
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01183-z

SPEC IAL SECT ION PAPER

ModelXGlue: a benchmarking framework for ML tools in MDE

José Antonio Hernández López1 · Jesús Sánchez Cuadrado1 · Riccardo Rubei2 · Davide Di Ruscio2

Received: 12 May 2023 / Revised: 15 January 2024 / Accepted: 8 April 2024
© The Author(s) 2024

Abstract
The integration of machine learning (ML) into model-driven engineering (MDE) holds the potential to enhance the efficiency
of modelers and elevate the quality of modeling tools. However, a consensus is yet to be reached on which MDE tasks can
derive substantial benefits fromML and how progress in these tasks should be measured. This paper introducesModelXGlue,
a dedicated benchmarking framework to empower researchers when constructing benchmarks for evaluating the application
of ML to address MDE tasks. A benchmark is built by referencing datasets and ML models provided by other researchers,
and by selecting an evaluation strategy and a set of metrics. ModelXGlue is designed with automation in mind and each
component operates in an isolated execution environment (via Docker containers or Python environments), which allows
the execution of approaches implemented with diverse technologies like Java, Python, R, etc. We used ModelXGlue to build
reference benchmarks for three distinct MDE tasks: model classification, clustering, and feature name recommendation. To
build the benchmarks we integrated existing third-party approaches in ModelXGlue. This shows that ModelXGlue is able to
accommodate heterogeneous ML models, MDE tasks and different technological requirements. Moreover, we have obtained,
for the first time, comparable results for these tasks. Altogether, it emerges that ModelXGlue is a valuable tool for advancing
the understanding and evaluation of ML tools within the context of MDE.

Keywords Benchmarking ·Machine Learning ·Model-Driven Engineering

1 Introduction

Machine learning (ML) is a fast-growing field with many
applications in various domains and areas. For example,
deep learning approaches have been successfully applied to
solve complex problems in the Software Engineering domain
(e.g., detecting code duplication [2], code analysis [51], or
recommending relevant API function calls [39]). The inte-
gration of machine learning (ML) in software engineering

Communicated by N. Bencomo, M. Wimmer, H. Sahraoui, and E.
Syriani.

B Jesús Sánchez Cuadrado
jesusc@um.es

José Antonio Hernández López
jose.antonio.hernandez.lopez@liu.se

Riccardo Rubei
riccardo.rubei@univaq.it

Davide Di Ruscio
davide.diruscio@univaq.it

1 Linköping University, Linköping, Sweden

2 Università degli studi dell’Aquila, L’Aquila, Italy

has gained widespread attention in academia and industry.
As a witness to this fact, the ASE’23 conference, as reported
in [41], received an unprecedented number of 661 submis-
sions, with over half dedicated to AI applications in software
engineering. Many of these submissions explore the diverse
applications of different ML approaches to enhance various
software engineering tasks, with a focus on improving devel-
oper productivity and efficiency during coding.

In model-driven engineering (MDE), ML is increasingly
being adopted to support different kinds of modeling tasks
such as model classification [20, 54], clustering [9, 10], and
providing real-time recommendations to modelers during
modeling sessions [11, 20]. Thus, as suggested in [55], the
trajectory of ML adoption in MDE is likely to parallel the
trends observed in software engineering.

Selecting the appropriate ML tool for a particular task can
bedifficult, as differentML toolsmayhavedifferent strengths
and weaknesses. Furthermore, many factors can affect the
accuracy of the ML tools under consideration, such as the
underlying models used, the quality of training data, and the
available processing power. Therefore, benchmarking ML
tools is essential for assessing their performance and suitabil-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01183-z&domain=pdf

J. A. H. López et al.

ity for various scenarios with the goal of making progress in
the field.

Currently, the modeling community lacks a unified under-
standing of which MDE tasks can benefit from ML and
how to measure progress in these tasks. This is mainly due
to the lack of a standardized framework for systematically
evaluating and comparing different approaches. In contrast,
most domains of ML application have a common under-
standing of the tasks that ML can address, and there are
established benchmarks to evaluate new approaches. GLUE1

andCodeXGluebenchmark2 are examples of benchmarks for
language understanding and for “deep code,” respectively.
These benchmarks provide the resources needed to evalu-
ate new ML tools for specific tasks. However, in the case
of MDE, the community is still missing a reference frame-
work to evaluate new tools that solve modeling problems
using ML.

This paper introduces a benchmarking framework called
ModelXGlue, designed to support the comparison of ML-
based systems for MDE tasks. Researchers can customize
a benchmark for a specific ML/MDE3 task by select-
ing a dataset, ML models (potentially created by different
researchers), and relevant metrics to measure the perfor-
mance of the ML models in the selected task.

The proposed framework is extensible and can accom-
modate newMLmodels without modifying the framework’s
source code. Each component can operate in a separate envi-
ronment to prevent conflicts with libraries and enable the use
of various technologies. Additionally, the system becomes
completely automated once input configurations are pro-
vided. To assess the effectiveness of ModelXGlue, we inte-
grated multiple ML/MDE tools proposed in the literature for
three types ofMDE tasks, namelymodel classification,model
clustering, and feature name recommendation. We study the
different requirements each ML tool poses in terms of exe-
cution platforms, dataset formats, encoding transformations,
and more. We show how the framework’s features enable us
to address such requirements. We developed three reference
benchmarks for these tasks and compared the outcomes of
different ML models already published in the literature.

This paper extends and generalizes the methodology pro-
posed in [32], and makes the following contributions:

– Challenges for benchmarking ML tools for MDE tasks:
Distilling essential challenges from existing literature,
we provide researchers with a consolidated understand-
ing of the current landscape for benchmarking ML tools
in the context of model-driven engineering (MDE) tasks;

1 https://gluebenchmark.com/
2 https://github.com/microsoft/CodeXGLUE.
3 With the acronym ML/MDE we refer the application of machine
learning to support the development of some MDE task.

– A benchmarking framework for ML tools in MDE:
Presenting and discussing the main components of Mod-

elXGlue, we showcase their applications through rep-
resentative examples, offering a comprehensive bench-
marking framework tailored for MDE;

– Reusable benchmarks for three ML/MDE tasks: This
paper introduces the development ofML benchmarks for
three crucial MDE tasks, including model classification,
clustering, and feature name recommendation;

– Use of ModelXGlue benchmarks in practice: Demon-
strating the practical application of the developed bench-
marks, we compare state-of-the-art ML approaches
for the considered MDE tasks. This facilitates the
reuse of implementation idioms for others in their own
ML/MDE tasks.

Both the developed framework and the benchmarks pro-
duced for this work are made openly available for future
research4

Organization. Sect. 2 reviews related works in the ML and
MDEfield and discusses themotivation of this research based
on the limitations found with respect to how such works
are evaluated. Section3 delves into existing challenges for
benchmarking the application of MLmodels for MDE tasks.
Next, in Sect. 4, we introduce the ModelXGlue framework
using a comprehensive example. Section5 discusses three
MDE tasks that can be addressed through ML algorithms
which we have used for the evaluation. We evaluate the
ModelXGlue framework in Sect. 6. Finally, in Sect. 7,we con-
clude the paper and discuss future work.

2 Related work andmotivation

This section discusses the significance of benchmarking,
elucidating the challenges inherent in benchmarking ML
tools and exploring how the ML community has addressed
these issues (Sect. 2.1). This introduction sets the stage for
a comparative analysis with the situation within the model-
driven engineering (MDE) field. Subsequently, in Sect. 2.2,
we scrutinize recent initiatives employingML tools to tackle
MDE problems. Our analysis includes an exploration of
whether these works incorporate benchmarking elements
such as metrics, comparisons against other models, and other
relevant aspects.

4 ModelXGlue is made available as an open source project in http://
github.com/models-lab/modelxglue. Additionally, the benchmarks
(including the required resources) presented in this paper are available
at http://github.com/models-lab/modelxglue-mde-components.

123

https://gluebenchmark.com/
https://github.com/microsoft/CodeXGLUE.
http://github.com/models-lab/modelxglue
http://github.com/models-lab/modelxglue
http://github.com/models-lab/modelxglue-mde-components

ModelXGlue: a benchmarking...

Fig. 1 A bird’s eye view of a typical ML benchmarking process.

2.1 Overview of benchmarkingML tools

Benchmarking is a systematic process of evaluating and
comparing machine learning tools based on various key
performance indicators (KPIs) that reflect their quality and
efficiency [40]. Benchmarking can help users to choose the
most suitable tool for their needs and discover opportunities
for improvement and optimization. However, benchmarking
ML tools is a complex and challenging process, as it requires
careful planning and execution of multiple steps.

As shown in Fig. 1, benchmarking ML tools encompasses
an iterative process consisting of several steps, including the
following ones [15]: i) defining the benchmarking goal and
scope, ii) selecting the appropriate dataset, models, and met-
rics to use, iii) configuring and running the ML tools with
the selected dataset, iv) analyzing and comparing the results
obtained from the different tools. Each step involves several
decisions and trade-offs. Therefore, a rigorous and consistent
methodology is essential for conducting a fair and reliable
benchmarking study [40].

The goal and scope of benchmarks are related to the type
of task that is evaluated and how it will be used in practice.
For instance, we might be interested in restricting the task
to classifying numbers for the image classification task (i.e.,
assigning a label to an artifact). In contrast, if the model is
intended to be used for driving assistance, then we might
be interested in restricting the scope of the benchmark to
traffic signs. According to the benchmark goals, we must
choose the appropriate dataset among the available ones. In
this context, different ML communities have created many
referenced datasets. For example, there are general image
recognition datasets like ImageNet [50] (one of the standard
datasets) and COCO [26], which consists of extensive image
collections, while task-specific datasets such as MNIST (for
number classification) and the German Traffic Sign Recog-
nition Benchmark (GTSRB) dataset [52] cater to specific
evaluation needs.

The selection ofMLmodels to be included in benchmarks
depends on the task, scope, and selected dataset. For instance,
the MNIST dataset is adequate for single-label classification
models, but if we are interested in multi-class classification
(i.e., predicting more than one label), then the dataset and
the models need to provide specific support. Concerning the

selection of the metrics used for benchmarking purposes,
we could consider accuracy as a relevant metric to compare
the proposedmodel to the current state-of-art algorithms on a
task. Finally,wemust build the infrastructure to train, execute
and compare the results systematically.

Over the last years, theML community has adopted differ-
ent benchmark suites [34]. One of the most relevant tools to
perform machine learning benchmarks both in training and
inference is MLPerf [44]. It supports different datasets such
as ImageNet, COCO and tasks like image classification and
recommendation. At the same time, the software engineering
community has established some common downstream tasks
(such as program translation [27]) and their corresponding
metrics (such as CodeBLEU [45]) for evaluatingMLmodels
in this domain. This has facilitated the creation of bench-
marks like CodeXGLUE [33] to enable fair and consistent
comparison of different MLmodels. The availability of such
benchmarks has been crucial for advancing the field. How-
ever, as discussed below, there is currently a research gap
in the modeling community with respect to the systematic
evaluation of ML models applied to modeling problems.

2.2 Machine Learning in MDE

Machine learning has proven effective in addressing various
challenges within model-driven engineering [6, 24]. In [12],
the authors discussed the cognification of model-driven soft-
ware engineering. The goal is to boost the performance of
a process using knowledge. Furthermore, a comprehensive
examination of the adoption of machine learning for man-
aging modeling ecosystems is presented in [22]. Although
there is a trend to apply machine learning to address MDE
problems, there is not a well-established mechanism to
evaluate such ML applications and compare them against
previous works.

