpart. We used
such a metric to quantify the changes made in the code generation
process, as this metric has been used for the same purpose (Nguyen
et al., 2021; Nguyen et al., 2023b). The metric is defined below.

𝐿(𝑎, 𝑏) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|𝑎| if |𝑏| = 0,
|𝑏| if |𝑎| = 0,
𝐿(𝑡𝑎𝑖𝑙(𝑎), 𝑡𝑎𝑖𝑙(𝑏)) if ℎ𝑒𝑎𝑑(𝑎) = ℎ𝑒𝑎𝑑(𝑏),

1 + 𝑚𝑖𝑛

⎧

⎪

⎨

⎪

⎩

𝐿(𝑡𝑎𝑖𝑙(𝑎), 𝑏),
𝐿(𝑎, 𝑡𝑎𝑖𝑙(𝑏)),
𝐿(𝑡𝑎𝑖𝑙(𝑎), 𝑡𝑎𝑖𝑙(𝑏))

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Where ℎ𝑒𝑎𝑑(𝑠) is the first character of string 𝑠, and 𝑡𝑎𝑖𝑙(𝑠) is 𝑠 minus its
first character.

The Levenshtein ratio (Yujian and Bo, 2007) normalizes the Leven-
shtein distance by the max length of the two sequences being compared,
providing a measure of similarity that ranges from 0.0 to 1.0. A ratio of
1.0 indicates that the sequences are identical, while a ratio of 0.0 means
7

that the sequences are completely different. The ratio is computed as
follows:

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 𝑟𝑎𝑡𝑖𝑜(𝑎, 𝑏) = 1 −
𝐿(𝑎, 𝑏)

𝑚𝑎𝑥(|𝑎|, |𝑏|)
We use the metric since the original code snippets are of different

lengths, making unnormalized distances confusing and not comparable.
The Levenshtein ratio is computed after dropping multiple spaces, from
snippets generated by original and prompt-engineered queries.

4.5. Configurations

Table 4 shows the nine experimental configurations, which are
indeed not exhaustive, as we cannot consider all possible combinations
of artifacts. Thus, we pay attention only to those most representative
and realistic, as explained below. We use the check mark symbol

to indicate that the corresponding feature is kept; and a uncheck
mark symbol ✖ to signal the opposite, i.e., removing the feature; the
hand-written symbol ✍ represents a modification in the feature, where
✍G means the original name is replaced by that coming from the
corresponding ChatGPT snippet, and ✍H signals that such a name is
replaced by humans.

By default, ChatGPT never generates a package name (we noticed
this after several attempts of interacting with the platform), thus with
package definition, we only consider snippets written by humans.
Fig. 9 illustrates different snippets corresponding to the considered
configurations shown in Table 4, and explained as follows:

• C1: We keep the code by ChatGPT and human unchanged, and
run the experiments with the code as it is. An example of such
code is shown in Fig. 9(a).

• C2: In this configuration, the package definition from the human-
written code is removed. As shown in Fig. 9(b), compared to
Fig. 9(a), package ch_17.exercise17_06 is no longer seen.

• C3: From C2, imports to project packages are dropped. The code
in Fig. 9(c) is similar to that in Fig. 9(b), however the import di-
rective import ch_17.exercise17_01.Exercise17_01 is re-
moved.

• C4: From C3, comments embedded in the code by of humans
and ChatGPT are deleted. Fig. 9(c) shows the snippet written by
humans but without code comments.

• C5: We conjecture that strings related to the hierarchical names,
e.g., Exercise17_06, might be a discriminant feature, creating
a bias in the prediction performance. Thus, from the human-
written code in C4, we replace the class name with that of the
corresponding snippet written by ChatGPT (Fig. 9(e)).
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Fig. 9. Different configurations for human-written code.
Table 4
Experimental configurations.

Artifact Configurations

C1 C2 C3 C4 C5 C6 C7 C8 C9

Package definition ✖ ✖ ✖ ✖ ✖ ✖ ✖ P
Self-made class name ✍G ✍H ✍H ✍H P
Imports to self-made packages ✖ ✖ ✖ ✖ ✖ ✖ P
Code comments ✖ ✖ ✖ ✖ ✖ P
All imports ✖ ✖ P
\t and \n ✖ P
• C6: We attempt to make the code more human-like by giving a
name that reflects well the task. From the human-written code
in C4, the co-authors of this paper read the task assignment,
and renamed the class with a name that reflects better the task
(Fig. 9(f)).

• C7: From the human-written code in C6, and the ChatGPT-
generated code in C3, we removed all the imports statements.

• C8: From the human-written and the ChatGPT-generated code in
C7, we removed all the formatting characters, including ∖t and
∖n. For the sake of clarity, we do not display a figure to illustrate
the code examples for C7 and C8. Further examples are available
in our online appendix (Nguyen et al., 2023a).

• C9: Finally, we consider prompt engineering as a special config-
uration, in which we ask ChatGPT to alter the generated code,
making it look like as it were written by humans. C9 is indepen-
dent from the remaining configurations, as we do not change the
code, but ChatGPT does. Thus, in Table 4, we mark all the rows
8

corresponding to C9 with ‘‘P’’ to signal the differences.
In the experiments, we executed GPTSniffer on the datasets along
the aforementioned configurations. The obtained results are reported
and analyzed in the next section.

5. Results

This section reports the results of the study addressing the research
questions formulated in Section 4.1. We experiment GPTSniffer on the
two datasets in Section 4.2, compared it with the baselines introduced
in Section 4.3. The prediction performance is measured by means of
the evaluation metrics in Section 4.4.

