
Expert Systems With Applications 202 (2022) 117267

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

DeepLib: Machine translation techniques to recommend upgrades for
third-party libraries
Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, Claudio Di Sipio, Davide Di Ruscio ∗

Department of Information Engineering, Computer Science and Mathematics, Università degli studi dell’Aquila, 67100 L’Aquila, Italy

A R T I C L E I N F O

Keywords:
Mining software repositories
Deep learning
Encoder–decoder neural network
Third-party libraries upgrade

A B S T R A C T

To keep their code up-to-date with the newest functionalities as well as bug fixes offered by third-party
libraries, developers often need to replace an old version of third-party libraries (TPLs) with a newer one.
However, choosing a suitable version for a library to be upgraded is complex and susceptible to error. So
far, Dependabot is the only tool that supports library upgrades; however, it targets only security fixes and
singularly analyzes libraries without considering the whole set of related libraries. In this work, we propose
DeepLib as a practical approach to learn upgrades for third-party libraries that have been performed by similar
clients. Such upgrades are considered safe, i.e., they do not trigger any conflict, since, in the training clients,
the libraries already co-exist without causing any compatibility or dependency issues. In this way, the upgrades
provided by DeepLib allow developers to maintain a harmonious relationship with other libraries. By mining
the development history of projects, we build migration matrices to train deep neural networks. Once being
trained, the networks are then used to forecast the subsequent versions of the related libraries, exploiting the
well-founded background related to the machine translation domain. As input, DeepLib accepts a set of library
versions and returns a set of future versions to which developers should upgrade the libraries. The framework
has been evaluated on two real-world datasets curated from the Maven Central Repository. The results show
promising outcomes: DeepLib can recommend the next version for a library as well as a set of libraries under
investigation. At its best performance, DeepLib gains a perfect match for several libraries, earning an accuracy
of 1.0.
1. Introduction

While working with a software project, developers often use third-
party libraries (TPLs) that offer tailored functionalities (He, He et al.,
2021; Nguyen, Di Rocco, Di Ruscio, Di Penta, 2019; Raemaekers et al.,
2017; Visser et al., 2012). Existing TPLs enable developers to exploit
ready-to-use programming utilities without needing to reinvent every-
thing from scratch. However, TPLs are subject to change (He, He et al.,
2021), and to keep up with the new functionalities, in a software
project, developers need to replace an old library with a more updated
one. In fact, adopting the wrong version of a library might cause
unavoidable disruptions (Derr et al., 2017) due to conflicts or breaking
changes in the hosting code (Raemaekers et al., 2017). In this respect,
the migration of TPLs is complex and susceptible to errors that need
to be thoroughly managed to avoid any negative impacts on the entire
project (He, He et al., 2021).

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: phuong.nguyen@univaq.it (P.T. Nguyen), juri.dirocco@univaq.it (J. Di Rocco), riccardo.rubei@graduate.univaq.it (R. Rubei),

claudio.disipio@graduate.univaq.it (C. Di Sipio), davide.diruscio@univaq.it (D. Di Ruscio).

Being afraid of incompatibility and breaking changes (Huang et al.,
2019), developers tend to procrastinate the upgrade of TPLs (Derr et al.,
2017; Kula et al., 2018). They prefer to stay in the comfort zone, keeping
the most stable versions and continuously ignoring the accumulative
maintenance debt (Visser et al., 2012). A recent empirical study (Wang
et al., 2020) shows that more than 50% of the considered projects never
update more than half of their libraries. However, delaying the updates
of used libraries, due to such difficulties and the related ripple effects,
can harm software systems from different points of view, including
security. Moreover, it can increase the accumulated technical debt,
which is a measure reflecting ‘‘the implied cost of additional rework,
caused by deciding for an easy solution now instead of deciding for a better
choice that would take longer to be implemented’’ (Li et al., 2015).

In recent years, various bots have been conceived to support soft-
ware development (DevBots) (Erlenhov et al., 2019). Dependabot is
among the most recent approaches, and it aims to address the problem
vailable online 20 April 2022
957-4174/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.117267
Received 22 October 2021; Received in revised form 15 April 2022; Accepted 15 A
pril 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:phuong.nguyen@univaq.it
mailto:juri.dirocco@univaq.it
mailto:riccardo.rubei@graduate.univaq.it
mailto:claudio.disipio@graduate.univaq.it
mailto:davide.diruscio@univaq.it
https://doi.org/10.1016/j.eswa.2022.117267
https://doi.org/10.1016/j.eswa.2022.117267
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117267&domain=pdf


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
of upgrading TPLs. In particular, Dependabot is integrated into GitHub,
and it continuously scans a project’s dependencies. When vulnerable
TPLs are discovered, upgrades are recommended. The main limitation
of approaches like Dependabot is that they target specific kinds of
upgrades (e.g., security fixes) and libraries are singularly analyzed and
not considered as a whole by limiting the accuracy of the resulting
recommendations.

In the context of open-source software, developing new systems by
reusing existing components raises relevant challenges in (i) searching
for relevant modules; and (ii) adapting the selected components to meet
some pre-defined requirements. To this end, recommender systems
in software engineering have been developed to support developers
in their daily tasks (Di Rocco et al., 0000; Robillard et al., 2014).
Such systems have gained traction in recent years as they can pro-
vide developers with a wide range of valuable items, including code
snippets (Nguyen, Di Rocco, Di Ruscio, Ochoa et al., 2019; Nguyen, Di
Rocco, Di Sipio et al., 2021), tags/topics (Di Rocco et al., 2020; Di Sipio
et al., 2020), third-party libraries (Nguyen, Di Rocco, Di Ruscio, Di
Penta, 2019), documentation (Rubei et al., 2020), to mention but a few.
Through the CROSSMINER project (Di Rocco et al., 0000), we concep-
tualized various techniques and tools for extracting knowledge from
existing open source components to provide tailored recommendations
to developers, helping them complete their current development tasks.

The proliferation of disruptive deep neural networks in recent years
has culminated in Deep Learning (Goodfellow et al., 2016), which
proves to achieve profound achievement across several application
domains (LeCun et al., 2015). In this work, we propose DeepLib, a
novel approach to the recommendation of library upgrades, exploiting
cutting-edge deep learning techniques. In particular, DeepLib has been
built on top of long short-term memory and encoder–decoder neural
networks to predict future versions of libraries. Such techniques have
been successfully applied in various domains, including machine trans-
lation (Cho et al., 2014). By analyzing the migration history of mined
projects, we build matrices containing libraries and their versions in
chronological order, which are fed to the recommendation engine. As
output, DeepLib delivers (i) the next version for a single library lib that
the developer would like to upgrade for the project at hand; and (ii) the
next version for a set of libraries that should also be upgraded due to the
recommended upgrade for library lib. For the former, we built a long
short-term memory recurrent network (Hochreiter & Schmidhuber,
1997) (LSTM), while for the latter, we developed an Encoder–Decoder
LSTM (Sutskever et al., 2014) to predict a set of versions.

To the best of our knowledge, there exist no comparable tools
recommending upgrades related to library versions. Thus, we cannot
compare our system with any reusable baselines but evaluate it through
extensive experiments on two considerably large datasets from the
Maven Central Repository. This aims at studying the system’s capability
in real-world scenarios. The experimental results show that once being
fed with decent training data, DeepLib can effectively suggest the next
version for a single library and a set of libraries, demonstrating its
feasibility in the field.

This is an extended version of our preliminary work (Nguyen, Di
Rocco, Rube et al., 2021), where we presented a tool for predicting the
next version of a library in a software project. In this work, we improve
the original approach by adding an Encoder–Decoder neural network
to recommend upgrades for a set of libraries instead of only one library
as in the workshop paper. Furthermore, we conducted an empirical
study on an additional dataset to investigate the generalizability of
DeepLib. Last but not least, we extended the related work section to
cover additional related techniques that the workshop paper did not
consider.

In this respect, our work has the following contributions:

• A novel approach named DeepLib to the recommendation of
updates for TPLs.

• An empirical study on the proposed approach exploiting real
2

migration history data collected from Maven.
• The DeepLib tool,1 together with the curated datasets, has been
made available online to facilitate future research (Di Rocco et al.,
2022).

We structure our paper into the following sections. Section 2
presents a motivating example to the research problem as well as the
background to recurrent and Encoder–Decoder neural networks. Next,
we introduce the proposed approach in Section 3, and present the
evaluation materials and methods in Section 4. Afterward, Section 5
reports and analyzes the experimental results obtained through the
evaluation. Some discussions and the probable threats to the validity
of the findings are provided in Section 6. The related work is reviewed
in Section 7, and the paper is finally concluded in Section 8.

2. Motivations and background

To facilitate the presentation, hereafter, we consider the following
terms:

– library or dependency : A software module which is developed
by a third party, and provides tailored functionalities. A library
evolves over the course of time by offering new functionalities or
bug fixes (Bauer et al., 2012; Derr et al., 2017);

– repository or client : A software project that is hosted in OSS plat-
forms, e.g., GitHub, Maven and that makes use of some third-party
libraries;

To replace the constituent third-party libraries, the developer can
either (i) migrate an existing library to another library with similar
functionalities; or (ii) upgrade a library from an old version to a newer
one. While the former has been intensively investigated (He, He et al.,
2021), the latter remains largely unexplored. Thus, in the scope of this
work, we focus on upgrading libraries that are used by the software
project at hand.