In the following, we make an overview of relevant works
that buildML tools to address problems inMDE, focusing on
how such works are evaluated and made available for others
to compare. In particular, we describe works, which support
theMDE tasks ofmodel classification,model clustering, and
modeling assistance. Table 1 and Table 2 summarize how the
analyzed works address the following dimensions:

123

J. A. H. López et al.

Table 1 Outline of works
related to MDE/ML and which
facilities are provided for
making experiments repeatable

nosirapmoCstnemirepxEnoitamotuAytilibaliavAksaT
Model Classification
1 [36] Single label inference GitHub No Yes No
2 [37] Single label inference GitHub No Partial Yes
3 [38] Single label inference GitHub No Partial Yes
4 [28] Single/Multi-label inference GitHub Partial Yes Yes
Model Clustering
5 [10] Hierarchical clustering No No N/A No
6 [7] Hierarchical clustering Web Partial Yes No
Modeling Assistance
7 [23] Feature name recommendation GitHub Partial Yes No
8 [20] Feature name recommendation GitHub Partial Yes No
9 [54] Feature name recommendation GitHub/Zenodo Partial Yes No
10 [11] Feature name recommendation GitHub No N/A No
11 [16] Feature name recommendation GitHub No N/A No
12 [1] Next modelling operation Zenodo No Yes No
13 [14] Feature name recommendation No No N/A No

Table 2 Outline of works related to MDE/ML focusing on which elements are used to produce and evaluate the ML models

scirteMnoitaulavE/gniniarTgnissecorp-erPtesataD
Inference

Model Classification
,llacer,.cerp,.ccAlebaldetciderPnohtyPavaJ555-erocE]63[1 F1

,llacer,.cerPlebaldetciderPnohtyPavaJ555-erocE]73[2 F1, acc., FPR, ROC, AUC
,llacer,.cerPlebaldetciderPnohtyPavaJ555-erocE]83[3 F1, bal. acc., FPR, ROC, AUC
,llacer,.cerP)s(lebaldetciderPnohtyPavaJteSledoM]82[4 F1, acc.

Model Clustering
noitalerroCretsulcdetciderPavaJavaJbuHtiG]01[5

,llacer,.cerPretsulcdetciderPRavaJooZLTA]7[6 F0.5

Modeling Assistance
7 [23] Ecore-555 [5], ModelSet [29], GitHub Java, Python Python Element removal SR, prec., recall, F1
8 [20] Ecore-555 [5], GitHub Java Java Element removal SR, prec., recall, F1

RRM,llaceRlavomertnemelEnohtyPavaJ]13[]03[RAM]45[9
llacer,.cerPlavomertnemelEnohtyPavaJetavirP]11[01
llacer,.cerPlavomertnemelEnohtyPnohtyP]92[teSledoM]61[11

12 [1] Matlab dataset [17] Matlab, Python Matlab Element removal MRR, recall
13 [14] GitHub Java corpus - - Element removal Prec., relevance

– Availability: The location where the source code of
the tool, including the training and inference code,
is available.

– Automation: Whether the authors provide scripts (or
any other method) to automate the development pro-
cess, which includes model training, inference, and
re-execution of the original experiments. In this item,
Yes means that the process is fully automated, Partial
that some scripts are available andNo that no automation
is considered.

– Experiments:This category checks if the experiments are
available, including the original data and other artifacts
needed to re-run experiments.

– Comparison: Whether the original paper compares the
proposed approachwith baselines (e.g., previous approaches
proposed in the literature).

– Datasets: The dataset(s) originally used to evaluate
the approach.

– Preprocessing: The technology used to preprocess the
dataset and convert it into a suitable form for the
ML model.

– Training/Inference: The technology used to implement
the training and inference of the ML model.

– Evaluation: Specifies the ground truth, which can be
definedmanually (e.g., a datasetmanually annotatedwith
labels) or computed (e.g., removing elements of a model
and using them as the ground truth for recommendation).

– Metrics: The set of metrics used to measure the perfor-
mance of the model in the given task.

Model classification. AURORA [36, 37] is a tool that
exploits a feed-forward neural network to classify meta-
models. The authors proved the tool’s capability to classify
Ecore models accurately. Similarly, a convolutional neural
network (CNN) is used to build theMEMOCNNmeta-model
classifier [38]. The idea is to transformmeta-models into par-
ticular 2D structures that the CNN can process. However,
both AURORA and MEMOCNN may be biased due to the
small size of the dataset (555 Ecore meta-models) and the
presence of duplicates. These works corresponds to rows 1–
3 in Tables 1 and 2. In one of them, the experiments are
fully available, while in the others, crucial information is
missing, specifically the comparison with the baselines. Fur-
thermore, the source code released in those works is not in a
form that is easily runnable. The dataset presented in [28] is
accompanied by two exemplary applications of model clas-

123

ModelXGlue: a benchmarking...

sification (row 4). The first one is single-label inference, and
the authors compare against [36], but to do so, the AURORA
neural network is reimplemented from scratch. The second
application is multi-label inference. The source code is avail-
able on GitHub and partially automated via scripts.
Model clustering. Basciani al. [10] proposed a tool to group
meta-models. The tool leverages a hierarchical clustering
technique to organize meta-models in a given repository
automatically. Furthermore, the authors exploited different
similarity measures, some conceived specifically for meta-
models, to trigger the clustering. The replicability of this
work is poor since the source code and the experiments are
not available (see row 5). The SAMOS platform is used in
[7, 8] for clustering. The approach is based on transform-
ing models into graphs and extracting paths (in the form
of n−grams). The source code and experiments are avail-
able in this case (row 6). However, the implementation is
in R, which introduces additional complexity to re-execute
the experiments. Although the authors provide a VirtualBox
environment to facilitate the task, it is still difficult to use
such an environment in an automated pipeline.
Modeling assistance. The authors in [18] propose the
application of graph kernels to MDE, but no actual imple-
mentations are provided. In this context, Di Rocco et al. [21,
23] proposes MORGAN, a tool based on graph kernels to
support the completion of bothmodels andmeta-models. The
tool is conceived to recommend structural features to com-
plete themodels under construction. In particular,MORGAN
can recommend classes, fields, and methods within a model
class, metaclasses, and structural features like attributes
and references. Another approach intended to recommend
model features is MemoRec [20]. It is based on collabora-
tive filtering to recommend class or structural feature names,
depending on the current editing context. The EcoreBERT
model [54] uses a randomly initialized RoBERTa model pre-
trained on all the Ecore meta-models of the MAR search
engine. It is used to recommend feature names.

Burgeño et al. [11] proposed anNLP-based architecture to
complete softwaremodels. The core of their proposal is to use
two-word embedding models (e.g., GloVe [42], word2vec
[35], etc.), one trained with general knowledge and the other
with contextual knowledge. Both models are interpolated to
perform the recommendations. In [16], a recommender for
class names and feature names is proposed based on generat-
ing a prompt for queryingOpenAI’s GPT-3API. An assistant
for Simulink models is presented in [1]. The system can rec-
ommend new blocks to add to the model under specification
(i.e., akin to predicting the next edit operation).

Table 1 summarizes in rows 7–13 the facilities provided
by model assistance works. Although in all cases the imple-
mentations are available, there is typically a lack of facilities
to automate the reproduction of the works (e.g., few scripts

are provided, but just the code as is). Moreover, it is worth
noting that these works do not compare against each other.

2.3 Assessment

From the results summarized in Tables 1 and 2, we can draw
some conclusions about the need for better benchmarking
infrastructures for ML and MDE. Most works make their
implementations public, but they are barely usable for oth-
ers to reuse since they are released “as is” (few or no scripts
to automate simple tasks like training the model or doing
inference). In some cases, even if there are scripts, the imple-
mentation is not designed to run on machines different from
the one in which it was implemented (e.g., it is not rare to
encounter absolute paths in the original source code, which
makes it difficult to reuse the code in different machines or
with different data).

In 6 out of the 13 analyzed works, the comprehensive data
necessary to replicate the experiments is fully accessible. At
the same time, the remaining studies provide only partial or
no access to their data. Another noteworthy observation is
that only three out of the 13 works assess their proposals
against other state-of-the-art works or baselines. The simi-
larity in the evaluation methodologies employed across these
works, such as utilizing an element removal strategy in rec-
ommendation systems, suggests the feasibility of comparing
different approaches. Nevertheless, the absence of such com-
parisons in practice reflects the challenging nature of this
endeavor, often leading researchers to avoid paying more
attention to it. However, achieving scientific progress in the
application of ML to MDE necessitates the undertaking of
such comparisons. Notably, each published work employs
a distinct set of metrics, contributing to the challenge of
comprehending the performance of each approach relative
to others.

The goal of ModelXGlue is to provide MDE researchers
with a framework to systematically evaluate their ML
tools and facilitate the comparison against state-of-the-art
approaches.

3 Challenges for benchmarkingML tools in
MDE

The preceding discussion highlights a lack of consensus
within the modeling community regarding the provision
the adequate experimental details in ML/MDE works for
comparative purposes.Amajority ofworks refrain fromcom-
paring against prior approaches, complicating the assessment
of each approach’s relative merits. Additionally, the diversity
of metrics employed in the evaluation of these works fur-
ther impedes straightforward result comparisons. In essence,
it can be asserted that the evaluation of ML/MDE works

123

J. A. H. López et al.

lacks systematicity. Addressing this issue could involve the
implementation of benchmarks that facilitate a systematic
comparison of various ML tools applied to MDE tasks.

To support such a statement and introduce the challenges
involved in benchmarking ML/MDE tasks, we discuss the
model classification task, which has been subject to different
proposals over the last few years [32, 37]. The task consists
of assigning a meaningful label to a given model based on
the labels observed in the training data. This problem has
received increasing attention in recent years, as it can facil-
itate the exploration and analysis of extensive collections of
models [30]. In particular, one of the challenges of reusing
modeling artifacts from a repository is to ensure that they
are properly categorized according to their characteristics.
This categorization has traditionally been done by manually
addingmetadata to the artifacts, with different levels of detail
depending on the specific problem. However, this manual
process is tedious, time-consuming, and error-prone.
Challenges. Although model classification is a relatively
simple task, the required pipeline includes most of the chal-
lenges typically found when combining ML and MDE [32].
For explanatory purposes, Fig. 2 illustrates some of the chal-
lenges using three concrete model classification approaches
found in the literature: feed-forward neural network [36]
(FFNN), a graph neural network [32] (GNN) and k-nearest
neighbors (KNN) using a search engine [30]. The concrete
challenges that we identify are the following:

– Dataset selection, filtering and adaptation. First of all,
a dataset needs to be selected and all the approachesmust
be made compatible with such dataset to ensure that the
results are comparable. Thismeans that a common format
for (modeling) datasets is desirable. Many times filtering
and adaptation operations over the dataset are needed,
like detecting and removing (quasi)-duplicate elements.
As previously mentioned, it is important that such trans-
formation is applied equally to all approaches.

– Encoding and preprocessing. The dataset needs to be
encoded according to the input requirements of each
ML model. For instance, if the selected model is a feed-
forward neural network, a possible encoding is to extract
a bag of words from the model (e.g., as 1-gram) and
then use an embedding model (e.g., GloVe) for obtaining
numerical vectors. On the other hand, a GNN requires
transforming the models to graph with a specific format,
whereas an approach like MAR can treat EMF models
directly because it relies on a specific library which inter-
nally implements their own transformations. Sincewe are
interested in enabling the use of different datasets, it is
important that the tools do not couple this step with the
training and inference.

– Training and validation strategy. Each ML model
needs to be trained using a subset of the training

data and later tested using another subset. There are
different strategies for this (e.g., n-fold validation, train-
test-validation splitting, etc.), but it is important that all
compared tools follow the same strategy.

– Evaluation metrics. The evaluation of each tool must
follow the samemetrics, which in turn need to be selected
according to the actual task. In practice, this requires that
the tools provide the raw output so that it can be post-
processed by the evaluation framework.

– Heterogeneous environments. The different steps of the
process require heterogeneous execution environments.
In practice, every approach handles the overall pipeline
execution in differentways like creating execution scripts
(which are difficult to change) or just documenting the
commands that needs to be executed. This fact hampers
the possibility of seamlessly benchmarking and compar-
ing different approaches.

In summary, systematically benchmarking ML tools in
MDE presents challenges, mainly due to the need for
more standardization and reproducibility. Various tools may
have different implementations, configurations, or versions
that can impact their performance. Additionally, different
datasets, models, or training strategies may cause variabil-
ity and inconsistency in the results. As a result, it is crucial
to use standardized and reproducible methods to ensure fair
and reliable benchmarking.

4 Framework

In this section, we describe the ModelXGlue framework,
whichwe have designed to facilitate benchmarkingMLmod-
els specifically created to address MDE tasks. The ultimate
goal is to allow modeling researchers to assess new mod-
els systematically by means of a clearly defined validation
pipeline and, thus, to support and facilitate the advancement
in the field.