5.1. RQ𝟏: How do the input data and the preprocessing settings impact on
the GPTSniffer prediction performance?

In this research question, we study the effect of the training data
on the accuracy of GPTSniffer. This aims at investigating the extent
to which GPTSniffer can cope with real-world situations, where code
snippets are supposed to be of different origins, and written by many

developers, rendering the identification more difficult. To this end,
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Table 5
 for training, and  for testing.

Precision Recall F1 score Support (#)

ChatGPT 0.57 1.00 0.73 120
Humans 1.00 0.25 0.40 120

Accuracy 0.62 240
Macro avg 0.79 0.62 0.56 240
Weighted avg 0.79 0.62 0.56 240
Table 6
𝐷𝛼 : Precision.

C1 C2 C3 C4 C5 C6 C7 C8 #

ChatGPT 0.90 0.88 0.91 0.92 0.93 0.91 0.86 0.84 148
Humans 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.98 147
Macro avg 0.94 0.94 0.96 0.96 0.96 0.95 0.93 0.91 295
Weighted avg 0.94 0.94 0.96 0.96 0.96 0.95 0.93 0.91 295
Table 7
𝐷𝛼 : Recall.

C1 C2 C3 C4 C5 C6 C7 C8 #

ChatGPT 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.98 148
Humans 0.89 0.86 0.90 0.91 0.93 0.90 0.83 0.82 147
Macro avg 0.94 0.93 0.95 0.96 0.96 0.95 0.91 0.90 295
Weighted avg 0.94 0.93 0.95 0.96 0.96 0.95 0.92 0.90 295
we consider two use cases: (i) Testing and training data come from
independent sources; (ii) Testing and training data come from same sources.
Note that in the rest of this paper, the term ‘‘independent’’ means that
snippets come from completely different datasets. It is always the case
that there is no duplicate between the training and test set.

5.1.1. Testing and training data come from independent sources
We first investigate how GPTSniffer performs when it is tested

from a dataset coming from a completely different source/domain than
the training set. To this aim, we use the unpaired snippets  (see
Section 4.2.1) to test the system, which has already been trained with
the paired snippets, i.e.,  (see Section 4.2.2). Our goal is to replicate
a realistic scenario where GPTSniffer will make predictions on snippets
that were not used during training.

Table 5 reports the evaluation metrics for this experiment, con-
sidering the dataset without any preprocessing, i.e., C1. The Support
(#) column indicates the number of testing items for each category.
Overall, GPTSniffer obtains a low prediction performance for both cat-
egories. While it achieves 1.00 as Recall for code written by ChatGPT, it
yields 0.57 as Precision, resulting in 0.73 as F1 score for the set of 120
testing instances. When detecting code written by humans, GPTSniffer
also achieves a low Recall, i.e., 0.25, thus decreasing the corresponding
F1 score to 0.40.

In summary, the empirical evidence indicates that in the presence
of completely different data sources between training and test sets, the
prediction becomes challenging and results in mediocre performance.

5.1.2. Testing and training data come from same sources
For this experiment, we use 𝐷𝛼 , where snippets in  and  are

mixed and split again to distribute the snippets coming from different
sources into balanced parts. The execution of GPTSniffer on 𝐷𝛼 pro-
uced the results reported in Tables 6, 7, and 8 (with the best results
eing printed in bold), analyzed as follows.

As shown in Table 6, GPTSniffer is more precise in identifying
uman-written code than ChatGPT-generated code. For five out of nine
onfigurations, GPTSniffer achieves 1.00 as Precision, and by the re-
aining three configurations, the corresponding values are 0.98, 0.99,

nd 0.98. Concerning macro and weighted average Precision scores, for
8 the tool yields the lowest performance, i.e., 0.91 as the overall macro
verage and weighted average Precision.
9

Table 7 reports the Recall scores for all the considered configura-
tions. Over 148 ChatGPT-generated snippets, GPTSniffer yields a Recall
of 1.00 for five out of nine configurations. At the same time, the
corresponding scores obtained on the code written by humans are a
bit lower. In particular, for four configurations, the Recall values for
this category are below 0.90.

Table 8 reports the accuracy and F1-scores obtained for all the
configurations. Overall, the F1-scores are greater than or equal to
0.90. Among the configurations, GPTSniffer gets the best accuracy, i.e.,
0.96, by C4 and C5. This implies that once all the package definitions
and code comments have been removed from the original snippets,
GPTSniffer improves its performances. One possible interpretation of
this phenomenon is that, on the one hand, package definitions just
include recurring items present on both human-written and ChatGPT-
generated code. On the other hand, comments (and natural language
elements in general) may not contain features that GPTSniffer can
leverage to successfully perform a classification.

To sum up, on the one hand, GPTSniffer does not perform well when
tested on code belonging to a completely different domain dataset. But
on the other hand, its performance considerably improves when the
common patterns – those that may occur in data curated from the same
domains – have been learned during the training.

Answer to RQ1. GPTSniffer cannot recognize well data originating from
completely extraneous sources than the one it has been trained with. At the
same time, its performance metrics are all at least 90% when it is trained
with data from a source seen before.

5.2. RQ𝟐: To which extent can GPTSniffer detect ChatGPT-generated
source code on the paired dataset under different preprocessing settings?

The effectiveness of GPTSniffer is important in the context of detect-
ing code written by humans and AI. This research question is dedicated
to study how GPTSniffer can deal with different types of preprocessing
conducted on the input data, i.e., C1-C8, and when the generated
snippets are changed with prompt engineering, i.e., C9. This aims at
investigating the extent to which GPTSniffer can work in real-world
situations, where code snippets are supposed to be of different origins,
and written by many developers, making the identification even more
challenging.
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Table 8
𝐷𝛼 : Accuracy and F1 score.