We first describe a motivating example in Section 2.1, and then
make an overview of Dependabot, which is highly related to the prob-
lem addressed in this paper (Section 2.2). Afterwards, we briefly recall
background related to long short-term memory recurrent neural net-
works (Section 2.3) and sequence-to-sequence learning (Section 2.4).

2.1. Motivating example

During the development cycle, with respect to library usage, a
repository is normally updated by adopting a new version of libraries,
even adding new (or removing deprecated) libraries. To better motivate
our work, we consider in Table 1 a running example with maintain-
ers working on the repository named org.apache.hadoop:hadoop-auth2

which depends on a set of the following four libraries:

– lib1: log4j:log4j;
– lib2: org.slf4j:slf4j-log4j12;
– lib3: org.apache.httpcomponents:httpclient ;
– lib4: commons-codec:commons-codec.

In Table 1, the latest version of the hadoop-auth repository is 3.0.0-
alpha3 (the green row), and let us assume that the maintainers would
like to upgrade the used libraries. However, they do not know for
sure which version should be used for the constituent libraries, i.e.,
all the cells are filled with a question mark (?). One may think of a
simple heuristic that migrates a library to the next version, or the latest
one. However, by carefully investigating the table, we can see that
such a heuristic does not work in every case. In particular, there are
two additional possible changes that developers can perform on library

1 https://github.com/MDEGroup/DeepLib/.
2 https://bit.ly/2WP3ysS.

https://github.com/MDEGroup/DeepLib/
https://bit.ly/2WP3ysS


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.

w
⊳
a
s
m

(
g
p
p
d
s
c

u
a
D
f
a
o
t
n
v

Table 1
Migration path of the org.apache.hadoop:hadoop-auth repository.

Client version lib1 lib2 lib3 lib4 Timestamp

2.0.2-alpha 1.2.17 1.6.1 0 1.4 2012-10-02T00:44:04
2.3.0 1.2.17 1.7.5 4.2.5 1.4 2014-02-11T13:55:58
2.4.1 0 1.7.5 4.2.5 1.4 2014-06-21T06:08:34
2.5.1 0 0 4.2.5 0 2014-09-05T23:05:15
2.6.0 1.2.17 0 4.3.1 0 2014-11-13T22:35:37
2.7.2 1.2.17 1.7.10 4.2.5 1.4 2016-01-14T21:32:14
3.0.0-alpha3 1.2.17 1.7.10 4.5.2 1.4 2017-05-26T20:39:35
* ? ? ? ?

Table 2
Libraries with clients performing backward upgradings.

Library C1 C2 C3

org.slf4j:slf4j-api 5717 1.7.25 2034
com.fasterxml.jackson.core:jackson-databind 2939 2.9.5 521
com.google.guava 2802 21 541
org.apache.commons:commons-lang3 2485 3:3.6 861
org.scala-lang:scala-library 2153 2.11.12 321
org.slf4j:slf4j-log4j12 1728 1.7.12 220
commons-io:commons-io 1599 2.6 877
org.apache.httpcomponents:httpclient 1151 4.5.5 426
commons-codec:commons-codec 946 1.11 640
ch.qos.logback:logback-classic 945 1.2.3 185
log4j:log4j 910 1.2.17 667
joda-time:joda-time 873 2.9.9 469
junit:junit 580 4.12 305
commons-logging:commons-logging 499 1.2 310
org.clojure:clojure 349 1.3.0 244
commons-lang:commons-lang 322 2.6 230
com.google.code.gson 303 2.8.2 51
com.google.code.findbugs:jsr305 290 3.0.2 125
org.springframework:spring-test 289 3.2.17 25
org.projectlombok:lombok 261 1.16.20 86
org.mockito:mockito-core 99 2.15.0 19
javax.servlet:javax.servlet-api 94 3.1.0 63
org.assertj:assertj-core 80 3.9.1 23
org.testng:testng 53 6.9.10 9
org.scalatest:scalatest 42 3.0.4 7
javax.servlet:servlet-api 30 2.5 17

dependencies: (i) removal of a library; and (ii) downgrade migration,
as we explain as follows.
⊳ Removal of a library. In the table, the versions of the repository
are listed in chronological order, i.e., using their timestamp, that means
when moving down the table, from the top to the bottom, we encounter
newer versions of the repository. A cell with 0 implies that the library
in the column is not included by the repository version represented in
the row. It is worth noting that the presence of a library is subject
to change from version to version. For instance, lib1 has been used
by version 2.0.0-alpha, 2.0.2-alpha, and 2.3.0. When the repository is
upgraded from 2.3.0 to 2.4.1, lib1 is removed. However, the library is
then re-introduced when moving from 2.5.1 to 2.6.0. In this respect,

e see that the ability to recommend a 0 is also useful.
Downgrade upgradings. We can see that the upgrading is not

lways done upward, i.e., moving the library to a higher version,
ince there are also backward migrations. For instance, when the client
oves from 2.6.0 to 2.7.2, lib3 is downgraded from version 4.3.1 to

4.2.5. However, the library is then updated to version 4.5.2 by client
3.0.0-alpha3. This motivates us to perform an investigation on more
libraries to see if downgrade migrations are just a special case, or they
are commonplace. We crawled the migration history of 26 libraries
from the Maven Central Dependency Graph (Benelallam et al., 2018).
For each library, the migration history of all of its clients was analyzed.
Afterwards, we counted the number of clients that, at certain point in
their history updates, migrate to an older version of the library under
investigation. Table 2 shows the result of our study where we report:
3

C1: The number of clients that migrate downward (sorted in descending
order); C2: The most downgrading version; and C3: The number of
clients that migrated downward with the version in Column C2.

Among the mined libraries, org.slf4j:slf4j-api is the library with
the largest number of clients with downward migrations. In partic-
ular, 5717 clients contain libraries being upgraded back to an older
version. For the org.slf4j:slf4j-api library, 1.7.25 is the version with
most downgrading upgrades, i.e., 2034 clients. Considering the other
libraries in Table 2 as a whole, it is evident that backward migration
is considerably popular. In other words, simply migrating a library to
the next version, or the latest one is not always a solution. In practice,
we need to perform both backward and downward upgrading.

In fact, to select the right version of each library, developers need
to read the documentations very carefully and be informed of the
internal changes. They also seek help in Q&A forums like Stack Over-
flow for probable solutions. Take as an example, with respect to the
org.apache.httpcomponents:httpclient library (see Table 1), a developer
creates a post3 in Stack Overflow to ask for support concerning the
upgrading of the current version 4.2.5. Unfortunately, there is no
proper solution to the raised issue.

According to an empirical work (Kula et al., 2018), systems are less
likely to upgrade their library dependencies, with 81.5% of systems
remaining with a popular older versions. In fact, developers cite up-
grading as a practice that requires extra effort and added responsibility.
Therefore, an automatic mechanism to recommend the future version
of a library, or even for the whole set of libraries, is highly desirable,
aiming to reduce the burden related to library upgrade.

Motivation 1. The upgrade of a library version is a complex task and it
cannot be done just by moving to the next, or the latest version of the
library.

2.2. GitHub Dependabot

This section gives an overview of the GitHub Dependabot approach
Dependabot, 0000), which aims at addressing the problem of up-
rading TPLs used by existing GitHub repositories. In particular, De-
endabot focuses on automating security updates of vulnerable de-
endencies. On a regular basis, Dependabot checks if new depen-
ency versions are available. If yes, it informs developers and directly
ends pull requests to the repository under investigation to update the
orresponding dependency manifest with the new versions.

For instance, Fig. 1 shows Dependabot in action. It suggests possible
pgrades to solve some vulnerabilities of the used lucene-core, log4j,
nd junit libraries. However, it is important to remark that GitHub
ependabot tends to recommend the closest non-vulnerable version

or each dependency used in the project. Thus, libraries are singularly
nalyzed and recommendations are given without considering the set
f used dependencies as a whole. Therefore, the cases represented with
he 0 values in Table 1 cannot be explicitly managed. It is worth
oting that the upgrades suggested by Dependabot are mainly based on
ulnerability databases, e.g., the WhiteSource Vulnerability Database,4

without taking into account ripple effects that might occur due to the
co-existence of some additional dependencies in the given project.

Motivation 2. GitHub Dependabot is an initial attempt to recommend
library upgrades. Nevertheless, it mainly analyzes libraries singularly
and provides recommendations without considering the set of used
dependencies as a whole. Thus, it deals with limited upgrading scenarios.