4.1 Framework requirements

As discussed in the previous section, by considering the
illustrative example of the model classification task, several
shortcomings have hindered the systematic benchmarking
and comparison of ML/MDE approaches. To address this
issue, our framework needs to satisfy at least the following
requirements that we elicited and generalized while working
on the approach proposed in [32]:

– Management of different datasets. The availability of
several datasets of different quality is a necessary ele-
ment for advancing the discipline. Therefore, as new
datasets arise, it is crucial to be able to use them to

123

ModelXGlue: a benchmarking...

Fig. 2 Three approaches for model classification and what it is needed to execute and compare them. The geared icon means that the process needs
to be executed in a specific execution environment.

compare existing models against new datasets. Hence,
the framework must provide standard formats and data
management mechanisms to easily use different datasets
while executing comparison pipelines.

– Management of different metrics. The task of select-
ing and applying the appropriate metrics for a given ML
model is an important step which is the subject of intense
research in the ML community. A metric is a quantita-
tive measure of how well a model performs on a specific
task. Various metrics may be suitable for different tasks
and models. Therefore, choosing and implementing the
metric that best reflects the model’s objective is crucial.
Additionally, all models that are compared should be
evaluated using the same metric. Therefore, for the sake
of fair comparisons, the proposed framework must pro-
videmechanisms to ensure that the samemetrics are used
for the ML models under analysis.

– Managementof executionenvironments. Eachpipeline
element must be executed in its own environment with
the needed dependencies automatically configured. The
framework cannot assume a unique setting for all ML
models, since each model will depend on specific ver-
sions of the exploited external libraries. In particular, in
MDE, there is a plethora of technologies involved in the
construction of tools, which may make it difficult to run
experiments within a common framework. For instance,
some toolsmay be implemented in Java, others in Python,
or even depend on external services.

– Agnosticity from the provenance of ML models. The
framework should be able to handle ML models from
different sources and created by third parties (e.g.,
researchers who are not involved in the development of
ModelXGlue). This means that when creating a bench-
mark, it must be possible to combine ML models whose

provenance is different: a model created by a third party
used in its original form, a model which is adjusted for its
integration in the framework (e.g., to provide a fair com-
parison against other models), or even create newmodels
from scratch.

– Extensibility. The framework should be modular so that
new data transformations (e.g., filtering, encoding, etc.)
and ML models can be plugged in without changing
the framework’s source code. For example, one should
be able to add a new ML model for model classifica-
tion (e.g., using a CNN) by simply interfacing with the
framework. This is an essential requirement because we
want to encourage the collaboration and improvement
of the framework by getting contributions from MDE
researchers who are working on ML and MDE and will-
ing to share their novel tools for reuse, reproducibility,
and comparison.

– Automation. The framework should automate bench-
marking phases reducing human interventions. This
includes allowing different configurations easily, includ-
ing the specification of hyperparameters and the selection
of the models to be compared.

4.2 MODELXGLUE components and usage

Figure 3 provides an overview of the core components con-
stituting the ModelXGlue framework. In our proposal, there
are two main user roles: the ML expert and the benchmarker.
The ML expert is typically a researcher who has built an
ML model to address some MDE task. He or she is in
charge of wrapping the model into a format that is readable
by ModelXGlue (more details below). The other role is the
benchmarker, whose task is to gather ML models published
by ML experts (e.g., in GitHub repositories) and use the

123

J. A. H. López et al.

Fig. 3 Overview of the ModelXGlue components.

benchmark configuration facilities provided byModelXGlue

to set up a concrete benchmark (e.g., for model classifica-
tion). These two roles can be played by the same person (or
team) or by different people. To enable the interaction of the
users, the framework is organized into four key components:

– Execution engine: This component is in charge of coor-
dinating the execution of a benchmark by setting up
its pipeline and executing the different steps. In partic-
ular, the execution engine uses the execution environ-
ment manager component to execute the evaluated ML
models. To perform its job, it comprises dedicated sub-
components responsible for overseeing reusable datasets,
the application of evaluation strategies (e.g., k-fold or
train-test validations), the adoption of evaluation met-
rics, and the utilization of ML models available in the
catalog contributed by ML experts, as discussed below.

– ML Model Implementations: ML experts can create and
share new ML models within the benchmarking frame-
work. All ML models are stored in a designated location
(e.g., a GitHub repository), allowing the framework to
discover and make them available. In addition to the
actual ML model implementation (e.g., a neural network
implemented in PyTorch), a ML model component also
encompasses the transformations required to consume
input datasets and encode them as needed. To integrate
anMLmodel into a ModelXGlue, a manifest file must be
provided. Such manifest includes the information about
how to set up the execution environment of the model, so
that it can be integrated as part of a concrete benchmark.

– Benchmarking Configurator: This component manages
benchmark configurations, facilitating the execution of
benchmarks that consume specified datasets to feed

selected ML models. The evaluation is carried out
in accordance with the chosen evaluation strategies
and metrics.

– Execution Environment Manager: This component facil-
itates the execution of the ML components (i.e., the data
transformations and the ML model implementations).
Currently, the framework supports two different environ-
ments: Docker and Python.

This architecture allows us to satisfy the requirements
stated above. In particular, the Execution engine compo-
nent is able to load different datasets provided that they have
a common interface (requirement Management of different
datasets).

To satisfy the requirement about the Management of dif-
ferent metrics the Evaluation Metrics Manager provides a
set of well-known metrics which can be selected by the
benchmarker and the system ensures that they are applied
consistently to all models of the benchmark.

The requirement related toManagement of execution envi-
ronments is satisfied by the fact that every ML model is
executed by the Execution Environment Manager, which
is in charge of providing the required dependencies and a
clean execution environment.

The Agnosticity from the provenance of ML models is
achieved by the fact that an ML model must always be
wrapped as a ModelXGlue (i.e., it becomes an ML Model
component as shown in Fig. 3). Such wrapping is typically
easy since it implies providing amanifest file describing how
to execute the implementation.

Regarding the Extensibility requirement, our architec-
ture satisfies it, as new ML models are plugged in by
benchmarkers simply by referring to them when configuring

123

ModelXGlue: a benchmarking...

benchmarks. The only requirement is that they comply with
the interface required by the used MLmodel component.

TheAutomation requirement is achieved by the interaction
of the different components: once a benchmark is config-
ured, the execution engine uses the Evaluation Strategies
Manager to setup a specific pipeline and apply it to all ML
models in the benchmark.

The execution of the pipeline includes several steps which
are managed automatically: loading the dataset, splitting it
according to the selected evaluation strategy (e.g., k-fold),
then using the ML models manager to load an ML model,
applying the required data transformations to the original
dataset (Data transformers) and then using the ML model
implementation to train themodel. After themodel is trained,
the model is evaluated using the corresponding test set, and
the selected metrics are used for evaluation.

To summarize, a ModelXGlue benchmark is a specifica-
tion to select and configure themachine learningmodels to be
employed on a MDE task of interest. This specification also
encompasses the chosen datasets, evaluation strategies and
metrics used for the comparison. The machinery provided
by ModelXGlue is able to automatically execute the given
benchmark by training the models, applying them to the cor-
responding tests, and finally computing the corresponding
evaluation metrics.

4.3 MODELXGLUE in practice

To provide a concrete illustration of the elements of Mod-

elXGlue, we consider a scenario inwhich a researcherwishes
to conduct experiments related to the Ecore model classifi-
cation task, where the goal is to compare various existing
ML models designed for classifying Ecore models. Figure4
provides an overview of the components of ModelXGlue in
action, which can be split in two main elements: catalog of
reusable ML models and the construction of benchmarks.
The description of the catalog and the benchmarks is done
with YAML configuration files, which are explained in more
detail in Sect. 4.4. In the rest of the section, we present a
high-level view of ModelXGlue by means of Fig. 4.

The catalog ofMLmodels consists of sets of MLmodels
to address specific tasks (model classification in the example)
which have been made available by ML experts. In partic-
ular, the shown catalog consists of two available models
for the explanatory model classification benchmark prob-
lem: the KNN approach using the MAR search engine [30]
1 and the feed-forward neural network model proposed in
the AURORA tool [36] 2 . These models are “external”
to ModelXGlue in the sense that they can be developed and
made available in shared repositories independently of Mod-

elXGlue.
To construct a benchmark, the user of ModelXGlue

(the benchmarker) can select the actual models being bench-

marked from the catalog by means of configurations as given
in 3 (ffnn.yaml and mar.yaml). Theses specification outlines
which ML model will be evaluated and the specific settings
for the hyperparameters that will be explored during bench-
marking. The construction also involves defining the datasets
that will be used as input for the benchmark 4 and the
description of the task to be benchmarked which includes
information about the type of evaluation (train-test, k-fold,
etc.) as well as the relevant evaluation metrics 5 .

The lower part of Fig. 4 illustrates the execution of a
benchmark and the steps involved in it. To launch an exe-
cution of ModelXGlue for a set of experiments, the user
just indicates the folder in which the benchmark is located
(parameter config-path), the name of the models to be evalu-
ated (ffnn and mar in this case), the dataset to be used (like
the one given in 4) and the task to be executed (e.g., the
one specified in 5). The framework implements a pipeline
that consumes such an input configuration by executing the
following five steps:

S1 : First, a concrete dataset is loaded. It is possible to seam-
lessly change the dataset just be indicating a different one in
the execution command.

S2 : The dataset typically needs to be transformed to extract
featureswithwhich train anMLmodel. Therefore, this step is
dependent on the selectedMLmodel. TheMLmodel descrip-
tion is interpreted to transform the features as needed. For
instance, for the FFNN, a vectorization based on TF-IDF or
GloVe is used.

S3 : The model is trained according to the selected sampling
strategy (e.g., train-test, k-fold, etc.) and asmany times as the
hyperparameter selection requires.

To this end, ModelXGlue redirects the training to the
concrete implementation, setting up the appropriate execu-
tion environment. In particular, we currently support Python
environments and the most flexible solution which is to run
Docker containers.

S4 : The test phase (whichmay be interleaved with the train-
ing in some cases, e.g., with a k-fold strategy)works similarly
as the training phase, by using the execution environment.

S5 : Finally, the results obtained by each ML model exe-
cution (according to the combinations of hyperparameters)
are evaluated using metrics among those made available by
ModelXGlue.

4.4 MainMODELXGLUE features

In the following, the main features of the framework are dis-
cussed with respect to the features presented at the beginning
of this section.

123

J. A. H. López et al.

Fig. 4 Components of the framework. Researchers build catalogs of
ML components for MDE tasks which can be integrated into bench-
mark. 1 and 2 shows the configuration, dependency specification
and implementation of the two ML models (the MAR as a KNN classi-
fier [30] and the FFNN of Aurora [36]). 3 A benchmark is configured
by referring to available ML models and specifying values for the
hyperparameters of the models. 4 One ore more datasets need to

be configured, in this case ModelSet removing duplicate models. 5
Description of the task to be performed (classification), along with the
evaluation strategy (k-fold) and the relevant metrics. 6 Command to
execute a benchmark. ModelXGlue reads the configuration and for
each experiment applies the configured pipeline and outputs a file with
the metric scores.

4.4.1 Management of different datasets

To support different modeling datasets, ModelXGlue takes
advantage of the dataset hub of HuggingFace.5 In Hugging-
Face, a dataset consists of a table with a number of columns.
In our case, a modeling dataset is defined in terms of the
following columns:

– id: it is the unique identifier of the model in the dataset.
– xmi: it contains the XMI serialization of the stored
model.

– model_type: it is a string indicating the type of model
(e.g., Ecore, uml, etc.)

5 https://huggingface.co/docs/datasets/index

– text (optional): it contains the model serialized as 1-
gram (i.e., the strings of the model).

– graph (optional): it contains the model serialized as a
graph in networkx format.

– labels: for supervised learning datasets, it contains a
comma-separated list of labels of the model.

– is_duplicated (optional): it indicates whether the
model must be discarded in case of experiments that have
to be executed without duplicates.

The onlymandatory elements of a dataset is the id, the xmi
text of the model and the type of model. The rest are optional.
In particular, the text, graph, and is_duplicated elements
are computed applying a preprocessing step of the dataset
before uploading it to HuggingFace.We do this because such

123

https://huggingface.co/docs/datasets/index

ModelXGlue: a benchmarking...

transformations are used very frequently in ML models, and
therefore we have decided to avoid recomputing them by
adding them as part of the dataset.