C1 C2 C3 C4 C5 C6 C7 C8 #

ChatGPT 0.94 0.94 0.95 0.96 0.96 0.95 0.92 0.91 148
Humans 0.94 0.93 0.95 0.95 0.95 0.95 0.91 0.89 147
Accuracy 0.94 0.93 0.95 0.96 0.96 0.95 0.92 0.90 295
Macro avg 0.94 0.93 0.95 0.96 0.96 0.95 0.91 0.90 295
Weighted avg 0.94 0.93 0.95 0.96 0.96 0.95 0.91 0.90 295
w

Table 9
𝐷𝛽 : C1, C2, C3, C5, C6, and C7.

Precision Recall F1 score #

ChatGPT 1.00 1.00 1.00 120
Humans 1.00 1.00 1.00 120
accuracy 1.00 240
macro avg 1.00 1.00 1.00 240
weighted avg 1.00 1.00 1.00 240

Table 10
𝐷𝛽 : C4 and C8.

Precision Recall F1 score #

ChatGPT 0.99 0.98 0.99 120
Humans 1.00 0.99 0.99 120
Accuracy 0.99 240
Macro avg 0.99 0.99 0.99 240
Weighted avg 0.99 0.99 0.99 240

5.2.1. Manipulating training data
After having investigated how GPTSniffer performs on completely

different training and test sets, as well as on related ones, we exper-
iment with the most favorable conditions, i.e., the use of a paired
dataset (𝐷𝛽), for which each human-written snippet is associated with

corresponding version generated by ChatGPT.
For this dataset, we achieve an almost perfectly consistent outcome,

.e., by six out of eight configurations, i.e., C1, C2, C3, C5, C6, and
7, the accuracy is 1.0, so are Precision, Recall, and F1-score. For the
ake of clarity, we report the results for these configurations using a
ommon table, i.e., Table 9. The results indicate that on the paired
ataset 𝐷𝛽 , GPTSniffer obtains a perfect prediction for the majority of
he considered configurations. In particular, from the table, it is evident
hat GPTSniffer does not miss any prediction for the testing instances,
y both categories of snippets, i.e., Humans and ChatGPT.

Table 10 depicts the results obtained for C4 and C8, in which
PTSniffer exhibits a slightly lower accuracy compared to that of the
ther configurations shown in Table 9. In particular, the tool always
ets 0.99 as macro average and weighted average for Precision, Recall,
nd F1 score. In these configurations, GPTSniffer is better at detecting
ode by humans, compared to code by ChatGPT, i.e., the obtained
recision, Recall, and F1 score are 1.00, 0.99, and 0.99 for human
ode. The corresponding scores for code generated by ChatGPT are
.99, 0.98, and 0.99. Still, GPTSniffer can properly distinguish between
ode written by ChatGPT and humans in the two aforementioned
onfigurations.

From the results of Table 9 and Table 10, we conclude that, for
he paired dataset, GPTSniffer can properly tell apart code written by
umans and AI. While the results of this scenario seem obvious, they
cquired knowledge that can be leveraged to properly train GPTSnif-
er for applications in which it is expected to obtain several similar
ode snippets, e.g., to detect plagiarism in assignments for Software
ngineering courses.

.2.2. The ability to detect code altered with prompt engineering
We consider the alteration by prompt engineering as a kind of

reprocessing steps. Using the paired dataset, i.e., 𝐷𝛽 as training, and
he whole set of 100 snippets with related history, i.e., 1, as queries,
10

e obtained a stunning outcome. As shown in Table 11, all the snippets t
Table 11
𝐷𝛾 :  for training, and 1 for testing.

Precision Recall F1 score Support (#)

ChatGPT 1.00 1.00 1.00 100
Accuracy 1.00 100
Macro avg 1.00 1.00 1.00 100
Weighted avg 1.00 1.00 1.00 100

Table 12
𝐷𝛿 :  for training, and 2 for testing.

Precision Recall F1 score Support (#)

ChatGPT 1.00 1.00 1.00 300
Accuracy 1.00 300
Macro avg 1.00 1.00 1.00 300
Weighted avg 1.00 1.00 1.00 300

Table 13
Dunn test, comparison of Levenshtein ratio by prompt type (Benjamini–Hochberg).

T1 T2 T3 T4

T2 −2.567264
0.0256

T3 −0.589048
0.3088

1.939194
0.0656

T4 −1.326484
0.1539

1.194060
0.1660

−0.728344
0.2915

T5 −2.806451
0.0250

−0.257222
0.3985

−2.179626
0.0488

−1.438930
0.1502

are correctly classified as written by ChatGPT, resulting in a perfect
prediction, i.e., 1.00 for Precision, Recall, and F1-score. In this respect,
it is evident that even with snippets altered with prompts, GPTSniffer
is still able to tell them apart, without mistaking them with the ones
written by real developers.

Next, we used 𝐷𝛽 as training, and the whole set of 300 snippets
ith fresh prompts (2), i.e., task assignments combined with prompts

as queries. In Table 12, it is evident that all the snippets are correctly
classified as written by ChatGPT, yielding 1.00 for Precision, Recall,
and F1-score. We conclude that even with attempts to disguise the code,
GPTSniffer is still able to properly classify them.

The results in Table 11 and Table 12 show that GPTSniffer is
capable of detecting well code written by ChatGPT, even after prompt
engineering has been applied to make it look less computed-generated.

To further investigate the differences between the original snippets,
and those that have been altered with prompt engineering, we compute
the Levenshtein ratio between them.

Fig. 10 shows that the Levenshtein ration ranges from 25% to 75%
for all the five types of prompts.