Altogether, we conclude that though there exists a tool to recom-
mend upgrading of libraries, there is still a need for an automatic
mechanism to support developers with migration, i.e., proper ma-
chinery to automatically choose a suitable version for their libraries

3 https://bit.ly/3A8RN2s.
4 https://www.whitesourcesoftware.com/vulnerability-database/.

https://bit.ly/3A8RN2s
https://www.whitesourcesoftware.com/vulnerability-database/


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Fig. 1. GitHub Dependabot pull requests (names are blurred due to privacy).
Fig. 2. An LSTM cell.
Source: Reproduced Olah (2020).

considered as a whole. In this paper, we present an approach being
able to leverage the knowledge of already updated projects to assist
the developer in choosing a suitable version for the used libraries. In
the next subsections, we review two neural networks dealing with time
series data as a base for further presentations.

2.3. Long short-term memory neural networks

Long short-term memory recurrent neural networks (LSTMs) have
been developed to work with time-series and sequence data (Hochreiter
& Schmidhuber, 1997). LSTMs can remove or add information thanks
to their internal design, thereby retaining worthy/valuable information
and forgetting useless information. Fig. 2 depicts an LSTM cell, whose
main modules are explained as follows.

In the figure, 𝑐𝑡 and ℎ𝑡 are cell state and hidden state, respectively,
which are propagated to the next cell. Given a cell, the output of
the previous unit and the current input are fed as the input data.
Considering 𝑖𝑡 = [ℎ𝑡−1, 𝑥𝑡] as the concatenation of ℎ𝑡−1 (the hidden state
vector from the previous time step) and 𝑥𝑡 (the current input vector)
then the following formulas are derived:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ 𝑖𝑡 + 𝑏𝑓 ) (1)

𝑢𝑡 = 𝜎(𝑊𝑢 ⋅ 𝑖𝑡 + 𝑏𝑢) (2)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ 𝑖𝑡 + 𝑏𝑐 ) (3)

𝑊𝑡 = 𝑐𝑡−1 ⋅ 𝑓𝑡 +𝑁𝑡 ⋅ 𝑢𝑡 (4)

Where the sigmoid and tanh are defined as: 𝜎(𝑥) = (1 + 𝑒𝑥𝑝(−𝑥))−1

and tanh(𝑥) = 2 ⋅ 𝜎(2𝑥) − 1; 𝑊× and 𝑏× are the weight and bias matrices
for different network entry, hidden state matrix. The sigmoid function
is used to discard useless and retain useful information; Eqs. (1) and
(2) are used to compute the forget and the update values, respectively.
4

Fig. 3. Output sequence.

Fig. 4. The Encoder–Decoder architecture.
Source: Reproduced Cho et al. (2014).

The same output ℎ𝑡 is ported as the hidden state to the next cell, and
output of the current step (Shi et al., 2019). The size of 𝑐𝑡 is the number
of hidden units in the LSTM cell.

The Softmax function is used as the activation function, rendering a
set of real numbers to probabilities which sum to 1.0 (Rawat & Wang,
2017). Given C classes, and 𝑦𝑘 is the output of the 𝑘th neuron, the
final prediction is the class that gets the maximum probability, i.e., �̂� =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑘, 𝑘 ∈ {1, 2,… , 𝐶}, where 𝑝𝑘 is computed as: 𝑝𝑘 = 𝑒𝑥𝑝(𝑦𝑘)

∑𝐶
𝑘=1 𝑒𝑥𝑝(𝑦𝑘)

.
In this work, we propose a practical solution to the prediction of the

next version for a TPL by training an LSTM with data collected from
several OSS projects.

2.4. Sequence-to-sequence learning

Encoder–Decoder LSTMs (Sutskever et al., 2014) are used to deal
with sequence-to-sequence (seq2seq) prediction problems such as text
summarization. An Encoder–Decoder LSTM transforms an input se-
quence 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝐼 ) into an output sequence 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝐽 ).

Fig. 3 depicts an output sequence, where 𝑦0 and 𝑦𝐽+1 represent the
beginning (BOS) and the end of sequence (EOS), respectively. In this
respect, generating 𝑌 when 𝑋 is given as input boils down to computing
the conditional probability 𝑃𝜃(𝑌 |𝑋) below:

𝑃𝜃(𝑌 |𝑋) =
𝐽+1
∏

𝑗=1
𝑃𝜃(𝑦𝑗 |𝑌<𝑗 , 𝑋) (5)

where 𝑃𝜃(𝑦𝑗 |𝑌<𝑗 , 𝑋) is the probability of generating the 𝑗th of the
output 𝑦𝑗 , given 𝑌<𝑗 and 𝑋. A seq2seq process involves two phases:
(i) generating a fixed size vector 𝑧 from 𝑋, i.e., 𝑧 = 𝑓 (𝑋); and (ii)
generating 𝑌 from 𝑧.

Correspondingly, as shown in Fig. 4 an Encoder–Decoder LSTM
consists of the following components:



Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Fig. 5. System architecture.
• Encoder : This is a stack of LSTM cells and it accepts 𝑋 as input to
generate a fixed size vector 𝑧.

• Intermediate sequence: 𝑧 is the resulting vector obtained by encod-
ing information contained in 𝑋.

• Decoder : The component consists of LSTM cells to produce the
output sequence using the information fed by the encoder, i.e., 𝑧.

Encoder–Decoder LSTMs have gained big succeed in various do-
mains (Sutskever et al., 2014) as they are highly suitable to generate
sequences from sequences. In this way, it is reasonable to use them to
solve our issue, i.e., predicting a chain of library versions from past
migrations. In the next section, we present in detail the conceived
approach to recommendation of library updates.

3. Proposed approach

This section brings in our proposed approach to recommendation of
library updates, exploiting migration history of mined OSS projects. The
architecture conceived to realize the DeepLib framework is presented in
Section 3.1. We provide two types of recommendations as follows. For
suggesting the next version of a single library we build the first module
named DeepLib-𝛼 (Nguyen, Di Rocco, Rube et al., 2021), an LSTM to
accept as input a set of versions and returns the future version for each
library (Section 3.2). Afterwards, in Section 3.3 we present the second
module, i.e., DeepLib-𝛽 built on top of an Encoder–Decoder LSTM to
recommend the next version for a set of libraries.

3.1. Architecture

In practical use, there are two levels of upgrade: (i) the library level;
and (ii) the source code level. By the former, developers need to replace
a library with a suitable version. In contrast, by the latter, they have
to change the affected source code to make it conform with the new
library versions and the related APIs. In the scope of this work, we deal
with the first type of upgrade, i.e., recommending a suitable version for
libraries. The upgrade at the source code level is left as our future work.

The conceived architecture is depicted in Fig. 5. DeepLib has been
implemented on top of the Keras framework5 and trained using Google
Colab.6 Data is fetched from OSS platforms 1 , e.g., GitHub and Maven
with Crawler 2 . The collected data is then aligned, sorted, and trans-
formed into a suitable format to store in CSV files by Converter 3 . It is
necessary to upload the data to Google Drive for further processing. The
Parser component 4 builds migration matrices for DeepLib-𝛼 5 and
DeepLib-𝛽 6 to provide updates for a single library 7 and multiple
libraries 8 . The succeeding subsections explain the two modules in
detail.

5 https://keras.io/.
6 https://colab.research.google.com/.
5

3.2. DeepLib-𝛼: Recommending the next version for a single library

DeepLib-𝛼 has been developed using an LSTM to recommend a
version for a third-party library. We mine development history of soft-
ware projects to build a migration matrix, whose rows represent clients
and columns represents their versions. To populate such a matrix, we
analyze each software client and fill the correct version for all libraries,
one by one. Starting from a set of OSS projects, we parse each client
to build a migration matrix for DeepLib-𝛼 as shown in Fig. 7(a). From
the resulting matrix, we insert one more column on the right side. For
each client, the last cell is filled with the version of the library by the
next client.

To illustrate the transformation process, Fig. 7(a) depicts the mi-
gration matrix for lib1 for the org.apache.hadoop:hadoop-auth repository
in Table 1. On the left, there is the original matrix, whose the corre-
sponding migration matrix is depicted on the right. For instance, the
first row contains the versions of the four libraries, i.e., (1.2.15, 1.6.1,
0, 1.4) while the last column is the future version of lib1, i.e., 1.2.17,
which is actually the version of lib1 by the next client (Version 2.0.2).
This can be interpreted as follows:

“Given that in the current client we use version 1.2.15 for lib1, 1.6.1
for lib2, no lib3, and version 1.4 for lib4, then in the next version of the
client we should adopt 1.2.17 for lib1”.

By repeating the same process, we can populate the migration
matrices for other libraries. For the sake of clarity, only the matrix for
lib1 is shown in this section.