Using a specific dataset in ModelXGlue involves writing
a configuration file like 4 shown in Fig. 4. The property
dataset_name is used when running a benchmark to refer to
a physical dataset stored in the repository with such a name.
The dataset_hg property represents the ID of the dataset in
the HuggingFace hub. On the other hand, the model_type
attribute is used to select onlyEcoremodels from the physical
dataset andprepare them for the benchmarks using the dataset
called modelset_ecore_dedup. This mechanism allows for
the creation of various views of the same physical datasets,
depending on the purpose of the comparison.

4.4.2 Management of different metrics

The framework provides built-in support for a number of
performance metrics, and new ones can be added if needed.
However, an important aspect of applyingmetrics to evaluate
the performance of ML models is to make sure that they are
applied consistently for every evaluated model. To this end,
inModelXGlue, a benchmark is configured around the notion
of task. A task includes an evaluation strategy (e.g., k-fold
or train-test-validation) and a set of relevant metrics. The
framework makes sure that all models are evaluated in the
same way and that the metrics are computed equally in all
cases. In practice, this means configuring a task as shown
by 3 in Fig. 4. Essentially, a task is given a name and a
concrete evaluation strategy, which are used when running
the benchmark. The metrics are configured by referring to
the name of the metrics provided by the framework. Some
relevant tasks alongwith the associatedmetrics are described
in Sect. 5.

4.4.3 Management of execution environments

One of the distinctive features of ModelXGlue is its abil-
ity to simplify the process of setting up the environments
required to run various ML models. Typically, this process
involves dealing with dependencies and potential conflicts
among third-party libraries that are needed for execution,
which can be time-consuming and error-prone.ModelXGlue

addresses this challenge bymaking explicit the configuration
of the execution environment for each model under analysis
and isolating such environment from the rest of the models,
thus minimizing the risk of dependency clashes and elimi-
nating the need to install unnecessary libraries that are not
required for the specific models being tested. For instance, if
a researcher is only interested in using a specific model, such
as FFNN, they do not need to install dependencies for other
models, such as GNNs, which can be a non-trivial task due
to GPU-related libraries.

To address this issue the framework provides the notion
of execution environment, so that each implementation of an
ML task/model runs in an isolated environment with all its
dependencies configured.

As a concrete example, model.yaml in 1 specifies the
requirements of theMARmodel (as aKNN-based classifier).
In particular, the environment property describes which
is the execution environment (docker in this case) and how it
will be invoked for training and test. The configuration of the
environment is actually done in the corresponding Dockerfile.

In addition to Docker-based execution environments,
ModelXGlue also provides support for Python-based exe-
cution environments through virtual environments6 which
is the case of AURORA (specified in 2). In particular,
the user specifies a requirements.txt files with the required
Python packages and versions which are used to create the
proper execution environment. Then, the concrete commands
to execute train and test Python scripts must be given in the
environment section of the YAML specification.

4.4.4 Agnosticity from the provenance of MLmodels

The framework permits to execute ML models indepen-
dently from their origin. To this end, one approach is to
wrap an existing model as a ModelXGlue component as
we have done for MAR (e.g., see the item 1 in Fig. 4)
which includes, among other elements, a description of the
model (metadata, its execution requirements, transformation
pipeline, etc.). Alternatively, an existing approach can be
reproduced by building the model from scratch (e.g., we
have reimplemented AURORA using scikit-learn, a more
modern approach) and encapsulating it into a component as
specified in 2 .

4.4.5 Extensibility

The framework prioritizes extensibility by decoupling the
definition of an ML model designed for a specific task from
its configuration in a specific benchmark (i.e., it separates
ML models from its usage for running a set of experiments
in a benchmark). As a result, each MDE task or model is
implemented externally to the framework, but it specifies the
necessary requirements for executing the task and its execu-
tion pipeline.

The framework serves as an interpreter that invokes the
appropriate pipeline steps and transfers data through the
pipeline while implementing the transformations requested
by the model specification. This process is facilitated by the
use of metadata files as for instance model.yaml in 2 . In
particular, in the ML model configuration it is possible to

6 https://docs.python.org/3/library/venv.html.

123

https://docs.python.org/3/library/venv.html

J. A. H. López et al.

apply transformations to the dataset. As a concrete exam-
ple, let us suppose that we want to replicate some of the
experiments in [36] in which different textual representa-
tions to encode meta-models are tried. The transform
property of model.yaml in 2 contains the configuration for
a feed-forward neural network which uses a textual repre-
sentation (based on 2-gram) and a TF-IDF vectorization. To
achieve this, we use the ability of ModelXGlue to enhance
the execution pipeline with custom transformations. The first
transformation is executed in a Docker container which runs
a Java program that performs the conversion by loadingmod-
els in XMI and generating the textual representation. Then,
a built-in vectorization transformation based on TF-IDF is
applied. Using this approach, it is possible to integrate in
the framework ML models with heterogeneous execution
requirements for their pipelines.

To configure a set of experiments the user writes config-
uration files to point to the concrete ML models that she
wants to run, plus information about concrete values of the
hyperparameters to be used (see 3). For instance, the
hyper property of the samemodel specifies the execution of
FFNN using concrete parameters. The framework automat-
ically tries to find the best combination of hyperparameters
by iterating over the different combinations.

4.4.6 Automation

The framework attempts to automate as much as possible
the execution and configuration of the benchmarks. To this
end, we rely on the configuration files presented above to
automatically run experiments following this information.
In practice, running a benchmark boils down to carrying out
the following steps:

1. Implement new ML models that one wants to test for a
specific task.

2. Pick up other ML models build by third parties to
compare.

3. Configure the benchmark by establishing the hyperpa-
rameters of the selected ML models using configuration
files as the ones shown in 1 and 2 .

4. Run the configured benchmarks using the command
modelxglue as 6 in Fig. 4

5. Inspect the results. They are saved as JSON files for ease
of processing. For instance, Listing 1 shows an excerpt of
the results obtained for a FFNN for model classification
using a k-fold evaluation strategy. The mean_all_scores

key contains, for each hyperparameter, the average of the
results (for each configured metric) obtained in the 10
folds. Then, the results_best_hyperparameter simply stores
the best result together with the actual value of the best
hyperparameter. Finally, the configurationwithwhich the
model has been executed is also stored as metadata. In

practice, we have developed some tooling to generate
reports from sets of result files.

Listing 1 Excerpt of the results of a FFNN formodel classification using
k-fold.
{
"results": {

...
"mean_all_scores": {
"{\"hidden_layer_sizes\": [50]}": [

0.8258944354256854,
0.8766834050693448

],
"{\"hidden_layer_sizes\": [100]}": [

0.8244323279377627,
0.8786322333811574

], ...
},
"results_best_hyperparameter": {
"score_folds_mean": [

0.8293492965367966,
0.8796102343376375

],
"hyperparameter": {
"hidden_layer_sizes": [

150
]

}
}

},
"configuration": {
"model": { ... },
"hyperparameters": { ... },
"dataset": { ... },
"task": { ... }

}
}

5 Catalog of ML/MDE tasks and datasets in
MODELXGLUE

The ModelXGlue framework is designed to support various
MDE tasks by providing a configurable pipeline that allows
users to perform custom transformations and apply differ-
ent ML models in dedicated execution environments. The
long-term objective is to establish a comprehensive catalog
of ML/MDE tasks and associated benchmarks, covering a
broad range of scenarios commonly encountered in the liter-
ature. In this section, we present the list of tasks and datasets
for which we have developed benchmarks in the current ver-
sion of ModelXGlue.

5.1 Datasets

As discussed earlier, ModelXGlue utilizes the Hugging-
Face datasets library to load modeling datasets, and it
provides a common format for describing them. Therefore,
the framework can support any dataset that is available on
the HuggingFace hub. Presently, we have converted and
uploaded two MDE datasets, namely Ecore-555 and Mod-
elSet, to the HuggingFace hub. However, there are several

123

ModelXGlue: a benchmarking...

other relevant datasets that ModelXGlue could support. In
the following sections, we discuss these datasets in detail.

Ecore-555.7 This dataset was released by Babur [5] and con-
tains 555 Ecore meta-models mined from GitHub in April
2017. They were manually labeled with their domains. Par-
ticularly, each meta-model belongs to one of these nine
categories: bibliography, conference management, bug/issue
tracker, build systems, document/office products, require-
ment/use case, database/sql, state machines, and petri nets.

TheModelSet dataset.8 López et al. [29] considered a subset
of the Ecore and UML models collected by the MAR search
engine [30, 31] and labeled them. As a result, ModelSet was
released in 2021. It contains 5,466 Ecore meta-models and
5,120UMLmodels labeledwith its category as themain label
(similarly to the Ecore-555 dataset but with more classes)
plus additional secondary labels of interest.

The MAR dataset.9 The MAR search engine [30, 31] has
crawled and analyzed more than 500,000 models of different
types. Particularly, the model repository managed by MAR
is composed by Ecoremodels, UMLmodels, BPMNmodels,
Archimatemodels, to namea few.Thesemodelsmainly come
from GitHub, GenMyModel, and the AtlanMod Zoo.

TheLindholmenDataset.TheLindholmenDataset contains
about 93,000 UML models [46] in different formats, like
images, XMI and proprietary formats. The dataset is not
labeled. The main shortcoming to use this dataset in our
framework is that it needs to be processed to filter out models
that are not compatible with standard modeling formats.

5.2 ML tasks

In this section, we describe three MDE tasks which can
be addressed using ML algorithms, and for which we have
already created reference benchmarks. The tasks are model
classification, model clustering and modeling assistance. In
particular, for each task, we provide a description, the related
datasets, and possible evaluation metrics.

5.2.1 Model classification

Description. This task is intended to assign one (or more)
descriptive labels to a given model. Typically, the label pro-
vides some semantic meaning to the model. This task has
proved useful to facilitate the navigation of large model
repositories by users. In particular, it has been used to imple-
ment faceted search in the MAR search engine [29].

7 https://huggingface.co/datasets/antolin/ecore_555
8 https://huggingface.co/datasets/antolin/modelset
9 https://mar-search.org/

Datasets. The dataset needs to be labeled with at least
one label per model. Thus, the only datasets that could
be considered for this task are the Ecore-555 and the
ModelSet datasets.
Evaluation metrics. A good metric to assess the perfor-
mance of the ML models is the balanced accuracy. It is a
modification of the traditional accuracy to handle unbalanced
datasets. In particular, given a category c, its recall is com-
puted as:

Recallc = Corrected identified models of the category c

Number of samples labeled with c
.

The balanced accuracy is then computed as:

balanced accuracy = AVGC
c=1Recallc.

This metric is an adequate choice for ModelSet and Ecore-
555 as both are highly unbalanced [32].

5.2.2 Model clustering

Description. The goal of the model clustering task is to iden-
tify groups of related models within a large set of models.
These groups are intended to contain semantically similar
models. This task is useful in scenarios which require having
an overview of a given dataset of models. This has been used
in theMDEForge repository as a way to organize and explore
meta-models [10].
Dataset. This is an unsupervised learning technique and,
therefore, the dataset does not need to be labeled. Thus, ML
clustering algorithms could be applied to all the datasets pre-
viously presented. However, if the dataset contains labels,
they can be used as ground truth and perform a more system-
atic evaluation.
Evaluationmetrics.There are severalways of evaluating the
output clusters. If we have access to the ground truth labels,
we can consider metrics such as V-measure [47], Rand index
[43], and NMI [53], among others. Otherwise, if there are
no labels, one should consider to use metrics like silhouette
coefficient [48] or Calinski-Harabasz Index [13] to evaluate
the quality of the output clusters. Scikit-learn offers a wide
range of clustering evaluation metrics10 that can be easily
integrated in our framework.

5.2.3 Modeling assistance

Description. This task consists of recommending relevant
modeling concepts given an input context. A context is typi-
cally a set ofmodel elements related to a givenmodel element

10 https://scikit-learn.org/stable/modules/clustering.html#clustering-
performance-evaluation

123

https://huggingface.co/datasets/antolin/ecore_555
https://huggingface.co/datasets/antolin/modelset
https://mar-search.org/
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

J. A. H. López et al.

Fig. 5 Illustration of the feature name recommendation task.

that is being edited. ML models trained to solve this prob-
lem could easily be integrated in modeling environments to
build autocompletion systems. It is important to note that the
description of this task is very general and groups more spe-
cific tasks. For instance, in the Ecore meta-model domain,
one can consider the task of recommending new EClasses
for a given meta-model or recommending features for an
existing EClass.