To study the distribution of Levenshtein distances across differ-
ent classes, we also performed a Dunn test (Dinno, 2015). This non-
parametric method was chosen to identify if there were statistically
significant differences in the distributions of distances among the vari-
ous classes. As the Dunn’s test performs multiple comparisons, 𝑝-values
are adjusted using the Benjamini–Hochberg correction (Benjamini and
Hochberg, 1995). The test results shown in Table 13 reveal interesting
clusters within the classifications. Using 𝛼 = 0.05 and 𝑝 <= 𝛼∕2

o reject 𝐻0, we can conclude that there are statistically significant
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Fig. 10. Difference in Levenshtein distance with the five types of prompts in Table 2.
Table 14
 formatted with C8 for training, and 2 formatted with C8 for testing.

Precision Recall F1 score Support (#)

ChatGPT 1.00 0.59 0.74 300
Accuracy 0.59 300
Weighted avg 1.00 0.59 0.74 300

Table 15
 formatted with C1, C2, C3, C4, C5, C6, C7, and C8 for training, and 2 formatted with
C8 for testing.

Precision Recall F1 score Support (#)

ChatGPT 1.00 0.95 0.97 300
Accuracy 0.95 300
Weighted avg 1.00 0.95 0.97 300

differences in the code generated from different prompts. Specifically,
snippets generated from prompt T1 are significantly different from
those generated by prompt types T2 and T5. Moreover, snippets from
T5 show a significant difference when compared to those from prompt
T3. This implies that the observed differences are unlikely to be due to
chance or random fluctuation. They possess a level of significance that
allows statistical tests to identify them.

This outcome highlights the intricate dynamics of code modifica-
tions and their quantifiable impacts. The Levenshtein distance, coupled
with the Dunn test, provides a valuable insight into these dynamics. It
suggests that the variations in prompts indeed lead to the production of
distinct code. In other words, the way a prompt is structured or phrased
has a real, measurable impact on the output of the code generation
process.

Despite these significant differences in the code generated from dif-
ferent prompts, the GPTSniffer performances remain unchanged. Future
research may delve deeper into the specific types of modifications that
lead to similar or divergent patterns in code snippet variations.

5.2.3. The effect of the configurations on the accuracy
To investigate the influence of different types of training data

on the prediction, we removed all package names, and blank lines
in the training and testing datasets ( and 2, respectively), using
Configuration C8 (see Table 4). The experimental results are shown
in Table 14. Interestingly, it can be seen that the accuracy drops
dramatically compared to the results presented before in Table 12. In
particular, while precision is 1.00, the recall value only reaches 0.59,
resulting in an F1 score of 0.74. We suppose that this happens due to
the training data, i.e., GPTSniffer has not been trained with data that
covers the possible formats of the code generated by ChatGPT.

To confirm our hypothesis, we augmented the training data by
considering all the configurations presented in Table 4. To be concrete,
we cumulatively add to the training set of GPTSniffer by formatting 
with C1, then C2, and the other configurations up to C8. This results
in a final set with 1210 × 8 = 9680 samples, which was then fed
11
to GPTSniffer. Once we have finished training GPTSniffer with this
dataset, we tested it with 2 whose snippets are formatted by removing
all the blank lines and package definitions, i.e., C8. The experimental
results are depicted in Table 15.

It is evident that the prediction accuracy improves substantially
with respect to the results in Table 14. GPTSniffer gets 0.95 as the
accuracy, and this is indeed much better compared to 0.59, the corre-
sponding score obtained for the case when the training data is limited to
only one configuration. Altogether, this demonstrates that GPTSniffer
benefits from training data altered with various formats. This implies
a clear advantage of data augmentation (Shorten and Khoshgoftaar,
2019) in the classification of code generated by ChatGPT.

Answer to RQ2. On the paired dataset, GPTSniffer obtains a perfect
prediction by the majority of the experimental settings. This indicates
that when being trained with pairwise code, our proposed tool works
well as a detector for code written by ChatGPT. GPTSniffer is capable
of detecting code changed with initial prompt engineering attempts, even
though this ability should be further validated with more complex prompts.
Augmenting the training data with different formats allows GPTSniffer to
deal better with variability in the testing code.

5.3. RQ𝟑: How does GPTSniffer compare with GPTZero and OpenAI Text
Classifier in recognizing ChatGPT-generated source code?

In this section, we report the comparison of GPTSniffer with
GPTZero and OpenAI Text Classifier. For GPTSniffer, we selected
the two most representative configurations, i.e., C1 and C8, as they
correspond to the cases when GPTSniffer performs the best and the
worst, respectively (see Table 9 and Table 10).

5.3.1. Comparison with GPTZero
The classification results returned by GPTZero are shown in

Table 16. The first column reports the answer text returned by GPTZero,
the second column shows a binary classification given by us to allow for
a comparison with GPTSniffer, and the third column shows the number
of queries. Most of the queries, i.e., 81 + 7 snippets, are classified as
written by humans, and only 6 + 6 snippets are predicted as generated
by ChatGPT.

By matching with the ground-truth data, we obtained the following
classification results: 64 out of 100 snippets are correctly predicted by
GPTZero, corresponding to an Accuracy of 0.64. The outcome obtained
by GPTSniffer is as follows: among 100 snippets, 99 are correctly
classified, i.e., Accuracy = 0.99. McNemar’s test indicates a statistically
significant difference (𝑝-value < 2𝑒 − 09), with an OR = 42 in favor of
GPTSniffer. This means that GPTSniffer significantly outperforms GPTZero
in recognizing code generated by ChatGPT.
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Table 16
Classification results by GPTZero.

Answer Final class #

Your text is likely to be written entirely by a human Humans 81
Your text is most likely human written but there are some sentences with low perplexities Humans 7
Your text is likely to be written entirely by AI ChatGPT 6
Your text may include parts written by AI ChatGPT 6
Table 17
Classification results by OpenAI Text Classifier.