Since LSTMs only work with numbers, it is necessary to encode
each library version using a unique number. Moreover, the 𝜎 and tanh
functions (see Section 2.3) accept values in the [0..1] range, we also
need to normalize all the numbers to meet this requirement. The right
most part of Fig. 7(a) depicts the migration matrix after the encoding
and normalizing phases.7

Fig. 6 explains how DeepLib-𝛼 works, with respect to the example in
Fig. 7(a). The data to feed the system is a tuple of the form 𝑥𝑡 = ⟨lib𝑣11 ,
lib𝑣12 , lib

𝑣1
3 , lib

𝑣1
4 ⟩ and 𝑦𝑡 = ⟨lib𝑣21 ⟩, which captures the migration path of a

client. DeepLib-𝛼 uses input features from recent events, i.e., X = {𝑥𝑡},
𝑡 ∈ 𝑇 𝑝 to forecast the future version of each libraries, Y = {𝑦𝑡}, 𝑡 ∈ 𝑇 𝑓 ,
where 𝑇 𝑝 and 𝑇 𝑓 are time in the past and the future, respectively.
By each time step 𝑡, only one vector 𝑥𝑡 is fed to the LSTM cell. For
illustration purposes, we consider only four time steps, i.e., 𝑡0, 𝑡1, 𝑡2,
and 𝑡3 and the input data is given below.

– At t0: 𝑥0 = (0.500, 0.333, 0.000, 1.000), 𝑦0 = (1.000).
– At t1: 𝑥1 = (1.000, 0.333, 0.000, 1.000), 𝑦1 = (1.000).
– At t2: 𝑥2 = (1.000, 1.000, 0.333, 1.000), 𝑦2 = (0.000).

7 Matrix encoding and normalizing is conveniently done with the
LabelEncoder() and MinMaxScaler() utilities embedded in Python.

https://keras.io/
https://colab.research.google.com/


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Fig. 6. Architecture of DeepLib-𝛼.
Fig. 7. Migration matrices and input data for DeepLib-𝛼.
Fig. 8. Migration matrices and input data for DeepLib-𝛽.
Fig. 9. DeepLib-𝛽: Training with input sequence (1.2.17, 1.6.1, 0, 1.4) and output sequence (1.2.17, 1.7.5, 4.2.5, 1.4).
– At t3: 𝑥3 = (0.000, 1.000, 0.333, 1.000), 𝑦3 = (0.000).

The same procedure can be done for other input entries to train
DeepLib-𝛼. Being based on the technique presented in Section 2.3, the
tool uses the trained weights and biases to perform predictions for
unknown input data.
6

3.3. DeepLib-𝛽: Recommending the next version for the whole set of libraries

Though we can exploit DeepLib-𝛼 to recommend the next version
for a set of libraries by computing the next version for each of them,
one by one, in this section we introduce DeepLib-𝛽 to compute the
next migration path for a set of libraries as a whole. This is helpful
for developers who want to upgrade all libraries at once.



Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.

f

‘
[
c
F

e
T
e
f

4

f
l
T
c

n
w
t
f
g
r
w
M

c

In Fig. 8(a), we illustrate how the migration matrix for the example
in Table 1 is populated. On the left side, we depict the original matrix,
each row corresponds to a version of the considered client (referred
as client hereafter for simplicity). On the right-hand side, there is the
resulting migration matrix, and each row is filled with all the library
versions of the next client of the row in the left matrix. For instance,
the future version of client 2.0.2 is 2.3.0, i.e., marked with the blue
rame, and this is expressed as:

“Given that in the current client we use 1.2.17 for lib1, 1.6.1 for lib2,
no lib3, and 1.4 for lib4, then in the next version of the client we should
adopt 1.2.17 for lib1, 1.7.5 for lib2, 4.2.5 for lib3, and 1.4 for lib4”.

The input and output sequences are represented as follows: X =
‘1.2.17[sp]1.6.1[sp]0[sp]1.4’’ and Y = ‘‘[BOS]1.2.17[sp]1.7.5[sp]4.2.5
sp]1.4[EOS]’’, where [𝑠𝑝] is a space, [BOS] and [EOS] are special
haracters to signal the beginning and end of an output sequence (see
ig. 3).

DeepLib-𝛽 is built based on the seq2seq learning model (Sutskever
t al., 2014), converting a sequence into an output sequence of versions.
o feed DeepLib-𝛽, we transform the input data into vectors with
ntries in the [0..1] range. First, a corpus of all the characters used to
orm the library versions is curated. For instance, ‘‘1.2.17[𝑠𝑝]’’ contains

the following characters: ‘‘1’’, ‘‘.’’, ‘‘2’’, ‘‘7 ’’, and ‘‘[𝑠𝑝]’’. Then each
character is encoded using a one-hot vector whose length corresponds
to the corpus’s number of characters (𝛺). For Fig. 8(b), we get a corpus
consisting of 𝛺 = 10 characters, and the maximum sequence length
𝛩 = 27. In this way, a sequence is represented as a 2D matrix of size
(𝛩 ×𝛺), each row corresponds to the one-hot vector of a character. A
sequence with length smaller than 𝛩 is padded with [𝑠𝑝] to fill the gap.
The same process is done in Decoder to form the output sequence.
For the sake of presentation, we illustrate how the parsing is done
for the ‘‘1.2.17[𝑠𝑝]’’ input sequence in Fig. 8(b). The first and second
column represent the sequence and its vectors, respectively, each row
corresponds to a one-hot vector. The remaining columns represent the
characters.

Fig. 9 shows how DeepLib-𝛽 works with respect to the example
in Fig. 8(a). Encoder consists of a stack of LSTM units to encode
input sequences, and Decoder is also made of LSTM units and it
decodes the input sequence. We feed a vector at every time step to
Encoder. Similarly, by Decoder, we introduce the label vectors
singularly, moreover, the output of a time step is fed as input to the
next one. It has been shown that, training in the reverse order of the
input sentence brings a better prediction performance (Sutskever et al.,
2014). Therefore, in the scope of this work, every time there is an input
sequence, we reverse it and feed as input to DeepLib-𝛽. Following the
paradigm in Fig. 4, DeepLib-𝛽 learns from training data to predict the
future versions for an input sequence of versions.

4. Evaluation

We evaluate DeepLib to study its capability to provide a developer
with accurate recommendations featuring suitable migration steps. Af-
ter formulating the research questions in Section 4.1, we introduce the
datasets, the experimental settings and the metrics in Sections 4.2 and
4.3, respectively.

4.1. Research questions

The evaluation was conducted to answer the following research
questions:

• RQ1: How well can DeepLib-𝛼 recommend the next version for a single
library? We perform experiments to investigate to which extent
DeepLib-𝛼 is able to recommend the next version for each single
library. Such type of recommendation is desired when developers
7

prefer to upgrade libraries one by one. M
Table 3
Summary of the datasets.

Library Alias 𝜂𝑉 𝜂𝐶 𝜂𝑀

Dataset D1

junit:junit L01 29 101,541 2073
org.slf4j:slf4j-api L02 74 44,233 16,187
org.scala-lang:scala-library L03 228 25,417 19,508
com.google.guava:guava L04 90 24,532 8921
org.mockito:mockito-core L05 259 20,762 855
com.android.support:appcompat-v7 L06 59 19,772 1194
commons-io:commons-io L07 25 19,198 3332
ch.qos.logback:logback-classic L08 75 18,655 3100
org.commons:commons-lang3 L09 18 17,224 3915
org.clojure:clojure L10 67 15,954 234

Dataset D2

com.fasterxml.jackson.core L11 120 15,891 9022
log4j:log4j L12 20 15,618 1865
org.slf4j:slf4j-log4j12 L13 74 13,890 3607
org.scalatest:scalatest L14 18 13,216 10
javax.servlet:javax.servlet-api L15 17 13,271 355
com.google.code.gson:gson L16 35 13,300 1562
javax.servlet:servlet-api L17 17 13,271 427
commons-lang:commons-lang L18 15 10,845 1848
org.apache.httpcomponents:httpclient L19 54 10,136 3236
org.slf4j:slf4j-simple L20 72 9689 568
org.springframework:spring-context L21 155 9591 8563
org.assertj:assertj-core L22 44 9628 495
commons-logging:commons-logging L23 18 9423 1639
org.projectlombok:lombok L24 40 9742 1021
commons-codec:commons-codec L25 15 9.064 1728
org.testng:testng L26 78 8941 440
com.google.code.findbugs:jsr305 L27 12 8355 1804
org.springframework:spring-test L28 107 7736 1236
joda-time:joda-time L29 38 7565 3187

• RQ2: How well can DeepLib-𝛽 recommend the next version for a set
of libraries? Similar to RQ1, we extend the evaluation and study if
DeepLib-𝛽 can recommend the next version for a set of libraries.
This is useful in practice, especially for developers who want to
upgrade all libraries at once, instead of only one.

• RQ3: What contributes to an improvement in DeepLib’s performance?
Our proposed tool is a data-driven approach, and its performance
is heavily dependent on the input data. In this research question,
we investigate when the system cannot obtain a high prediction
accuracy, i.e., it fails, and especially why. This aims to find a
practical way to avoid the common pitfalls that adversely affect
its recommendation capability in the field.