To better illustrate themodeling assistance task, let us con-
sider the feature name recommendation problem for Ecore
meta-models, which is shown in Fig. 5. Let us suppose that a
modeler is building an Ecoremodel which represents compa-
nies and their employees. The EPackage is named Company
and the developer is currently editing the Person EClass,
adding new attributes. At this point, the user (or the system
automatically) may invoke a recommender system to get a
list of possible attributes for the class that it is currently being
edited. In this case, the context could be the package name,
the class name and the names of the attributes already added.
With this information, the recommender system provides the
user with a ranked list of potentially relevant attribute names.
Dataset. This task does not require a labeled dataset of mod-
els. Thus, all the datasets presented in the previous section
can support the training ofMLmodels to perform the model-
ing assistance task. The only requisite is that the dataset needs
to be transformed to generate a training dataset by removing
parts of the model (e.g., a feature) so that the model learns
to predict them.
Evaluation metrics. A test sample can be constructed by
removing a concept from a model and using the name of the
removed concept as the ground truth. The recommendation
system will take as input the model without the concept and
will recommend a ranked list of k potential names, Sk =
[s1, . . . , sk]. To evaluate the quality of the output list, we
consider two metrics. One is the RR@k (Reciprocal Rank)
which is computed as:

RR@k = 1

|position of the ground truth within Sk | .

Thismetric takes into account the position of the ground truth
inside the ranked list and belongs to the interval [0, 1] (the
higher the better). Given a set of test samples, the average

of the reciprocal ranks are computed obtaining the MRR@k
(mean reciprocal rank).

The other metric considered is the Recall@k. It is the frac-
tion of the relevant concepts that are successfully retrieved.
In this case, since there is only one relevant element, the
metric will be 1 if the ground truth belong to the ranked list
and 0 otherwise. Given a set of test samples, the average of
the recalls is taken. In this situation (since there is only one
relevant element per test sample), this average is also called
Success Rate@k [20]. Note that this metric is less restrictive
than the MRR as the position within the suggestion list is not
taken into account.

6 Evaluation

In this section, we report the results of the evaluation of Mod-

elXGlue. In particular, we aim to stress ModelXGlue with
different benchmarking scenarios in order to experimentwith
its capabilities. To this end, we have used ModelXGlue to
implement benchmarks for the three tasks described in the
previous section. In this section,wewill discuss theMLmod-
els we have chosen for each task. Thesemodels were sourced
from previous works and have been incorporated into Mod-

elXGlue. We will also evaluate whether ModelXGlue has the
capability to support these ML models. Lastly, we will use
ModelXGlue to conduct benchmarks and provide compre-
hensive reports on the outcomes.

6.1 MLmodels

To carry out the evaluation, we have selected several state-
of-the-art ML approaches to solve three tasks in the context
of MDE: model classification, model clustering, and feature
name recommendation.

In Table 3, we have summarized the main features of the
MLmodels we benchmarked.We have focused on the prove-
nance of each model, whether it was used in its original
form, fine-tuned, or built from scratch. Additionally, we have
included information on the technology used to implement
the model, and how it is made available (e.g., in the form
of source code, a library or plain commands). Also, some
models have constraints with respect to the kind of software
models they support. It is important to consider these fac-
tors when designing benchmarks. Thus, the selection of the
approaches shown in Table 3 has been done with the aim of
applying ModelXGlue under different configurations based
on the four dimensions shown in the table.

123

ModelXGlue: a benchmarking...

Table 3 Main features of the ML models adapted and benchmarked with ModelXGlue

Provenance Model
implementation

Model
availability Constraints

Classification
Scikit-learn models [32] Python / Scikit-learn Source code -

-edocecruoSavaJ]94[enecuL
-yrarbiLavaJ]13,03[RAM
-edocecruoScirtemoeGhcroTyP/nohtyP]23[NNG

Clustering
-edocecruoSR]8[SOMAS

Agglomerative clustering From scratch Python / Scikit-learn N/A -
K-MEANS From scratch Python / Scikit-learn N/A -
Recommendation

enildnammoCavaJ]02[ceRomeM Minimum one
attribute per class

EcoreBERT [54] Python / HuggingFace[PyTorch] Source code +
shell scripts

Maximum 15 classes
in a single package

EcoreBERT fine-tuned Fine-tune of [54] Python / HuggingFace[PyTorch] Source code +
shell scripts

Maximum 15 classes
in a single package
-A/NnohtyPhctarcsmorFhcaorppadesab-NNK

6.1.1 MLmodels for model classification

In order to establish a benchmark, we utilize the ML models
outlined and provided in [32]. These models can be grouped
into three distinct types.

– Scikit-learn models: We exploit the different models
used in scikit-learn, as detailed in [32]. These models
include the simple neural network (FFNN), support vec-
tor machine (SVM), k-nearest neighbor model (KNN),
and Bayesian models (CNB, GNB, and MNB). Depend-
ing on the model’s compatibility, we use either TF-IDF
or GloVe vectorizations to feed these models.

– Model search engines: In the experiments, we also run
a k-nearest neighbor model using off-the-shelf model
search engines. In particular, we consider the use of the
Lucene search engine [49] and the MAR search engine
[30, 31].

– Graph Neural Network (GNN): Finally, we consider the
GNN model that has been used in [32] to perform the
model classification task.

6.1.2 MLmodels for model clustering

Given a dataset of models, we aim to findmeaningful seman-
tic clusters inside that dataset. To tackle this task, several ML
models are considered:

– SAMOS [8]: It is a tool that helps with model analyt-
ics and management. Its primary feature is hierarchical
clustering, which allows for better organization and
understanding of models. SAMOS works by mapping
inputmodels to vectors by extracting features such as uni-

grams, n-grams, graphs, or trees. These vectors are then
used to compute a term-frequency-based vector space
model (VSM) and perform hierarchical clustering.

– Agglomerative clustering and K-means: We consider the
agglomerative clustering and k-means implementation of
scikit-learn. As input for these clustering algorithms, TF-
IDF or GloVe vectorizations are used.

6.1.3 MLmodels for feature recommendation

We consider an instance of the model assistance task, i.e.,
the feature name recommendation for Ecore meta-models.
Given an Ecore meta-model, one feature (i.e., one EStruc-
turalFeature) from some EClass is removed. This task aims
to predict the removed feature name given the rest of the
meta-model under development. To this end, the following
ML models are compared:

– MemoRec [20]: It is an approach conceived to exploit
collaborative filtering strategies to recommend valuable
entities related to the meta-model under construction.
The system leverages a graph representation to encode
the relationship among meta-models artifacts. The rec-
ommendation engine is based on a collaborative filtering
technique and can recommend suitable classes if the con-
text is a package or structural features if the context
is a class.

– EcoreBERT [54]: It is a RoBERTa model pre-trained on
all theEcoremeta-models of theMARsearch engine. The
Ecore meta-models are first transformed into trees, then
flattened into a string to be read by the RoBERTa model.
We adapt the original model proposed in [54] for this task

123

J. A. H. López et al.

by masking the feature name, the feature type, and merg-
ing the recommendations of EAttributes and EReferences.

– EcoreBERT fine-tuned: We have made a slight modifica-
tion to the EcoreBERT input representation. Specifically,
we have removed the distinction between EReferences

and EAttributes. This change, combined with the task
of predicting feature names and types, allows us to
fine-tune EcoreBERT.

– KNN-based approach: This is a ML model that we have
implemented from scratch. It uses as context the name
of the EClass, the EPackage name and the names of the
other class features. Then, wemap these names to vectors
using GloVe. Finally, the vectors are averaged, obtain-
ing one vector representing the context. In the training
phase, each vector has one ground truth associated (i.e.,
the removed feature name), and they are stored in a kd-
treewith a pointer to the ground truth. In the testing phase,
the context vector is obtained from the test sample and
the kd-tree is queried to retrieve the most similar context
vectors of the training data. The feature names associated
with these vectors are the recommendations.

6.2 Building benchmarks withMODELXGLUE

As previously discussed,ModelXGlue aims at facilitating the
benchmarking of ML models applied to MDE tasks. There-
fore,we are interested in analyzing towhat extent the features
provided byModelXGlue have the expressive power required
for integrating existing ML models and creating new ones
for the tasks described above. The process of integrating a
single ML/MDE approach into ModelXGlue has two main
activities:

1. Build transformations: The dataset should be trans-
formed according to the input expected by the target ML
model. The transformations may need to be applied in
the training phase, in the test phase or both.

2. Integrate the ML model used by the approach under
analysis. It involves defining a concrete execution envi-
ronment for the training and testing functions of the
ML model, according to the original implementation
technology.

Table 4 shows the transformations that we have imple-
mented to support theMLmodels summarized in theprevious
section. In particular, the first column shows the models con-
sidered in the evaluation. The second column indicates the
dataset format that is used as input of the pipeline. When
it comes to classification and clustering, only one trans-
formation is used. However, for recommendation, multiple
transformations are applied in a sequence.

In the following, we give a detailed description of the
developed transformations and their integration and adapta-
tion processes for each model and task type.

6.2.1 Transformation functions

The transformations that we have implemented for the eval-
uation are described below.
Dump XMI to disk: This transformation takes the models as
XMI strings and dumps them to disk as files. This is particu-
larly helpful when the ML model or the next transformation
requires the dataset to be on the disk, such as in Lucene,
SAMOS,MemoRec, and other similar applications. To facil-
itate this process, we have integrated it as a built-in function
in ModelXGlue.
Vectorization: This transformation takes documents as input
and produces numeric vectors using GloVe embeddings or a
TF-IDF approach. We also have implemented this transfor-
mation as a built-in function inside ModelXGlue.
Filter dataset: This transformation takes Ecore models as
input and filters them according to the number of classes. It
is applied for the recommendation task to respect the restric-
tions of the corresponding approaches and make them com-
parable. It is implemented as a Java function since it requires
parsing the Ecore model. Thus, it runs in a Docker container.
Generate recommendation dataset: This transformation gen-
erates an augmented version of the input dataset. Each feature
of each Ecore meta-model is removed, and a new version of
the Ecore meta-model is constructed, annotating the name
of the modified class and adding the removed feature as the
target label. This is a key transformation for the benchmark
since it modifies the original dataset to generate a new dataset
which represents the actual task: predicting a feature name
given a context (i.e., the class fromwhich the feature has been
removed). This function is implemented in Java and runs in
a Docker container.
Model2tree: This transformation (implementedby the authors
of EcoreBERT [54]) receives an Ecore meta-model as input
and transforms it into a tree serialized as a string, which can
be used, e.g., to feed the EcoreBERT model. It is composed
of two functions, a Java function and a Python function, and
runs in a Docker container.
Model2tree adapted: This transformation is a modified ver-
sion of the previous one. The main difference is that the
output tree does not distinguish between the EAttributes and
EReferences.
Context generator for KNN : This transformation consists of
a Java function that extracts all the feature names and their
contexts for the KNN approach (i.e., the EPackage, EClass
and EStructuralFeature names). This transformation runs in
Docker container.

Table 5 provides an overview of the execution environ-
ments and implementation languages used for each dataset

123

ModelXGlue: a benchmarking...