Answer Final class #

The classifier considers the text to be unclear if it is AI-generated Humans 35
The classifier considers the text to be unlikely AI-generated Humans 3
The classifier considers the text to be likely AI-generated ChatGPT 20
The classifier considers the text to be possibly AI-generated ChatGPT 42
5.3.2. Comparison with OpenAI Text Classifier
Table 17 depicts the classification results obtained by running with

OpenAI Text Classifier. Similar to Table 16, the first column depicts the
answer text given by OpenAI Text Classifier, the second column is the
binary final classification given by us to compare with GPTSniffer, and
the third column represents the number of queries. Among them, 35
+ 3 snippets are marked as written by humans, and the rest, i.e., 20
+ 42 snippets are predicted by OpenAI Text Classifier as generated by
ChatGPT.7

Comparing with the real category of the query snippets, we see
hat 61 out of 100 are correctly predicted by OpenAI Text Classifier,
esulting in an Accuracy of 0.61. The classification by GPTSniffer is
lmost perfect: 99 out of 100 snippets are correctly recognized, corre-
ponding to an Accuracy of 0.99. McNemar’s test indicates a statistically
ignificant difference (𝑝-value < 2𝑒 − 09), with an OR=38 in favor of

GPTSniffer.
Altogether, we can conclude that the prediction by GPTSniffer is sig-

nificantly better than the one provided by OpenAI Text Classifier. Notably,
OpenAI Text Classifier has a disclaimer saying that: ‘‘The classifier isn’t
always accurate; it can mislabel both AI-generated and human-written text.
AI-generated text can be edited easily to evade the classifier.’’

Answer to RQ3. GPTSniffer considerably outperforms both GPTZero and
OpenAI Text Classifier in the ability to detect if a code snippet is generated
by ChatGPT.

6. Discussion

In this section, we discuss possible implications derived from the
empirical results, as well as the threats to the validity of our findings.

6.1. Implications

Usage. We assume that GPTSniffer is useful due to various reasons.
First, code produced by generative models might contain vulnerabil-
ity (EuroPol, 2023; Pearce et al., 2021), as well as other issues, includ-
ing copyright and licensing infringements (Reda, 2023; StephanieGlen,
2023). Second, in an educational context, using code snippets gener-
ated by ChatGPT, without understanding them, will hamper students’
essential skills that can be acquired only through self-learning. Essen-
tially, handing in code written by ChatGPT without self-work can be
deemed a form of fraud. Altogether, it is of great importance to detect
whether a source code element has been written by AI, owing to (i)
the professional development side, coping with security and legal is-
sues; and (ii) the educational side, combating cheating and plagiarism.

7 We ran the experiments with OpenAI Text Classifier in May 2023. As of
uly 2023, the service was taken down by OpenAI due to a low accuracy. Full
tory is available at https://openai.com/blog/new-ai-classifier-for-indicating-
i-written-text.
12

m

We anticipate two possible use cases for GPTSniffer as follows. First,
detecting AI-generated code plays an important role in code reviewing.
In a development scenario, where, when the code is committed, our tool
(for example implemented as a GitHub action) could warn that it is AI-
generated code and recommend accurate/specific code reviews. Second,
we use the tool to check code submitted by students at our universities,
i.e., the University of L’Aquila and the University of Sannio.8 Indeed,
GPTSniffer will not be used as the sole means to fail students, but
as a supporting tool. In particular, GPTSniffer can be used to classify
students’ code assignment, and in case the tool marks any snippets as
written by ChatGPT, then examiners may question the corresponding
student(s) for greater details. In this way, it is easy to find out if the
students are really the authors of the snippets or not. In contrast, if
the code is classified as written by humans, then teachers will possibly
spend less effort to ask the submitters.

The first result emerging from our study is that training performed
on completely different data may lead to sub-optimal results. This is
analogous to what happens to other kinds of predictors in software
engineering, for example, defect prediction models, for which a cross-
project prediction performs well only when the training and test feature
closely-related (e.g., in terms of metrics) code elements (Menzies et al.,
2013). We assume that training GPTSniffer with data coming from
different sources, as well as different types of programming tasks will
enable us to boost the prediction accuracy.
Finding 1. GPTSniffer can be used in different scenarios, both in indus-
trial and educational settings. To effectively recognize AI-generated code,
classifiers like GPTSniffer need to be trained on source code being relevant
to the context under consideration.

By experimenting GPTSniffer with different configurations, we no-
ticed how certain preprocessing steps, such as removing comments
or package names actually help to improve the performance of the
classification. This is similar to data augmentation in Computer Vi-
sion (Shorten and Khoshgoftaar, 2019), where the original training
images are transformed and distorted, allowing models to learn from
different perspectives. In fact, data augmentation is also an effective
means to mitigate the effect of overfitting (Dvornik et al., 2021), i.e.,
when the model learns well on the training data but performs poorly
on the testing data. In this respect, we believe that the preprocessing
steps contribute to the robustness of GPTSniffer’s detection engine.
While future work is needed to perform a feature importance analysis,
the obtained results suggest that, in general, it is useful to apply an
aggressive preprocessing phase to make the learning model be better
generalizable and to improve its performances.
Finding 2. ML-based models to recognize AI-generated code should prop-
erly preprocess the input source code to achieve adequate results and be
generalizable.