.2. Data extraction

The Maven Central Repository8 consists of a huge number of arti-
acts,9 and includes additional features such as statistical reports, the
ist of most popular libraries, the list of dependencies for each artifact.
o evaluate DeepLib, we rely on two datasets, named D1 and D2,
ollected from more than 1000 public Maven repositories.
D1 and D2 consist of migration history for the top ten and the

ext top 19 popular libraries, respectively. Given a set of libraries,
e crawled all of their versions together with the list of clients and

heir corresponding release date. Moreover, we mined dependency links
rom a client to the used libraries with Maven Dependency Graph, a
raph-based representation of the collected artifacts in Maven and their
elationships. To generate a dependency graph from a set of libraries,
e made use of an existing dataset (Benelallam et al., 2018) using
avenMiner (Benelallam et al., 2019).

Afterwards, we performed additional steps to remove unuseful
lients by filtering the datasets with the following constraints: A client

8 https://mvnrepository.com/.
9 At the time of writing, there are more than 17 millions of artifacts in the
aven Central Repository.

https://mvnrepository.com/


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.

s
a
l

f
i
i
i
r
(
(
a
D

4

⊳
a
l
1
s
d
t
n
t
t
c
o
u
t

s
d
w
r
v
r
c
c

F
r
f
l
T
l
l
p
i
m
v
v
⊳
v
u
l
w

Fig. 10. Upgrading com.hubspot:SingularityService from 0.4.2 to 0.6.1.
hould (i) have more than one version; (ii) migrate at least one library
mong the considered libraries; and (iii) use at least four of the given
ibraries. This allows us to keep the resulting matrices not too sparse.

Compared to the clients in D2, those in D1 contain more upgrades
rom one library version to another. The use of D1 and D2 allows us to
nvestigate if DeepLib can work well under different situations of the
nput data, i.e., if it still provides suitable upgrades even when the data
s sparse. Table 3 reports the main characteristics of the datasets: each
ow features an input library with its name, the number of versions
𝜂𝑉 ), the number of clients that use at least one version of the library
𝜂𝐶 ), the number of clients that migrate from one library version to
nother (𝜂𝑀 ). We obtained 35,300 rows and 56,230 rows for D1 and
2, respectively.

.3. Settings and metrics

Experimental settings. The evaluation is done to study if our
pproach can recommend a future version for a library and a set of
ibraries. We opted for the ten-fold cross-validation technique (Kohavi,
995), widely chosen to evaluate machine learning models. A dataset is
plit into 𝑘 = 10 equal parts, so-called folds. One fold is used as testing
ata for each validation round, and the remaining 𝑘−1 folds are merged
o create the training data. The testing fold represents projects that
eed upgrading recommendations, while the training folds correspond
o the existing upgrades collected from real clients. In particular, by
he D1 dataset, there are 35,300 upgrades and thus each testing fold
onsists of 35, 300∕10 = 3530 rows, while the training data is composed
f (35, 300∕10) × 9 = 31,770 rows (upgrades). By D2, we have 56,230
pgrades, and each testing fold has 56, 230∕10 = 5, 623 rows, while the
raining data is composed of (56, 230∕10)×9 = 50,607 rows (upgrades).

The evaluation simulates a real development scheme where the
ystem needs to provide the active projects with recommendations using the
ata from a set of available training projects. Within the training data,
e also used 80% and 20% of the data for training and validation,

espectively. While the training phase is used to teach the models, the
alidation part is done to calibrate their hyperparameters. For each
epository, the libraries and their versions corresponding to the older
lient are fed as input data, while the libraries and their versions
orresponding to the newer client are used as label.

We take as an example of a project used for training as follows.
ig. 10 shows the upgrading of the com.hubspot:SingularityService10

epository from Version 0.4.2 to Version 0.6.1. The repository invokes
our libraries, i.e., L02, L04, L08, and L09. On the left, we show the
ist of versions for the libraries of the older client numbered 0.4.2.
he remaining cells are filled with 0, indicating that the corresponding

ibraries are not present. On the right, there is the list of versions for the
ibraries of the newer client numbered 0.6.1. Following the paradigm
resented in Figs. 6 and 9, to train DeepLib, the left part is used as
nput data (query), and the right part is used as label. In practice, this
eans DeepLib is expected to provide recommendations consisting of

ersions as shown in the right part, given that it has been fed with the
ersions on the left part.
Ground-truth data. For a testing client 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡, all the library

ersions of its next client 𝑇𝐶𝑛𝑒𝑥𝑡 are saved as ground truth data. We
se 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to feed DeepLib, which returns a future version for each
ibrary of 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡. We evaluate if the recommended versions match
ith the ground-truth data.

10 https://bit.ly/2MnvnXn.
8

Fig. 11. Clients with different migration patterns.

By checking the datasets, we see that clients sharing the same
set of library versions can be updated with various paths. For ex-
ample, the following three projects: (1): org.skinny-framework:skinny-
common_2.10,11 (2): org.scalikejdbc:scalikejdbc-interpolation_2.10,12 and
(3): org.scalikejdbc:scalikejdbc-config_2.1013 depends on L02 and L03 (see
Table 3), and their migration is shown in Fig. 11.

All of the starting clients have the same library versions, i.e., L02:
1.7.6 and L03: 2.10.0. However, by their next client, each of the projects
has a different migration pattern. For instance, while L02 is kept as 1.7.6
for (1), it is upgraded to 1.7.7 in (2) and (3). Similarly, the starting
version of L03 is 2.10.0 and it is updated to three different versions,
i.e., 2.10.2, 2.10.3, and 2.10.4 by (1), (2) and (3), respectively.

A recent empirical study (Derr et al., 2017) showed that a large
number of libraries can be upgraded by at least one closest version,
without causing any code changes. This happens since though TPLs
provide several APIs, developers normally make use a small fraction
of them. That means for L02, replacing 1.7.6 with 1.7.7, or for L03
substituting 2.10.2 with 2.10.3 or 2.10.4, does not trigger any in-
compatibilities. Altogether, in our evaluation, we consider multiple
ground-truth paths for a client. With respect to the example in Fig. 11,
all the migrations on the right are ground-truth data for the client on
the left.

To validate the performance, we must cover all possible cases con-
cerning the ground-truth data. In fact, by carefully checking the dataset,
we see that projects with different updates account for a small fraction.
In particular, only 2% and 4% of projects in D1 and D2, respectively,
have multiple migrations, and the others have single migration. In this
respect, the prediction of the next version for a library must be unique,
so as to avoid overwhelming developers.
⊳ Metrics. We evaluate how well DeepLib recommends versions that
eventually match with those stored in the ground-truth data. With
DeepLib-𝛼, we compute accuracy according to each library (𝐴𝑐𝑐𝑙𝑖𝑏): the
metric measures the ratio of clients with correct predictions (𝛿) to the
total number of clients (n). While for DeepLib-𝛽, we compute accuracy
by each project (𝐴𝑐𝑐𝑝𝑟𝑜), i.e., the ratio of the number of correctly
predicted versions (𝛥) to the total number of libraries (L) as follows.

𝐴𝑐𝑐𝑙𝑖𝑏 =
𝛿
𝑛

(6)

𝐴𝑐𝑐𝑝𝑟𝑜 =
𝛥
L

(7)

Besides accuracy, we compute correlation efficients using the Spear-
man 𝜌 and the Kendall 𝜏, and measure the effect size with Cliff’s
delta (Grissom & Kim, 2005): the larger the effect size is, the stronger
is the relationship between the samples.

11 https://bit.ly/3b5RhZn.
12 https://bit.ly/38fr3ln.
13
 https://bit.ly/38Xw9lk.

https://bit.ly/2MnvnXn
https://bit.ly/3b5RhZn
https://bit.ly/38fr3ln
https://bit.ly/38Xw9lk


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Fig. 12. Recommendation for the com.hubspot:SingularityService repository.
5. Results

We report a recommendation example provided by DeepLib in Sec-
tion 5.1. Afterwards, the research questions are answered in Sections
5.2, 5.3, and 5.4.

5.1. Explanatory example

To illustrate how DeepLib recommends upgrades to third-party
libraries, we show in Fig. 12 the recommendation results for the
com.hubspot:SingularityService14 that has been introduced in Fig. 10. The
repository invokes four libraries, i.e., L02, L04, L08, and L09. The left side
depicts the list of versions for the libraries of the older client 0.4.2,
and on the right, there is the list of versions for the libraries of the
newer client 0.6.1. The top row on the right depicts the real versions
of all libraries for the next client 0.6.1 (the ground-truth data), and
the bottom row represents the recommendations provided by DeepLib.
Among the four libraries, three of them are upgraded to a new version.
In particular, L02: 1.7.10→ 1.7.12, L08: 1.1.2→ 1.1.3, L09: 3.3.2→ 3.4.

The scenario is challenging as it requires a big upgrading step, i.e.,
changing almost all the constituent libraries at once. We select the
example since it is a typical one in the evaluation. In particular, by
carefully checking the given datasets, we realized that the majority of
the clients perform big migrations. In this sense, we expect DeepLib to
provide proper recommendations to assist developers in migrating their
software clients, given that big migrations may make the prediction
more challenging.