Table 4 Dataset transformations for each ML model described in Table 3

Dataset
Format

Train Dataset
transformations

Test Dataset
transformations

Classification
tesatadgniniartehtsaemaSnoitasirotceVtxetsledomnrael-tikicS

Lucene xmi Dump XMI to disk Same as the training dataset
tesatadgniniartehtsaemaS-imxRAM
tesatadgniniartehtsaemaS-hpargNNG

Clustering
SAMOS xmi Dump XMI to disk Same as the training dataset

tesatadgniniartehtsaemaSnoitasirotceVtxetgniretsulcevitaremolggA
tesatadgniniartehtsaemaSnoitasirotceVtxetSNAEM-K

Recommendation

MemoRec xmi Filter dataset
Dump XMI to disk

Filter dataset
Generate recommendation dataset
Dump XMI to disk

EcoreBERT xmi -

Filter dataset
Generate recommendation dataset
Dump XMI to disk
Model2tree

EcoreBERT fine-tuned xmi

Filter dataset
Generate recommendation dataset
Dump XMI to disk
Model2tree adapted

Same as the training dataset

KNN-based approach xmi
Filter dataset
Context generator for KNN
Vectorisation

Filter dataset
Generate recommendation dataset
Context generator for KNN
Vectorisation

Table 5 Execution environments and implementation languages for
each dataset transformation

Transformation Execution
environment

Implementation
language

Dump XMI to disk built-in Python
nohtyPni-tliubnoitasirotceV

avaJrekcodtesatadretliF
Generate recommendation dataset docker Java

nohtyP&avaJrekcodeert2ledoM
Model2tree adapted docker Java & Python
Context generator for KNN docker Java

Table 6 Transformation functions. The lines of code (LOC) without
blank lines are reported

Transformation Java Docker Python
-5821tesatadretliF

Generate recommendation dataset 194 5 -
259501eert2ledoM

Model2tree adapted 105 9 42
Context generator for KNN 228 5 -

transformation. In addition, Table 6 presents the lines of code
for each non-built-in dataset transformation, which can give
an indication of the implementation effort required.

6.2.2 Integration of MLmodels

We have built various ML models as ModelXGlue compo-
nents, which are summarized in Table 7. We have chosen
a specific execution environment for each model based on

its original implementation technology. Additionally, the
training approach indicates whether the model needs to be
trained from scratch, downloaded because it is pre-trained,
or fine-tuned for this task. To integrate each ML model,
we have followed different strategies, including adapting
the original source code with modifications, reimplement-
ing the approach based on the corresponding research paper,
or wrapping a complete implementation using a scripting
language. In the following section, we provide detailed infor-
mation on howwe integrated theMLmodels and the required
effort for the three different MDE tasks.
MLmodels formodel classification.Table 8 shows the clas-
sificationMLmodels adapted to beModelXGlue components
and the corresponding lines of code required. The details
involved in the creation of the models are the following:

– Scikit-learn models. The adaptation of the Python-based
models,whichwere originally implemented using Scikit-
learn, was easy. We have just moved the code and
execution to a separate Python virtual environment. As
shown in Table 8, the first five models (FFNN, CNB,
GNB, MNB and SVM) have only 20 Python LOC, and
all of them have the same structure since the only thing
that changes is the name of the Scikit-learn model to use.

– Lucene. In the case of the Lucene approach, we had to
reimplement most of it because it was not originally con-

123

J. A. H. López et al.

Table 7 Execution
environments, traning, and
replication approaches for each
model described in Table 3

Model
execution
environment

Training
approach

Replication
approach

Classification
Scikit-learn models venv Retrain Adapt
Lucene docker Retrain Reimplement

)ybuRJ(gnipparWniarteRrekcodRAM
tpadAniarteRvnevNNG

Clustering
SAMOS docker Retrain Adapt
Agglomerative clustering venv Retrain N/A
K-MEANS venv Retrain N/A
Recommendation
MemoRec docker Retrain Wrapping (Bash)
EcoreBERT venv Download Adapt
EcoreBERT fine-tuned venv Fine-tune Adapt
KNN-based approach venv Retrain N/A

ceived as a reusable library or program. This is because
the approach has a non-negligible amount of Java LOCs.
Furthermore, as it is implemented in Java, a Docker con-
tainer was used as an execution environment.

– MAR. It was possible to use it as a Java library and there-
fore we have used JRuby to create a script that interacts
with the library and implements the k-nearest neighbor.

– GNN. This model was originally implemented using
PyTorch. In this case, the adaptation involved copy-
pasting the original training algorithm and making
sure that the dependencies (for PyTorch and PyTorch-
Geometric) were properly configured.

ML models for model clustering. Table 9 shows the clus-
tering models that have been adapted to be components of
ModelXGlue, along with the corresponding lines of code.
Here are some details about how these models were created:

– SAMOS. The effort to include SAMOS in the framework
involved mainly the installation of all the requirements
in the environment and the adaptation of the main func-
tions to be invoked byModelXGlue. It is important to note
that the installation of the requirements was not trivial as
SAMOS combines R and Java. Thus, the use of a Docker
container guarantees that dependency installation is now
automated.

– Agglomerative clustering and K-MEANS. The adapta-
tion of these models was similar to the Scikit-learn
classification models.

ML models for feature recommendation. Table 10 shows
the ML models that are used for the task of recommend-
ing feature names. These models have been modified to be
ModelXGlue components, and their respective lines of code
are also included. Further details about the creation of these
models are provided below.

Table 8 Classification models. The lines of code (LOC) without blank
lines are reported

Model JRuby Java Docker Python

FFNN - - - 20
CNB - - - 20
GNB - - - 20
MNB - - - 20
SVM - - - 20
GNN - - - 172
Lucene - 394 6 -
MAR 98 - 21 -

– MemoRec. This recommendation tool is made available
as a set of command line programs which perform the
preprocessing and the inference. Thus, a Docker con-
tainer and shell scripts have been used to interact with
the model.

– EcoreBERT. The integration of this model was moder-
ately easy as we only had to implement the inference
function. Since themodel can be loaded through theHug-
gingFace, we used a Python virtual environment to run
the inference.

– EcoreBERT fine-tuned. The main difficulty of integrat-
ing this model was to build the fine-tuning function. The
training and inference functions was run in a Python vir-
tual environment.

– KNN-based approach. The implementation of this model
was relatively straightforward using the kd-tree imple-
mentation of Scikit-learn. The main difficulty was the
implementation, in Java, of the transformation to gener-
ate the context vectors.

Altogether, we have been able to adapt and integrate exist-
ing ML models into ModelXGlue with a moderate effort.

123

ModelXGlue: a benchmarking...

Table 9 Clustering models. The lines of code (LOC) without blank
lines are reported

Model R Java Docker Python

SAMOS 20 315 15 -
Agglomeraive clustering - - - 16
K-MEANS - - - 16

Table 10 Recommendation models. The lines of code (LOC) without
blank lines are reported

Model Java Docker Python Shell

MemoRec - 11 - 41
EcoreBERT - - 117 -
EcoreBERT fine-tuned - - 183 -
KNN-based approach - - 49 -

6.3 Running benchmarks

Once all the selected ML models were built as ModelXGlue

components and organized in the form of three benchmarks,
weused the framework to run thebenchmarks in order to eval-
uate the performance of the models and compare them. In the
remaining of this section, we present and discuss the results.

6.3.1 Model classification

Datasets and evaluation metrics. We have considered the
ModelSet dataset without duplicates and the Ecore-555
dataset.We report two evaluationmetrics: the balanced accu-
racy and the traditional accuracy.
Dataset split.As it is done in previousworks [32, 36], we run
a 10−fold evaluation strategy. First, the dataset is split into
10 independent test sets. At each time step, one fold is used as
test set and the other nine folds as train set. Thus, each model
is trained 10 times, and the average of the evaluation met-
rics is used. The balanced accuracy is used to select the best
hyperparameter, and only the results of the best combination
of hyperparameters are reported. To run the experiments, we
removed categories in both datasets with less than 10 ele-
ments to ensure that, at least, there is one representative of
each category in all the test folds.
Results. Tables 11 and 12 show the results with ModelSet
(without duplicates) and the results using Ecore-555 (with
duplicates).

The performance results using the Ecore-555 dataset are
much higher because of two reasons: i) the number of cat-
egories is much lower than ModelSet which makes the
classification problem easier, and ii) we have considered
the Ecore-555 dataset with duplication which may cause an
overlap between the train and test sets.We employ the Ecore-
555 dataset because of two reasons. Firstly, to show that our
framework actually allows the use of different datasets seam-

Table 11 Classification task with the ModelSet dataset (without dupli-
cates) using k-fold as sampling strategy

Model Features Balanced Accuracy Accuracy

FFNN TF-IDF 0.829 0.880
SVM TF-IDF 0.816 0.873
SVM GloVe 0.792 0.848
LUCENE - 0.785 0.834
GNN graph 0.784 0.844
FFNN GloVe 0.778 0.837
MAR - 0.773 0.823
KNN TF-IDF 0.769 0.816
CNB TF-IDF 0.725 0.822
MNB TF-IDF 0.722 0.828
KNN W2V 0.721 0.769
GNB TF-IDF 0.615 0.680
SVM kernel 0.602 0.716

Table 12 Classification task with the Ecore-555 dataset (with dupli-
cates) using k-fold as sampling strategy

Model Features Balanced Accuracy Accuracy

FFNN TF-IDF 0.963 0.971
SVM TF-IDF 0.948 0.960
FFNN GloVe 0.941 0.953
LUCENE - 0.939 0.945
GNN graph 0.938 0.947
SVM GloVe 0.933 0.943
CNB TF-IDF 0.920 0.951
MNB TF-IDF 0.920 0.947
MAR - 0.919 0.925
KNN TF-IDF 0.913 0.929
GNB TF-IDF 0.900 0.900
KNN W2V 0.898 0.914
SVM kernel 0.818 0.869

lessly. And secondly, to use the same dataset as [36] and
notice that the results obtained here are similar to the ones
reported in [36] for the FFNN with TF-IDF model.

The results obtained in Table 11 are very similar to the
ones obtained in [32], showing that ModelXGlue can sup-
port the replicability of ML/MDE approaches. To evaluate
this fact numerically, we apply the Kendall rank correla-
tion coefficient to both rankings (Table 11 in this paper
and Table 5 in [32]). The coefficient obtained is 0.92.
Thus, there is an strong agreement between the induced
ranks. The main difference found is that the results for the
GNN are slightly different, probably because of the data
splits being slightly different and a different seed is used
(i.e., GNNs are not deterministic).

6.3.2 Model clustering

Datasets and evaluation metrics. For the sake of short-
ness, as target dataset, we have only considered theModelSet
dataset without duplicates. We use the labels as the ground

123

J. A. H. López et al.

Table 13 Clustering with ModelSet

Model Features V-score

K-MEANS TF-IDF 0.691
Agglomeraive clustering TF-IDF 0.657
K-MEANS GloVe 0.607
Agglomeraive clustering GloVe 0.525

184.0-SOMAS

truth clusters and report the V-measure score. This metric
is defined as the harmonic mean between homogeneity and
completeness. A clustering assignment satisfies the homo-
geneity property if each cluster contains only members of a
single class, and it satisfies the completeness property if all
members of a given class are assigned to the same cluster.
TheV-measure scores are between 0.0 and 1.0, and the higher
the better [47].
Dataset split. To perform the clustering experiments, we do
not split the dataset and run directly the clustering algorithms
over the full dataset.
Results. The clustering model V-scores are displayed in
Table 13. It is evident that our implemented simple approaches
perform better than SAMOS.

6.3.3 Feature name recommendation

Datasets and evaluation metrics. For the sake of brevity, as
the target dataset, we have only consideredModelSet without
duplicates. As evaluation metrics, we use mean reciprocal
rank and success rate with a fixed cut-off value k = 5 of the
size of the recommendation list.
Dataset split. We use a train/validation/test strategy to per-
form the recommendation experiments. The rationale is that
training transformers networks is costly and sampling alter-
natives, such as k−fold, require to train the models several
times.
Results. Table 14 shows the MRR@5 and the Success
rate@5 of the considered models. The models that achieve
the best performance are the EcoreBERT models. This is
because EcoreBERTwas pre-trained using theMAR dataset,
and ModelSet is a subset of MAR. Thus, it is likely that
EcoreBERT has already seen the test models in the pre-
training phase. Moreover, the fine-tuning procedure helps
EcoreBERT to achieve greater performance. Notably, the
gap between the fine-tuning and pre-trained versions is more
prominent in theMRR.An added value of thiswork is thatwe
have adapted the EcoreBERT’swork to be fine-tuned, andwe
have achieved the best performance in this recommendation
task.

The worst model is the KNN-based approach. This is not
surprising as the KNN model only has access to a small por-
tion of the full context (EClass and EPackage names and

Table 14 Feature recommendation task (without duplicates)

Model MRR Success rate

EcoreBERT fine-tuned 0.400 0.508
EcoreBERT 0.366 0.504
MemoRec 0.358 0.419
KNN-based approach 0.328 0.399

feature names). The results obtained for EcoreBERT and
MemoRec are aligned with the results obtained in their orig-
inal works.