8 Both universities offer many programming courses at different levels,
ainly with Java and Python.

https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
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We found out that GPTSniffer works almost perfectly for paired
code elements, even in the presence of an aggressive preprocessing.
This suggests that the more paired data is used to train the tool, the
better prediction accuracy it achieves. While such a usage scenario is
not common in development activities, it may occur in an educational
environment. In such a case, an instructor may have different instances
of the same source code, e.g., by the book, produced by themselves,
or by different students, along with solutions generated by an AI.
This is feasible in practice, in which one can collect source code
with assignments from open source platforms, such as GitHub, and
their counterparts from ChatGPT following the process we described
in Section 4.2.
Finding 3. Whenever possible, e.g., in educational scenarios, one can train
an ML model with paired snippets, as well as with those written by various
developers, to achieve almost perfect predictions.

6.2. Prompt engineering and LLMs

Using clever prompt engineering to avoid being caught by classifiers
is essentially a topic that needs further attention in the very near
future. Being a detector, one should try their best to anticipate a wide
range of altering scenarios. In the meantime, being a plagiarizer, people
may find clever ways to dodge such a detector. For instance, they
may formulate the queries, so as to ask ChatGPT to provide snippets
resembling to those written by humans; or they may distort the code in
different parts, making it look more human. In this respect, to render
GPTSniffer more effective, it is necessary to consider more scenarios,
training the tool with data of different origins.

The proliferation of LLMs in recent years has the potential to enable
various applications in Software Engineering as discussed in recent
work (Ozkaya, 2023). Nevertheless, to the best of our knowledge, no
work has been conducted to exploit LLMs as a means to generate source
code. We assume that a code snippet generated by ChatGPT and then
modified by other LLMs would be more difficult to detect. Thus, to
make GPTSniffer be more sensitive to this kind of alteration, we need to
train it with the corresponding data, and this necessitates the curation
of suitable datasets from ChatGPT, and a large language model. This
requires additional effort, and thus we would like to address the issue
in our future work.

6.3. Concerns and limitations

While GPTSniffer gets a satisfying classification performance, we
still see some limitations – both in the approach itself, and the evalua-
tion conducted – that need to be tackled as explained in the following
points.

1. Identifying code authorship attribution is a crucial task in soft-
ware engineering, as it paves the way for various activities,
including bug report assignments, or software forensics (Gong
and Zhong, 2022). However, within a software project, source
code can be written by many developers, rendering such a
detection become more challenging (Gong and Zhong, 2021).
We anticipate that this also applies to the classification of code
written by humans and ChatGPT, i.e., when snippets are written
by different developers, it is more difficult to identify their
creators. In the scope of this paper, we did not manage to test
the prediction performance of GPTSniffer on code collected from
several developers with various coding styles.

2. Similarly, the ability of GPTSniffer in detecting code written
following task-oriented assignments has not been validated. In
such an evaluation, students or developers are asked to write
code following specific assignments. Moreover, a user study with
crossover-designed experiments is also meaningful, in which par-
ticipants are split into groups: each participant has to carry out
real programming tasks, one using answers given by ChatGPT
and another without the availability of ChatGPT’s support.
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3. The human-written snippets from a book that we used in the
evaluation could cause overfitting. The standard solutions might
introduce some bias if they have been used to train ChatGPT
before, even though we have no trace of this. Again, using self-
curated data, i.e., source code written by students or developers,
would make the evaluation more solid.

6.4. Future research directions

We anticipate that additional work should be done in different
directions to further improve the detection performance of GPTSniffer,
as listed below.

1. It is important to explore the extent to which the code snippets
produced by ChatGPT and then modified by programmers ex-
hibit an increased level of difficulty in terms of identification
capability. For the sake of truth, both GPTZero and OpenAI Text
Classifier mitigate that issue by predicting different classes (see
Tables 16 and 17). To examine the effectiveness of GPTSniffer in
that case, we plan to also consider unbalanced datasets, where
there is more code written and altered by humans compared to
that generated by AI, and perform more empirical experiments
on this type of training data. Moving forward, we aim to assess
GPTSniffer using data from diverse sources and expand the ap-
proach to manage additional SE artifacts such as documentation
and bug reports.

2. Recently, apart from ChatGPT, there has been a proliferation
of Large Language Models (LLMs). Such models can perform a
wide range of tasks (Ozkaya, 2023), and among others, they are
capable of generating code in different languages. In this respect,
we could train GPTSniffer with data generated by different
LLMs, e.g., Llama, Bing, Chinchilla, to name but a few. This will
allow GPTSniffer to learn from various types of code, and equip
it with the ability to detect code coming from different sources.

3. Also, we could exploit LLMs as a means to enhance the clas-
sification engine of GPTSniffer. In fact, LLMs offer prompt en-
gineering, allowing us to tailor the query, and get the desired
answers. Essentially, prompt engineering has demonstrated its
effectiveness in different contexts (Taulli, 2023; Henrickson and
Meroño-Peñuela, 2023), and thus it can be further employed to
enable GPTSniffer to be more effective in detecting code written
in different languages.

4. GPTSniffer has been implemented using CodeBERT (Feng et al.,
2020), even though other alternatives–possibly more advanced
code pre-trained models do exist. That being said, (i) GPTSniffer
already reaches a very good performance, outperforming exist-
ing classifiers, including GPTZero and OpenAI Text Classifier;
(ii) the goal of our work was not to develop the best AI-code
detector possible, but rather, to show how a specific fine-tuning
of a code-pretrained model works better than just leveraging out-
of-the-box classifiers. In this respect, future work may further
improve GPTSniffer with better engines, i.e., we anticipate that
the application of other ‘lightweight’ (compared to LLMs) pre-
trained models, such as CodeT5 can also be considered as the
classification engine for GPTSniffer. In this respect, a comparison
of pre-trained models and LLMs in the detection of code written
by an AI can be considered as an interesting research topic.