The second row of Fig. 12 presents the versions suggested by
DeepLib for Client 0.6.1. As it can be seen, the tool recommends
correct upgrading for three libraries, namely L02, L08, and L09. It only
mispredicts for L04, by providing 18 instead of 17, the correct one.
Moreover, DeepLib accurately predicts all the zeros, i.e., the libraries
that are not invoked. This seems to be trivial at fight sight, however as
we pointed out before (see Section 2.1), recommending a zero makes
sense, also considering the fact that wrongly suggesting a version rather
than 0, when a 0 is actually needed, may make developers confused.

Summary. DeepLib provides relevant recommendations to the explanatory
repository, given that a big step is required, i.e., upgrading at the same
time by almost all the constituent libraries.

5.2. RQ1: How well can DeepLib-𝛼 recommend the next version for a single
library?

We performed experiments on both datasets and the prediction
results for D1 and D2 are shown in Table 4. For each library, besides
the accuracy for each fold from F01 to F10, we also average out the
scores to get the final accuracy, which is shown in the last column of
the tables. Moreover, the cells with an accuracy smaller than 0.700 are
marked using the light red color, signaling an inferior performance.

For D1, there are ten libraries in total, and the results obtained
by DeepLib-𝛼 for the dataset are shown in the upper part of Table 4.
Overall, the table demonstrates that DeepLib-𝛼 can provide accurate
predictions for almost all the libraries. For instance, with L01, by all
the testing rounds DeepLib always gets an accuracy larger than 0.90,

14 https://bit.ly/2MnvnXn.
9

Fig. 13. RQ2: Acc𝑝𝑟𝑜 obtained by DeepLib-𝛽 on D1.

and the average accuracy is 0.970. This also applies to other libraries,
such as L05 or L07. Especially, by L06 we see a maximum accuracy for
most of the folds. It is our assumption that the quality of training data
is the main contributing factor to the performance gain. We are going
to validate this hypothesis in Section 5.4.

We analyze the results obtained by DeepLib-𝛼 on D2 in the lower
part of Table 4. The table shows a similar outcome to that when running
DeepLib-𝛼 on D1. By most of the libraries, DeepLib-𝛼 yields a good
prediction performance, i.e., the accuracy is generally larger than 0.90.
By L14, DeepLib-𝛼 gets the maximum performance by nine among the
ten folds.

However, besides the good predictions for most of the libraries of
both datasets, it is evident that DeepLib-𝛼 suffers a setback by some
of them. For instance, by L02, DeepLib-𝛼 obtains a low accuracy for
most of the folds: by only three among the ten folds, the tool gets an
accuracy larger than 0.700, while by the remaining ones, it gains a
lower accuracy. A mediocre performance is also seen by L11 and L21,
compared to the other libraries. This implies that DeepLib-𝛼 fails to
retrieve accurate predictions for some libraries. We ascertain the cause
in Section 5.4.
Answer to RQ1. Being fed with proper training data, DeepLib is able
to recommend the next version for a single library, obtaining a high
prediction accuracy for the majority of the libraries.

5.3. RQ2: How well can DeepLib-𝛽 recommend the next version for a set
of libraries?

We report the final results for all the projects for each fold among
F01–F10 using boxplots. The accuracies obtained by DeepLib-𝛽 for both
D1 and D2 are shown in Figs. 13 and 14, respectively. By examining the
results, we encounter several cases similar to the one in Section 5.1, i.e.,
DeepLib-𝛽 recommends decent upgradings, also when big migration
steps are required.

In Fig. 13, apart from some outliers, by most of the folds for D1, we
get an accuracy larger than 0.80. By many projects, DeepLib-𝛽 earns
an accuracy of 1.00, suggesting that the tool correctly predicts all the
library versions for these projects.

Fig. 14 shows a similar outcome for D2, compared to D1. It is
worth noting that by D2 there are 19 libraries, resulting in longer
input and output sequences, and this should make the prediction more
challenging. It is evident that for almost all the folds, DeepLib-𝛽 gets an
accuracy close to 1.0, and this is demonstrated by the narrow boxplots
converging to the upper bound of the diagram.

Nevertheless, similar to the results in RQ1, by both datasets we still
witness projects with which DeepLib-𝛽 gets a low performance. As seen

https://bit.ly/2MnvnXn


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Table 4
RQ1: Acc𝑙𝑖𝑏 obtained by DeepLib-𝛼 on D1 and D2.

Library Cross validation

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 Average

Dataset D1

L01 0.975 0.956 0.988 0.991 0.954 0.954 0.962 0.965 0.986 0.970 0.970
L02 0.558 0.728 0.792 0.667 0.347 0.635 0.656 0.742 0.611 0.515 0.625
L03 0.748 0.824 0.741 0.856 0.908 0.944 0.902 0.670 0.552 0.669 0.781
L04 0.767 0.735 0.805 0.776 0.678 0.608 0.766 0.776 0.954 0.857 0.772
L05 0.961 0.989 0.988 0.972 0.976 0.623 0.952 0.994 0.966 0.974 0.939
L06 0.997 0.994 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999
L07 0.952 0.981 0.970 0.969 0.945 0.947 0.952 0.960 0.990 0.961 0.963
L08 0.889 0.950 0.958 0.922 0.967 0.971 0.921 0.924 0.992 0.967 0.946
L09 0.937 0.952 0.967 0.966 0.960 0.852 0.966 0.900 0.984 0.952 0.944
L10 0.994 1.000 0.998 1.000 1.000 0.993 0.987 1.000 1.000 1.000 0.997

Dataset D2

L11 0.340 0.227 0.524 0.683 0.801 0.109 0.648 0.701 0.641 0.766 0.544
L12 0.976 0.999 0.970 0.962 0.942 1.000 0.958 0.968 0.979 0.979 0.973
L13 0.964 0.987 0.845 0.828 0.815 1.000 0.825 0.798 0.989 0.818 0.887
L14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.999
L15 0.996 0.996 0.989 0.993 0.990 1.000 0.976 0.989 0.976 0.991 0.990
L16 0.966 0.979 0.953 0.956 0.980 1.000 0.977 0.909 0.942 0.977 0.964
L17 0.998 0.998 0.993 0.995 0.979 1.000 0.986 0.996 0.989 0.995 0.993
L18 0.976 0.999 0.964 0.953 0.895 0.959 0.936 0.963 0.995 0.984 0.963
L19 0.878 0.986 0.810 0.848 0.793 0.306 0.804 0.778 0.809 0.757 0.777
L20 0.994 0.999 0.994 0.971 0.990 1.000 0.989 0.973 1.000 1.000 0.991
L21 0.822 0.930 0.706 0.822 0.577 0.214 0.580 0.483 0.243 0.365 0.574
L22 0.898 0.985 0.989 0.985 1.000 1.000 0.992 0.998 0.950 0.992 0.979
L23 0.976 1.000 0.983 0.963 0.906 0.959 0.969 0.955 0.964 0.951 0.962
L24 0.992 0.997 0.929 0.944 1.000 1.000 0.998 0.986 0.963 0.954 0.976
L25 0.959 0.990 0.952 0.942 0.902 0.978 0.936 0.956 0.997 0.978 0.959
L26 0.975 0.991 0.966 0.983 0.993 1.000 0.983 0.944 0.968 0.997 0.980
L27 0.866 0.995 0.969 0.959 0.988 1.000 0.974 0.911 1.000 0.999 0.966
L28 0.962 0.996 0.981 0.904 0.939 0.999 0.863 0.934 0.921 0.921 0.942
L29 0.902 0.966 0.854 0.917 0.863 0.924 0.848 0.863 0.949 0.947 0.903
Fig. 14. RQ2: Acc𝑝𝑟𝑜 obtained by DeepLib-𝛽 on D2.

in the figures, some points lie further down the boxplots, corresponding
to a mediocre performance. We attribute such a setback to the quality
of the training data, and we find out the reason in the next research
question.

Answer to RQ2. On the given datasets, DeepLib-𝛽 successfully predicts the
next version for libraries by most of the projects.

5.4. RQ3: What contributes to an improvement in DeepLib’s performance?

Through RQ1 and RQ2, we see that DeepLib obtains an encouraging
result for most of the libraries as well as clients. Nevertheless, it fails
in some certain cases. In Table 4, we encounter cells marked in red,
corresponding to an accuracy lower than 0.700. Similarly, by Figs. 13
and 14, there are outliers residing near the minimum whiskers, also
suggesting a low accuracy. It is necessary to find out the rationale
behind such a setback, as this helps reveal the pitfalls that one can
avoid when deploying DeepLib.

According to Table 3, there are three variables: number of versions
(𝜂𝑉 ), number of clients (𝜂𝐶 ), and number of migrations (𝜂𝑀 ). We
perform quantitative analyses to study the relationships between these
variables and the average accuracy (the last column of Table 4). We
compute correlation efficients using the Spearman 𝜌 and the Kendall 𝜏,
and measure the effect size with Cliff’s delta (Grissom & Kim, 2005).
10
Table 5
RQ3: Correlation coefficients and effect size, DeepLib-𝛼.