6.4 Comparison ofMODELXGLUE withML
benchmarks

In this section, we compare the ModelXGlue benchmark
with three other relevant benchmarking frameworks, con-
sidering the criteria outlined in Sect 4. The comparison
is presented in Table 15. The rows encompass such crite-
ria, including additional information like the programming
language in which the benchmarking framework is imple-
mented, the supported ML models, and the kind of input
data that the framework provides support to. Meanwhile,
the columns represent the four benchmarking frameworks
selected for this comparative analysis.

CodeXGlue [33] is a widely used benchmark for code
intelligence. That is, its aim is to compare the performance of
NLP deep learning models in several code tasks. It includes
14 datasets for 10 diversified code intelligence tasks. The
framework is written in Python and only PyTorch models
can be run on top of it. Furthermore, it is not possible to
add another type of ML model that is not PyTorch neural
networks (e.g., KNN-based approaches, SVM, etc.) without
changing the source code.

AMLB [25] is a benchmark for AutoML systems. AMLB
internally trains multiple models with various hyperparam-
eters, utilizing heuristics to construct or select the optimal
ML model. Given the plethora of AutoML frameworks with
diverse dependencies and programming languages, AMLB
facilitates the management of environments when executing
these systems.However, it lacks support for this functionality
during data preprocessing, as the target frameworks typically
accommodate standardized input data formats (e.g., parquet,
arff, or csv) or Python objects like numpy arrays and pandas
dataframes.

The Droid framework has been proposed by Almonte et
al. [3, 4]. Its goal is to achieve the automation of the config-
uration, evaluation and synthesis of recommender systems
for modeling languages. The key difference of Droid with
respect to CodeXGlue, ModelXGlue and AMLB is that is
Droid is specifically designed for recommender systems for
modeling languages. In this respect, Droid is not exactly a

123

ModelXGlue: a benchmarking...

Table 15 Comparison of different ML benchmarks

eulGXedoCeulGXledoMtnemeriuqeR [33] AMLB [25] Droid [4]
seYseYseYseYstesatadtnereffidfotnemeganaM
seYseYseYseYscirtemtnereffidfotnemeganaM
oNseYoNseY)sledomLMrof(stnemnorivne.cexE
oNoNoNseY)gnissecorp-erprof(stnemnorivne.cexE
oNseYoNseYsledomLMfoecnanevorpehtmorfyticitsongA
seYseYoNseYytilibisnetxE
seYseYseYseYnoitamotuA
avaJnohtyPnohtyPnohtyPegaugnaL
ynAsmetsysLMotuAskrowtenlaruenhcroTyPynAsledomLMtegraT

sledomerawtfoSatadralubatdnasegamI)secneuqesnekot(edoCsledomerawtfoSatadtegraT

benchmarking framework (although it can be used for this
purpose) but a Low-Code platform in which the developer
is guided through different choices to build the best recom-
mender system which fits all his requirements. Thus, Droid
allows the user to perform evaluations on the evaluated rec-
ommender systems.

Therefore, the most similar framework to ModelXGlue is
AMLB, but their target is different. AMLB is focused on
images and tabular data while we focus on software mod-
els, which requires that ModelXGlue also provides support
for different execution environments for the preprocess-
ing phase. Moreover, AMLB is designed specifically for
AutoML models, whereas ModelXGlue support any kind of
ML model.

6.5 Discussion

In this section, we provide a critical assessment of Mod-

elXGlue based on our experience using it to build the bench-
marks presented in the previous section. The discussion is
organized according to the requirements presented in Sect. 4.
Management of different datasets. We have been able to
seamlessly use two different datasets in the experiments since
we rely on a common format. We began using only Mod-
elSet, but then we added the Ecore-555 dataset with little
extra effort.
Management of different metrics. We have implemented
themost common evaluationmetrics, so that the experiments
consistently use the samemetrics for all themodels.As a con-
crete example, in the originalworkofMemoRec [20], success
rate is used as the main metric, whereas in EcoreBERT [54]
MRR is used. This makes both works barely comparable. In
our experiments, we have been able to compare both works
with the same metric (actually we use both precision and
MRR).

A limitation of our current implementation is that the
metrics are hard-coded in the framework. In the future, we
would like to provide some mechanism for users to pro-

vide their own metrics (e.g., in the form of libraries as
in HuggingFace evaluate11).
Management of execution environments. The task of inte-
grating approaches in ModelXGlue is facilitated by the
possibility of encapsulating the runtime environment (i.e.,
the dependencies) in a Docker container or a Python vir-
tual environment. In particular, Docker should be used for
approaches which rely on runtimes different from Python.
As a concrete example, loading andmanipulating EMFmod-
els in ecosystems different from Java is often very difficult
or even impossible.12 Thus, the fact that we can run Java
projects as part of the pipeline and then combine the results
with other parts of the pipeline implemented in Python is a
crucial feature to support ML for MDE.

At the same time, the fact that each pipeline runs in
an isolated environment also has several advantages. One
of them is that there are no version conflicts. Another
advantage is that the dependencies required for a specific
model are only installed when it is executed. This is impor-
tant when the models need CUDA support (for GPU). For
instance, our GNN implementation is based on PyTorch and
PyTorch-Geometric, which somemachines may not support.
Therefore, when benchmarking, onemay decide whichmod-
els to execute according to the features of the target machine.
Another advantage is that if the execution of one of the bench-
mark models fails, the rest of the benchmark may proceed,
and partial results can be obtained.

All of these allowed us to execute the performed experi-
ments in different machines automatically, without the need
of any particular setup process.

However, a number of MDE tools are based on the EMF,
and their implementations are often tight to the Eclipse plat-
form. This means that they are only executable from within
the Eclipse IDE. This is the case of SAMOS, for which we
had to adapt the code to make it deployable through Maven
manually. Therefore, we want to investigate ways to use
Eclipse-plugins directly in our framework.

11 https://huggingface.co/docs/evaluate/index
12 There are solutions to use EMF in dynamic languages (PyEcore or
RubyTL [19]), but they are not fully compatible.

123

https://huggingface.co/docs/evaluate/index

J. A. H. López et al.

Another point of improvement for ModelXGlue is to
have debugging facilities. Since the models run in isolated
environments it is sometimes complicated to use standard
debugging facilities (e.g., the IDE debugger).
Agnosticity from the provenance ofMLmodels.TheMod-

elXGlue framework enables the use of various machine
learning models in a consistent way, regardless of their
source. Whether one is integrating a third-party model or
creating his or her own, the use of Docker or a Python envi-
ronment provides a convenient way to package dependencies
and wrap the models in a component directly executable by
ModelXGlue. In particular, we have integrated 15 models
of different types and provenances, thus covering the three
main scenarios that can be found in practice: wrapping an
existing components (11 models), building from scratch (3
models) and fine-tuning and wrapping an existing model (1
model). Moreover, we have shown that the results obtained
running the models using ModelXGlue are aligned with the
ones obtained by the original authors using ad-hoc execution
environments.
Extensibility. The framework implementation is completely
decoupled from the benchmarks that we have developed, that
is, they actually belong to different code repositories. This
permits creating and evolving benchmarks without the need
of modifying the source code of ModelXGlue.

Another advantage of the extensibility of the framework,
is that it is possible to build a catalog of reusable data trans-
formations for ML/MDE benchmarks. The use of a common
set of transformations is sometimes important for ensuring
that the ML models can be compared faithfully. In our case,
we needed to make sure that the recommendation models
consistently applied the same transformations. Moreover,
the fact that ModelXGlue promotes the separation between
data transformations and the actual ML models may help
researchers to organize their approaches into a set of well-
defined modules. In the future, we expect catalogs of useful
data transformations which could be seamlessly reused to
create new approaches.

The main issue with the extensible pipeline is that each
stage defines input and output data which needs to be moved
around. In our current implementation, we use the file sys-
tem to serialize data and MLmodels. This may be inefficient
and also requires to be able to serialize the ML models to
disk. While we have not yet found actual issues with this
approach, this may need to be tackled to scale the system to
larger datasets.

In addition, the fact that the pipelines are specified as
sequence of transformations is a conceptually clean abstrac-
tion, but in somecases itmaycause some inefficiencies in par-
ticular when both the training and test pipelines need to load
the same element twice (e.g., GloVe embeddings). In other
words, ModelXGlue does not have a way to share common
execution environments and globally load shared resources.

Automation. The benchmark specification is fully auto-
mated through configuration files. A benchmark is composed
of three types of configuration files: datasets, tasks, and ML
models. In particular, once the configuration file for the
dataset and a task have been created, it is shared for the
execution of each ML model under analysis. Moreover, the
configuration of a model consists of specifying its hyper-
parameters. This approach allows us to quickly iterate over
the benchmark by adding new models, changing hyperpa-
rameters, and testing results, supporting the typical iterative
process shown in Fig. 1.

By developing the three reference benchmarks, we have
systematically evaluated state-of-the-art approaches formodel
classification, model clustering, and feature name recom-
mendation. In practice, other researchers could continue
extending the benchmarks with better models. We also made
tools to analyze the results and generate summaries, includ-
ing the tables in this paper, whichwere automatically created.

7 Conclusion and future work

Machine learning (ML) is a rapidly growing field with a
wide range of applications in various domains, including
MDE. However, selecting the appropriate ML tool for a spe-
cific task can be challenging, as different tools may have
distinct strengths and weaknesses. To address this issue,
we introduced the ModelXGlue framework, which facili-
tates benchmarkingMLmodels specifically created forMDE
tasks. The framework canmanage different datasets, metrics,
and execution environments, automating the benchmarking
process and simplifying comparisons while reducing the bur-
den ofmanaging various artifacts involved in the process.We
have built an initial catalog of MDE/ML benchmarks and
demonstrated their execution within the framework.

In addition to the presented work, future plans for Mod-

elXGlue include the development of domain-specific lan-
guages and supporting tools that simplify the specification of
input configurations needed for executing benchmarks (e.g.,
type checking inputs and outputs in the pipeline). Moreover,
we would like to address some of the shortcomings and inef-
ficiencies of the current prototype, as discussed previously.
Finally, we are interested in fostering the usage of Mod-

elXGlue within the MDE community to grow the existing
catalog of benchmarks.

Acknowledgements This work has been partially supported by the fol-
lowing grants and projects:
• Grant TED2021-129381B-C22 (SATORI project) funded by MCIN/
AEI/10.13039/501100011033 and NextGenerationEU/PRTR,
•Grant PID2022-140109NB-I00 (AIM project) funded byMCIN/AEI/
10.13039/501100011033 and FEDER/UE,
• Grant CNS2022-135578 (LowSheets project) funded by MICIU/
AEI/10.13039/501100011033 and NextGenerationEU/PRTR.

123

ModelXGlue: a benchmarking...