6.5. Threats to validity

Construct validity concerns the relationship between theory and ob-
servation. In principle, the dataset labeling is correct ‘‘by construction’’
as we know a priori its origin. For code hosted on GitHub, ChatGPT
may have seen it already. However, this does not necessarily bias
our study, as ChatGPT (OpenAI, 2023) generates code rather than
retrieving snippets relevant to a query, introducing its peculiar (and
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recognizable) elements, e.g., imports, formatting, or other code-style
features. Along this line, the different preprocessing configurations C1–
C8 simulate the different ways a generative model could make its code
‘‘looking different’’ than the human code it may have been trained with.
Another threat could be that for RQ3 we mapped the four categories
provided by GPTZero and OpenAI Text Classifier to binary categories.
We used the ‘‘likely/possibly’’ written by ChatGPT as the ChatGPT
category.

Last but not least, as detailed in Section 4.2.3, we have tried to
use different prompts, with and without previous history, to ask Chat-
GPT generating code that resembles what a novice programmer could
produce. However, while we have tried different prompts, it is still
possible that there could exist some smarter ways for circumventing
the proposed approach behind GPTSniffer.

Internal validity threats concern factors, internal to our study, that
can influence the results. We ran the queries directly with GPTZero
and OpenAI Text Classifier using their Web interface. As this makes
the process time-consuming, we ran each query once, yet it is possible
that multiple runs would produce different results. Concerning the
set of hyperparameters to train GPTSniffer, we tried with different
combinations of batch size, warm-up steps, or weight decay, so as to
rule out possible internal threats. In the experiment, we tested with
data from programming exercises, and their counterpart generated by
ChatGPT. We anticipate that the results obtained for an imbalanced
dataset–where there are more snippets written by humans compared to
the ones generated by ChatGPT–can be worse in the real setting (i.e.,
GPTSniffer can wrongly distinguish humans’ code from that generated
by ChatGPT). Moreover, ChatGPT can be less effective in generating
code that calls local APIs and methods. While we attempted to mitigate
such threats by considering diverse datasets, i.e., paired and unpaired
snippets, we also acknowledge that GPTSniffer needs to be trained with
data of diverse origins as well as imbalance, in order to make it more
effective in real-world settings.

Our study could possibly suffer from overfitting, given that we
employed human-generated snippets from a book. To mitigate such
a threat, we complemented that set of snippets with an additional
set of 137 snippets from GitHub Gist. Moreover, the preprocessing
steps applied in different configurations can be considered as data
augmentation (Shorten and Khoshgoftaar, 2019), allowing the model
to learn from different versions of the same input data. We believe
that the evaluation of GPTSniffer would benefit from more data coming
from various sources. Besides the handcrafted code and the generated
ChatGPT code, we may enrich the training set with a third class of code,
i.e., code that is hand-written according to some task descriptions, but
not from any textbook standard solutions, which might introduce some
bias if they have been used to train ChatGPT before.

Conclusion validity threats concern the relationship between the ex-
perimentation and outcome. Rather than reporting descriptive statistics
of the performances of the different classifiers, we compare them by
using a suitable test, i.e., McNemar’s test, and because of multiple
comparisons, adjust 𝑝-values using the Holm’s correction (Holm, 1979).
As for the analysis of Levenshtein distances among the code snippets
generated with different prompts, we used the Dunn’s test (Dinno,
2015).

External validity threats concern the generalizability of our findings.
The findings of this paper may be valid only for the given datasets. We
diversified the data by collecting it from different sources, attempting to
simulate real-world scenarios. Also, in the evaluation, we experimented
with a method definition, not a whole software project. By properly
training it, GPTSniffer can be adapted to work at the project level.
Finally, to avoid adding a further variable to the study, we focused on
Java, yet further studies with other languages are highly desirable.

7. Related work

This section reviews work related to identifying automatically-
generated artifacts, and applications of ChatGPT and CodeBERT to
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software engineering problems.
7.1. Distinguishing human-written and automated artifacts

Cassee et al. compared three different models to detect whether
a GitHub account is human or bot-based using the repositories’ com-
ments (Cassee et al., 2021). Their evaluation show that combining
the textual data with account metadata information leads to better
performance, although detecting mixed accounts is still challenging,
i.e., the best configuration identifies bot activity in only 10% of mixed
accounts. On the same line, BIMAN (Dey et al., 2020) is a hybrid
approach that identifies bot accounts on GitHub by relying on three
different features, i.e., the names of the account, the commit messages,
and associations between commits and projects. The evaluation showed
that BIMAN succeeds in recognizing bots with good accuracy.

Paltenghi and Pradel (2021) compared the neural network attention
mechanism, and the human one. By focusing on code summarization
tasks, the authors collected 1508 human records and extracted 250
labeled methods by 91 participants. Their experiments showed that
the neural attention mechanism (i) struggles in recognizing the longer
methods, and (ii) underestimates the value of strings in the code.

Morales et al. (2020) performed an empirical study investigating
whether automated refactorings can be as effective as human ones.
To this end, the authors involved 80 developers in classifying 20
refactoring tasks, including human-written code and refactorings gen-
erated by RePRO—a state-of-the-art tool. The study results showed
that developers cannot identify automated refactoring by five different
anti-patterns.

A comparison between several classifiers was conducted to identify
bots from issue and pull request comments (Golzadeh et al., 2021). To
this end, the input data collected from a pre-labeled dataset is encoded
by combining bag of words and TF-IDF indexing. The results show
that Multinomial Naive Bayesian outperforms the others in terms of
precision, recall, and F1 score.