Metric Score Acc vs. 𝜂𝑉 Acc vs. 𝜂𝐶 Acc vs. 𝜂𝑀

Spearman 𝜌 −4.84 × 10−1 −1.29 × 10−1 −8.48 × 10−1

p-value 7.78 × 10−3 5.04 × 10−1 5.98 × 10−9

Kendall 𝜏 −3.03 × 10−1 −7.61 × 10−2 −6.71 × 10−1

p-value 2.19 × 10−2 5.61 × 10−1 3.32 × 10−7

Cliff’s delta – 1.0 (large) 1.0 (large) 1.0 (large)

Table 5 reports the results obtained for the outcomes produced by
DeepLib-𝛼.

As can be seen, there is a low correlation between accuracy and
𝜂𝑉 , and this is enforced by both coefficients, i.e., 𝜌 = −4.84 × 10−1 and
𝜏 = −3.03 × 10−1. Moreover, the difference is statistically significant,
i.e., 𝑝-value = 7.78×10−3 and 5.98×10−9. The table also shows that the
effect is large by the considered relationships, i.e., Cliff’s delta is 1.0.
This essentially means that the more versions a library has, the lower
accuracy DeepLib-𝛼 obtains. In other words, having a large number of
library versions negatively impacts on the prediction performance.

A similar trend is seen with the relationship between accuracy
and 𝜂𝑀 . In particular, 𝜌 = −8.48 × 10−1 and 𝜏 = −6.71 × 10−1,
which means accuracy is disproportionate to the number of migrations.
The difference is statistically significant and the effect size is large.
Altogether, this suggests that it is more difficult for DeepLib to provide
good recommendations for a library associated with a large number of
migrations.

We cannot draw any concrete conclusions about the relationship
between accuracy and 𝜂𝐶 , as the 𝑝-value is larger than 0.05, although
both 𝜌 and 𝜏 are very small. This means by some libraries, having
more clients is beneficial to predictions, while by some others, it is not.
This is understandable since in principle having more training data is
helpful (Yamashita et al., 2018), however, the prediction performance
depends also on 𝜂𝑉 and 𝜂𝑀 , and as shown above, accuracy is greatly
affected by these parameters.



Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.

b
a
A
a
L
t
i

t
s
u
t
s

d
T
b
c
t
I
t
a
i
t

o
v
h
e

h
e
m
f
a
c
I
i
b
p
o
d
s

c
w
I
m
a
a
w

o
o
w
t
d
l
b
T
l
o
i
a
o
i
l

6

i
r
r
p
l
a
o

i
f
r
t
D

We suppose that this happens due to the structure of the networks,
i.e., the current weights are sufficient to memorize a certain amount of
versions/migrations. However, if there are more versions or migrations,
the network fails to absorb all the patterns. Such a limitation can be
overcome with deeper networks (Nguyen et al., 2021b), i.e., by padding
additional hidden units to DeepLib. To validate the hypothesis, we
increased the number of units from 40 to 100 and reran the experiments
on the libraries with which DeepLib-𝛼 gets a low accuracy by most of
the folds, i.e., L02, L11, and L21. As expected, we see a gain in accuracy
y these libraries. For the sake of clarity, we report the change in
ccuracy with respect to Table 4 as follows: Acc𝑙𝑖𝑏(𝐿02): 0.625 → 0.632,
cc𝑙𝑖𝑏(𝐿11): 0.544 → 0.559, Acc𝑙𝑖𝑏(𝐿21): 0.574 → 0.613. While by L02
nd L11 there is a marginal increase, we can see a substantial gain by
21. Similarly, by running DeepLib-𝛽 with more hidden units, compared
o the results in Figs. 13 and 14, we got a minimum and maximum
ncrease in Acc𝑝𝑟𝑜 of 5% and 18%, respectively.

The improvement suggests that one can enhance DeepLib’s predic-
ion performance for those libraries having a large number of ver-
ions/migrations by means of deeper networks, i.e., with more hidden
nits. In this way, we suppose that it is possible to further boost up
he predictions for any libraries/clients in practical use, by choosing a
uitable network configuration according to the input data.

Answer to RQ3. DeepLib suffers a deficiency in performance on libraries
with a large number of versions and/or migrations. However, depending
on the input data, the system’s performance can be enhanced with deeper
networks.

6. Discussion

We discuss the practicality as well as possible extension of DeepLib
in Section 6.1. The threats that might hamper the validity of our
findings are presented in Section 6.2.

6.1. Applicability and future developments of DeepLib

A question that might arise at any time is: ‘‘How can DeepLib be
eployed in practice?’’ As we see from Section 3, it is necessary to collect
PLs together with a set of clients associated with them. Afterwards, we
uild migration matrices to feed the recommendation engine. Once the
ollected data has been used to train the system, it can be removed
o give place to new data, i.e., projects coming from OSS platforms.
n other words, the knowledge learned from data is embedded in
he internal weights and biases of the networks. This makes DeepLib

lightweight framework that can be easily deployed. We plan to
ntegrate DeepLib into the Eclipse IDE, providing instant suggestions
o developers while they are coding.

The performance of DeepLib is driven by the availability and quality
f the training data. Thus we anticipate that it will fail if some library
ersions, e.g., newly released versions, never occurred in the migration
istory. In this respect, DeepLib is supposed to learn better only when
nough movement history is available, given a specific library version.

Recommendation of library upgrade is a complex problem, and this
as been confirmed by various studies (Derr et al., 2017; Raemaekers
t al., 2017; Visser et al., 2012). In fact, there are two levels of
igration: (i) the library level; and (ii) the source code level. By the

ormer, a developer needs to be provided with a suitable version of
library, whereas by the latter, she has to adapt the affected source

ode to make it work with the new library versions and related APIs.
n the scope of this paper, we tackle the first issue, i.e., recommend-
ng library migration. We expect that similar techniques employed to
uild DeepLib can be exploited to support source code migration. In
articular, by collecting related projects, we can build matrices with
ld APIs as features and new APIs as the label. This enables us to
eploy the same techniques used in DeepLib-𝛼 and DeepLib-𝛽 to predict
11

uitable migration steps. This, however, requires us to parse source
ode to extract the API functions. Moreover, in the scope of this work,
e consider only release time for the recommendation of updates.

n practice, there are many artifacts having multiple major versions
aintained at the same time. Thus, it would make sense to consider

lso semantic versioning, especially when upgrading on major versions
nd minor versions. We are going to tackle these issues in our future
ork.

According to the empirical evaluation, we see that the performance
f DeepLib-𝛼 and DeepLib-𝛽 depends very much on the availability
f the training data, i.e., among the two tools, there is no absolute
inner in all cases. In particular, DeepLib-𝛼 is good at recommending

he next version for a single library which consists of enough training
ata, i.e., when there are a large number of upgrades for the considered
ibrary. Meanwhile DeepLib-𝛽 outperforms DeepLib-𝛼 when there is a
alance between the number of upgrades for all the related libraries.
he rationale behind such a difference is as follows. In machine trans-

ation, an Encoder–Decoder LSTM can better predict the next sequence
f words when there exists a frequent combination of words in the
nput sequence (Cho et al., 2014). Since DeepLib-𝛽 is built on top of
n Encoder–Decoder LSTM, it inherits the essential qualities of the
riginal machine translation technique. Altogether, this suggests that
n practice, the selection of a suitable recommendation strategy for
ibraries should be made according to the quality of the input data.

.2. Threats to validity

Threats to internal validity are related to the confounding factors
n our approach and evaluation that could have influenced the final
esults. A possible threat is that the datasets might not fully reflect
eal-world development scenarios as we were are able to consider only
opular libraries. In practice, developers tend to work on a variety of
ibraries. To mitigate the threats, we crawled a wide range of clients
cross several repositories. Still, we believe that considering data from
ther sources, such as GitHub, can help fully eliminate the threat.

The main threat to external validity concerns the generalizability of
our findings. DeepLib has been evaluated on projects collected from
Maven, since we have suitable software to fetch the data. We anticipate
that our tool is also applicable to other platforms, as long as they
support versioning. We plan to generalize DeepLib to data from GitHub
n our future work. In fact, contributions in Maven come by strictly
ollowing a well-defined process, which is not the case for GitHub
epositories, where projects are uploaded in an ad hoc manner. In
his respect, it is necessary to carefully investigate the performance of
eepLib on projects curated from GitHub.

7. Related work

Recently, the issue of recommending development of third-party
libraries and API usage has been intensively studied (He, Xu et al.,
2021). We review notable recommender systems by focusing on those
related to the adoption of TPLs and API migrations.

7.1. Recommendation of TPLs

LibRec (Thung et al., 2013) employs a combination of rule mining
and collaborative filtering strategies to retrieve libraries considering
similar projects to the one given as input. Ouni et al. (2017) develops
LibFinder that uses a multi-objective algorithm to detect semantic
similarity in source code. CrossRec (Nguyen, Di Rocco, Di Ruscio, Di
Penta, 2019) assists developers in selecting suitable TPLs. The system
exploits a collaborative filtering technique to recommend libraries by
relying on the set of dependencies, which have been included in the
project being developed.

The usage of domain-specific category (DSC) concept has been
investigated to foster TLP maintenance (Katsuragawa et al., 2018).