• EMELIOT national research project, which has been funded by the
MUR under the PRIN 2020 program (Contract 2020W3A5FY).
• European Union–NextGenerationEU through the Italian Ministry
of University and Research, Projects PRIN 2022 PNRR “FRINGE:
context-aware FaiRness engineerING in complex software systEms”
grant n. P2022553SL.
• The Italian “PRIN 2022” project TRex-SE: “Trustworthy Recom-
menders for Software Engineers,” grant n. 2022LKJWHC.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Adhikari, B., Rapos, E.J., Stephan, M.: Simima: a virtual simulink
intelligent modeling assistant: Simulink intelligent modeling assis-
tance through machine learning and model clones. Softw. Syst.
Model. pp. 1–28 (2023)

2. Allamanis, M.: The adverse effects of code duplication in machine
learning models of code. In: Proceedings of the 2019 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms,
andReflections onProgramming andSoftware, pp. 143–153 (2019)

3. Almonte, L., Cantador, I., Guerra, E., de Lara, J.: Towards
automating the construction of recommender systems for low-code
development platforms. In: Proceedings of the 23rd ACM/IEEE
International Conference onModel Driven Engineering Languages
and Systems: Companion Proceedings, pp. 1–10 (2020)

4. Almonte, L., Guerra, E., Cantador, I., De Lara, J.: Building recom-
menders for modelling languages with droid. In: 37th IEEE/ACM
International Conference on Automated Software Engineering, pp.
1–4 (2022)

5. Babur, Ö.: A Labeled Ecore Metamodel Dataset for Domain Clus-
tering. https://doi.org/10.5281/zenodo.2585456

6. Babur, Ö., Chaudron, M.R., Cleophas, L., Ruscio, D.D., Kolovos,
D.: Preface to the first international workshop on analytics
and mining of model repositories. In: 2018 MODELS Work-
shops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE,
MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa,
ME, MULTI, HuFaMo, AMMoRe, PAINS, MODELS-WS 2018,
pp. 778–779. CEUR-WS. org (2018)

7. Babur, Ö., Cleophas, L.: Using n-grams for the automated cluster-
ing of structural models. In: International Conference on Current
Trends in Theory and Practice of Informatics, pp. 510–524.
Springer (2017)

8. Babur, Ö., Cleophas, L., van den Brand, M.: Samos-a framework
for model analytics and management. Sci. Comput. Program. 223,
102877 (2022)

9. Babur, Ö., Cleophas, L., Brand, M.v.d.: Hierarchical clustering of
metamodels for comparative analysis and visualization. In: Euro-

pean conference on modelling foundations and applications, pp.
3–18. Springer (2016)

10. Basciani, F., Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.:
Automated clustering of metamodel repositories. In: International
conference on advanced information systems engineering, pp. 342–
358. Springer (2016)

11. Burgueño, L., Clarisó, R., Gérard, S., Li, S., Cabot, J.: An nlp-
based architecture for the autocompletion of partial domainmodels.
In: International Conference on Advanced Information Systems
Engineering, pp. 91–106. Springer (2021)

12. Cabot, J., Clarisó, R., Brambilla, M., Gérard, S.: Cognifying
Model-Driven Software Engineering, pp. 154–160 (2018). https://
doi.org/10.1007/978-3-319-74730-9_13

13. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis.
Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

14. Capuano, T., Sahraoui, H., Frenay, B., Vanderose, B.: Learning
from code repositories to recommend model classes. J. Object
Technol. 21(3), 3 (2022)

15. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of
supervised learning algorithms. In: Proceedings of the 23rd inter-
national conference on Machine learning - ICML ’06, p. 161–168.
ACM Press, Pittsburgh, Pennsylvania (2006).https://doi.org/10.
1145/1143844.1143865

16. Chaaben, M.B., Burgueño, L., Sahraoui, H.: Towards using few-
shot prompt learning for automating model completion. In: 2023
IEEE/ACM 45th International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER), pp. 7–12.
IEEE (2023)

17. Chowdhury, S.A., Varghese, L.S.,Mohian, S., Johnson, T.T., Csall-
ner, C.: A curated corpus of simulink models for model-based
empirical studies. In: Proceedings of the 4th International Work-
shop on Software Engineering for Smart Cyber-Physical Systems,
pp. 45–48 (2018)

18. Clarisó, R., Cabot, J.: Applying graph kernels to model-driven
engineering problems. In: Proceedings of the 1st International
Workshop onMachineLearning andSoftwareEngineering in Sym-
biosis, pp. 1–5 (2018)

19. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: Rubytl: A prac-
tical, extensible transformation language. In: Model Driven
Architecture–Foundations and Applications: Second European
Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006.
Proceedings 2, pp. 158–172. Springer (2006)

20. Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.T., Pierantonio,
A.: Memorec: a recommender system for assisting modelers in
specifying metamodels. Softw. Syst. Model. pp. 1–21 (2022)

21. DiRocco, J., Di Sipio,C.,DiRuscio,D.,Nguyen, P.T.:Agnn-based
recommender system to assist the specification of metamodels and
models. In: 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pp. 70–81. IEEE (2021)

22. Di Ruscio, D., Nguyen, P.T., Pierantonio, A.:Machine Learning for
Managing Modeling Ecosystems: Techniques, Applications, and a
Research Vision, pp. 249–279. Springer International Publishing,
Cham (2023). https://doi.org/10.1007/978-3-031-36060-2_10

23. Di Sipio, C., Di Rocco, J., Di Ruscio, D., Nguyen, P.T.: Morgan:
a modeling recommender system based on graph kernel. Software
and Systems Modeling pp. 1–23 (2023)

24. Gérard, S., Burgueño, L., Burdusel, A., Gerard, S., Wimmer, M.:
Preface toMDEIntelligence 2019: 1stWorkshoponArtificial Intel-
ligence andModel-Driven Engineering. In: 2019 ACM/IEEE 22nd
International Conference onModel Driven Engineering Languages
and Systems Companion (MODELS-C), pp. 168–169. IEEE,
Munich, Germany (2019).https://doi.org/10.1109/MODELS-C.
2019.00028. https://hal-cea.archives-ouvertes.fr/cea-02572659

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.2585456
https://doi.org/10.1007/978-3-319-74730-9_13
https://doi.org/10.1007/978-3-319-74730-9_13
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1007/978-3-031-36060-2_10
https://doi.org/10.1109/MODELS-C.2019.00028
https://doi.org/10.1109/MODELS-C.2019.00028
https://hal-cea.archives-ouvertes.fr/cea-02572659

J. A. H. López et al.

25. Gijsbers, P., Bueno, M.L., Coors, S., LeDell, E., Poirier, S.,
Thomas, J., Bischl, B., Vanschoren, J.: Amlb: an automl bench-
mark. arXiv preprint arXiv:2207.12560 (2022)

26. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in
context. In: Computer Vision–ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer (2014)

27. Liu, F., Li, J., Zhang, L.: Syntax and domain aware model
for unsupervised program translation (arXiv:2302.03908) (2023).
Accepted for publication at ICSE 2023

28. López, J.A.H., Cánovas Izquierdo, J.L., Cuadrado, J.S.: Modelset:
a dataset for machine learning in model-driven engineering. Softw.
Syst. Model. pp. 1–20 (2021)

29. López, J.A.H., Cánovas Izquierdo, J.L., Cuadrado, J.S.: Modelset:
a dataset for machine learning in model-driven engineering. Softw.
Syst. Model. pp. 1–20 (2021)

30. López, J.A.H., Cuadrado, J.S.: Mar: A structure-based search
engine for models. In: Proceedings of the 23rd ACM/IEEE inter-
national conference on model driven engineering languages and
systems, pp. 57–67 (2020)

31. López, J.A.H., Cuadrado, J.S.: An efficient and scalable search
engine for models. Softw. Syst. Model. pp. 1–23 (2021)

32. López, J.A.H., Rubei, R., Cuadrado, J.S., Di Ruscio, D.: Machine
learning methods for model classification: a comparative study. In:
Proceedings of the 25th International Conference onModel Driven
Engineering Languages and Systems, pp. 165–175 (2022)

33. Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A.,
Clement, C., Drain, D., Jiang, D., Tang, D., et al.: Codexglue: A
machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021)

34. Madan, M., Reich, C.: Comparison of benchmarks for machine
learning cloud infrastructures. Cloud Comput. 50 (2021)

35. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient esti-
mation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013)

36. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Pierantonio, A., Iovino,
L.: Automated classification ofmetamodel repositories: Amachine
learning approach. In: 2019 ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems
(MODELS), pp. 272–282. IEEE (2019)

37. Nguyen, P.T., Di Rocco, J., Iovino, L., Di Ruscio, D., Pierantonio,
A.: Evaluation of a machine learning classifier for metamodels.
Softw. Syst. Model. 20(6), 1797–1821 (2021)

38. Nguyen, P.T., Di Ruscio, D., Pierantonio, A., Di Rocco, J., Iovino,
L.: Convolutional neural networks for enhanced classification
mechanisms of metamodels. J. Syst. Softw. 172, 110860 (2021)

39. Nguyen, P.T., Rocco, J.D., Sipio, C.D., Ruscio, D.D., Penta, M.D.:
Recommending API function calls and code snippets to support
software development. IEEE Trans. Software Eng. 48(7), 2417–
2438 (2022). https://doi.org/10.1109/TSE.2021.3059907

40. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J.,
Moore, J.H.: Pmlb: a large benchmark suite for machine learn-
ing evaluation and comparison. BioData Mining 10(1), 36 (2017).
https://doi.org/10.1186/s13040-017-0154-4

41. Ozkaya, I.: The next frontier in software development: Ai-
augmented software development processes. IEEE Softw. 40(4),
4–9 (2023). https://doi.org/10.1109/MS.2023.3278056

42. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors
for word representation. In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp.
1532–1543 (2014)

43. Rand, W.M.: Objective criteria for the evaluation of clustering
methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

44. Reddi, V.J., Cheng, C., Kanter, D., Mattson, P., Schmuelling,
G., Wu, C.J., Anderson, B., Breughe, M., Charlebois, M., Chou,

W., et al.: Mlperf inference benchmark. In: 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture
(ISCA), pp. 446–459. IEEE (2020)

45. Ren, S., Guo,D., Lu, S., Zhou, L., Liu, S., Tang,D., Sundaresan,N.,
Zhou, M., Blanco, A., Ma, S.: Codebleu: a method for automatic
evaluation of code synthesis. arXiv preprint arXiv:2009.10297
(2020)

46. Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M.R., Fernan-
dez, M.A.: An extensive dataset of uml models in github. In: 2017
IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 519–522. IEEE (2017)

47. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-
based external cluster evaluation measure. In: Proceedings of the
2007 joint conference on empirical methods in natural language
processing and computational natural language learning (EMNLP-
CoNLL), pp. 410–420 (2007)

48. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–
65 (1987)

49. Rubei, R., Di Rocco, J., Di Ruscio, D., Nguyen, P.T., Pieranto-
nio, A.: A lightweight approach for the automated classification
and clustering of metamodels. In: 2021 ACM/IEEE International
Conference onModel Driven Engineering Languages and Systems
Companion (MODELS-C), pp. 477–482. IEEE (2021)

50. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein,M., et al.: Imagenet
large scale visual recognition challenge. Int. J. Comput. Vision 115,
211–252 (2015)

51. Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Sarro, F.: A
survey on machine learning techniques for source code analysis.
CoRR (2021). arXiv:2110.09610

52. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german
traffic sign recognition benchmark: a multi-class classification
competition. In: The 2011 international joint conference on neural
networks, pp. 1453–1460. IEEE (2011)

53. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures
for clusterings comparison: is a correction for chance necessary?
In: Proceedings of the 26th annual international conference on
machine learning, pp. 1073–1080 (2009)

54. Weyssow, M., Sahraoui, H., Syriani, E.: Recommending meta-
model concepts during modeling activities with pre-trained lan-
guage models. Software and Systems Modeling pp. 1–19 (2022)

55. Yellin, D.M.: The premature obituary of programming. Commun.
ACM 66(2), 41–44 (2023). https://doi.org/10.1145/3555367

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2207.12560
http://arxiv.org/abs/2302.03908
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TSE.2021.3059907
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1109/MS.2023.3278056
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2110.09610
https://doi.org/10.1145/3555367

	ModelXGlue: a benchmarking framework for ML tools in MDE
	Abstract
	1 Introduction
	2 Related work and motivation
	2.1 Overview of benchmarking ML tools
	2.2 Machine Learning in MDE
	2.3 Assessment

	3 Challenges for benchmarking ML tools in MDE
	4 Framework
	4.1 Framework requirements
	4.2 ModelXGlue components and usage
	4.3 ModelXGlue in practice
	4.4 Main ModelXGlue features
	4.4.1 Management of different datasets
	4.4.2 Management of different metrics
	4.4.3 Management of execution environments
	4.4.4 Agnosticity from the provenance of ML models
	4.4.5 Extensibility
	4.4.6 Automation

	5 Catalog of ML/MDE tasks and datasets in ModelXGlue
	5.1 Datasets
	5.2 ML tasks
	5.2.1 Model classification
	5.2.2 Model clustering
	5.2.3 Modeling assistance

	6 Evaluation
	6.1 ML models
	6.1.1 ML models for model classification
	6.1.2 ML models for model clustering
	6.1.3 ML models for feature recommendation

	6.2 Building benchmarks with ModelXGlue
	6.2.1 Transformation functions
	6.2.2 Integration of ML models

	6.3 Running benchmarks
	6.3.1 Model classification
	6.3.2 Model clustering
	6.3.3 Feature name recommendation

	6.4 Comparison of ModelXGlue with ML benchmarks
	6.5 Discussion

	7 Conclusion and future work
	Acknowledgements
	References