Being particularly relevant to our work are alternative approaches
to detect text generated by ChatGPT, i.e., GPTZero and OpenAI Text
Classifier. GPTZero (GPTZero, 2023) which is an academic tool specif-
ically conceived to detect text generated by ChatGPT. Given a textual
content between 250 and 5000 characters, the underpinning model can
categorize can distinguish if the snippet belongs to ChatGPT, human,
or mixed implementation. An alternative to GPTZero is OpenAI Text
Classifier (Classifier, 2023), a tool developed by OpenAI. The results
of the conducted evaluation show that our approach outperforms both
GPTZero and OpenAI Text Classifier for the queries we considered.

7.2. Applications of ChatGPT in Software Engineering

Software Engineering studies have recently been placing more em-
phasis on ChatGPT. Recent work (Ahmad et al., 2023) has been done
to test the effectiveness of ChatGPT in aiding a software architect. The
study leveraged ChatGPT for analyzing, synthesizing, and evaluating
a services-oriented software application’s architecture. The effective-
ness of ChatGPT as coding assistance has been explored by Chauvet
et al. using ChatGPT to get help with developing in HTML, CSS, and
JavaScript (Avila-Chauvet et al., 2023).

Sobania et al. (2023) studied the performance of ChatGPT in fixing
bugs. They compared ChatGPT with state-of-the-art tools. The results
indicated that ChatGPT performs bug-fixing tasks successfully in most
cases (31 of 40 bugs tested).

Recently, the feasibility of employing ChatGPT for deep learning
program repair with fault detection and fault localization has been
examined (Cao et al., 2023). Furthermore, they investigated the im-
pact of prompts on debugging performance and eventually proposed a
template to achieve better results.

The work by Azeem Akbar and Khan (2023) investigated the
possible ethical problems related to using ChatGPT in the context of
Software Engineering. The authors presented a taxonomy based on the
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motivators, demotivators, and their potential impact on ChatGPT ethics
aspects.

The effectiveness of ChatGPT as coding assistance has been ex-
plored by a recent study (Avila-Chauvet et al., 2023), which lever-
aged ChatGPT to get assistance with developing in HTML, CSS, and
JavaScript.

To the best of our knowledge, GPTSniffer is the first attempt to
employ a pre-trained model to detect if a code snippet is written
by humans or generated by ChatGPT. Among others, our approach
is expected to contribute to software engineering education, helping
teachers ward off cheating and plagiarism.

7.3. Applications of code pre-trained models to software engineering tasks

The success of pre-trained models NLP has led to the development
of similar models for programming language understanding and gener-
ation. Examples of such models include CodeBERT (Feng et al., 2020),
GraphCodeBERT (Guo et al., 2021), PLBART (Ahmad et al., 2021), or
CodeT5 (Wang et al., 2021) (Mastropaolo et al., 2021). As GPTSniffer
is based on CodeBERT, in the following we discuss recent work based
on such a model. For a more comprehensive review of deep learning
in software engineering, readers can refer to a survey (Watson et al.,
2022).

Wang et al. (Wang et al., 2022) improved CodeBERT models for dis-
criminative code tasks by combining data augmentation and curriculum-
learning strategy. Their results confirm that the preprocessing pipeline
proposed by Wang et al. increases CodeBERT’s performance in three
code-related tasks, i.e., algorithm classification, code clone detection,
and code search.

An empirical evaluation of several pre-trained models for code
diagnostic tasks, called probes, has been conducted by Karmakar and
Robbes (2022). To enable the comparison, Karmakar and Robbes reuse
a labeled dataset of compilable Java projects categorized in terms
of four different probing tasks, i.e., syntactic, surface, semantic, and
structure. The outcome of their study shows that CodeBERT is effective
in classifying code snippets using semantic information.

The CCBERT approach (Zhang et al., 2022) combines Copy mech-
anism with CodeBERT to support the generation of enhanced Stack
Overflow questions. After a preparatory phase in which bi-modal in-
formation is encoded, CodeBERT generates the questions by using a
copy attention layer to improve the results that outperform notable
baselines.

AdaMO (Gu et al., 2022) is an automatic code summarization tool
based on GPT-2. AdaMO uses adaptive learning strategies, i.e., contin-
uous pre-training and intermediate fine-tuning, to increase the overall
performance and Gaussian noise strategy to capture contextual infor-
mation. Compared with state-of-the-art approaches, AdaMO achieves
better results in terms of ROUGE, METEOR, and BLEU scores.

8. Conclusion and future work

Since its release, ChatGPT revealed itself as promising to support
various software development tasks, and in particular to create software
artifacts, including source code that meets natural language specifica-
tions. At the same time, it has emerged the need for techniques and
tools that can help users distinguish between automatically generated
and human-specified content.

This paper presented GPTSniffer as a practical approach to the
detection of source code generated by ChatGPT. We also performed
an empirical study to investigate the extent to which it is possible to
perform the task, as well as the factors that can influence this ability.
GPTSniffer can distinguish code written by humans from ChatGPT-
generated code under different experimental settings. Moreover, it is
also resilient to some prompt engineering attempts, which involved
different types of prompts – executed with and without a previous Chat-
GPT history – in which we requested ChatGPT to generate code that
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‘‘does not look AI-generated’’ and, possibly, resembles what a novice
programmer could write. Also, GPTSniffer outperforms two tools that
recognize AI-generated text, i.e., GPTZero and OpenAI Text Classifier.
While experimenting GPTSniffer under various configurations, we have
identified how different preprocessing, as well as the characteristics of
training and test impact the GPTSniffer prediction accuracy.

The achieved performances make GPTSniffer applicable to scenarios
such as plagiarism detection in academic environments, but, also, in
the context of development activities, where for example a continuous
integration and delivery pipeline could identify the presence of AI-
generated code and recommend a suitable code reviewing activity for
it.
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