By relying on a rule mining technique, the approach is capable of



Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.

f
f
c
a
m
p
o
i

t
u
i
a
t

a
G
w
i
e
S

t
i
g
T
A
t
p

e
o
m
c

o

categorizing GitHub projects exploiting labels available on the Maven
Central repository. LibSeek (He et al., 2020) employs the matrix fac-
torization (MF) technique to predict relevant TLPs for mobile apps. It
adopts an adaptive weighting scheme to reduce the skewness caused
by popular libraries. Furthermore, the MF-based algorithm is used to
integrate neighborhood information by computing the similarity of
libraries contained in the matrix.

Req2Lib (Sun et al., 2020) has been recently proposed to rec-
ommend TPLs given textual description of project requirements. The
tool employs a seq2seq LSTM which is trained with description and
libraries belonging to configuration file. Additionally, a domain-specific
embedding model obtained from Stack Overflow is used to encode
words in high-dimensional vectors.

All the previously mentioned systems can recommend libraries that
can be added in the project being developed. However, they do not pro-
vide suggestions that can help upgrade already included dependencies
as done by DeepLib.

7.2. Recommendation of migration

Xu et al. proposed Meditor (Xu et al., 2019) to analyze GitHub
commits to extract migration-related (MR) changes by mining pom.xml
iles. Once MR updates have been found, the tool employs the WALA
ramework to check their consistency by analyzing the developer’s
ontext and apply them directly. Apiwave (Hora & Valente, 2015) infers
nd retrieves relevant information related to TPLs, i.e., popularity and
igration data. The tool uses two different modules to discover the
opularity by analyzing import statements of projects, i.e., the removal
f certain API decreases its popularity. Additionally, the system can
nfer migration data from each API replacement.

Teyton et al. developed a tool that relies on a graph-based structure
o address the migration of TPLs (Teyton et al., 2012). The tool makes
se of a token-based filter applied on pom.xml to discover libraries’
nformation, i.e., names and versions. Afterwards, each TPL is encoded
s a node on the graph and edges express four different visual patterns
o suggest the most suitable migration changes given the input library.

SimilarAPI (Chen, 2020) suggests alternative TPLs by exploiting
n unsupervised ML approach. Given a set of projects crawled from
itHub, the tool is able to extract API call sequences by using a
ell-founded partial program analysis Java tool. Then, the obtained

nformation is encoded by using skip thoughts, an RNN capable of
mbedding the word semantics in a vector space. Given input TPLs,
imilarAPI retrieves the most similar ones with a ranked list of APIs

Fazzini et al. proposed APIMigrator (Fazzini et al., 2020) to support
he migration of APIs in Android apps. Starting from API usage (AU)
nformation extracted from the documentation, the tool can obtain
eneric migration examples that represent historical migration data.
hen, generic migration patches are extracted from these explanatory
U to migrate the target app. APIMigrator performs the actual migra-

ion by mapping the list of obtained patches one at a time to avoid
ossible issues due to the overlapping.

LibBandAid (Duan et al., 2019) is an approach to automatic gen-
ration of updates for TPLs in Android apps. Given an app with an
utdated library and a newer version of the library, the tool recom-
ends how to update the old library in a way that guarantees backward

ompatibility.
A recent work (Kula et al., 2018) attracts the community attention

ver the migration awareness problem as well as the efforts required to
apply actual changes. As the first step, the authors proposed a model
to detect TPLs evolution by excerpting migration data from GitHub
projects. The proposed model is based on the assumption that systems
with more dependencies tend to have more frequent updates. Addition-
ally, the authors conducted a user study to measure the developer’s
behavior considering the two main migration awareness mechanisms,
i.e., security advisories and new releases announcement. The findings of
12

the work are: (i) the majority of the software systems rarely update the
older but reliable libraries; (ii) security advisories provide incomplete
solutions; and (iii) developers consider the migration task as a non
crucial task for the development.

Differently from the aforementioned approaches, DeepLib is able to
learn from what other projects have done to recommend the next up-
grades that maintainers should operate on one or more libraries already
included in their project. DeepLib is even able to recommend removals
of dependencies according to migrations that have been performed.
Migrating the source code that might get affected by the recommended
upgrades is not in the scope of this paper, and we plan it as future work.

8. Conclusion and future work

Software systems heavily rely on third-party libraries (TPLs), which
provide a wide range of functionalities that can be reused without the
need to re-implement them from scratch. Even though TPLs evolve,
e.g., to fix security holes or to increase the provided capabilities, most
systems rarely update their dependencies. Developers consider TPL mi-
gration as a practice that can introduce extra efforts and responsibility.
Things can get even more complex when developers have to identify
which libraries need to be migrated and what are the target versions
that have to be considered.

To reduce the burden related to the identification of the upgrades
that need to be operated on the current system we proposed DeepLib,
a novel approach to recommendation of the next version for the used
TPLs by considering migration histories of several OSS projects. Our
proposed tool is able to extract relevant migration data and encode it
in matrices. Then, deep learning techniques are employed to provide
recommendations that are relevant for the current configuration. Once
being deployed, DeepLib allows developers to quickly select a suitable
migration, by relying on the experience of other projects with similar
sets of TPLs and thus, helping to eliminate any possible complexity
concerning the technical details which were already mentioned in
Section 2.

As future work, we plan to evaluate DeepLib on specific ecosystems
including that of Android apps. Afterward, we also intend to investigate
the possibility of applying the proposed techniques to support the mi-
gration of source code, which can be affected by the proposed upgrade
plans. Moreover, an open research issue is investigating the feasibility
of DeepLib in predicting potential conflict on the dependent libraries
when there are multiple target libraries. To this end, it is necessary
to have adequate training data collected from Maven and carefully
validated by humans. Therefore, we consider this as a part of our future
research agenda.

CRediT authorship contribution statement

Phuong T. Nguyen: Conceptualization, Methodology, Writing –
original draft, Writing – review & editing. Juri Di Rocco: Data cu-
ration, Visualization, Writing – review & editing. Riccardo Rubei:
Data curation, Validation, Writing – review & editing. Claudio Di
Sipio: Software, Validation, Writing – original draft. Davide Di Ruscio:
Methodology, Writing – original draft, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research described in this paper has been partially supported
by the AIDOaRT Project, which has received funding from the Eu-
ropean Union’s H2020-ECSEL-2020, Federal Ministry of Education,
Science and Research, Grant Agreement n 101007350. We thank the
anonymous reviewers for their valuable comments and suggestions that

helped us improve the paper.



Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
References

Bauer, V., Heinemann, L., & Deissenboeck, F. (2012). A structured approach to
assess third-party library usage. In 2012 28th IEEE international conference on
software maintenance (ICSM) (pp. 483–492). http://dx.doi.org/10.1109/ICSM.2012.
6405311.

Benelallam, A., Harrand, N., Soto-Valero, C., Baudry, B., & Barais, O. (2019). The
maven dependency graph: a temporal graph-based representation of maven central.
In 2019 IEEE/ACM 16th international conference on mining software repositories (MSR)
(pp. 344–348). IEEE.

Benelallam, A., Harrand, N., Valero, C. S., Baudry, B., & Barais, O. (2018). Maven
central dependency graph. http://dx.doi.org/10.5281/zenodo.1489120.

Chen, C. (2020). Similarapi: Mining analogical APIs for library migration. In
2020 IEEE/ACM 42nd international conference on software engineering: companion
proceedings (ICSE-companion) (pp. 37–40). ISSN: 2574-1926.

Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of
neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8,
eighth workshop on syntax, semantics and structure in statistical translation (pp. 103–
111). Doha, Qatar: Association for Computational Linguistics, http://dx.doi.org/10.
3115/v1/W14-4012, URL https://www.aclweb.org/anthology/W14-4012.

Dependabot, (0000). Keep all your packages up to date with dependabot - The
GitHub Blog. URL https://github.blog/2020-06-01-keep-all-your-packages-up-to-
date-with-dependabot/.

Derr, E., Bugiel, S., Fahl, S., Acar, Y., & Backes, M. (2017). Keep me updated: An
empirical study of third-party library updatability on android.. In B. M. Thu-
raisingham, D. Evans, T. Malkin, & D. Xu (Eds.), ACM conference on computer
and communications security (pp. 2187–2200). ACM, ISBN: 978-1-4503-4946-8, URL
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017.

Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P. T., & Rubei, R. (0000). Development
of recommendation systems for software engineering: the CROSSMINER experience,
26 (4) 69. http://dx.doi.org/10.1007/s10664-021-09963-7 ISSN 1573-7616.

Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P., & Rubei, R. (2020). TopFilter:
AN approach to recommend relevant GitHub topics. In ESEM ’20, Proceedings of
the 14th ACM / IEEE international symposium on empirical software engineering and
measurement (ESEM). New York, NY, USA: Association for Computing Machinery,
ISBN: 9781450375801, http://dx.doi.org/10.1145/3382494.3410690.

Di Rocco, J., Di Sipio, C., Nguyen, P. T., Di Ruscio, D., & Rubei, R. (2022). DeepLib:
Machine translation techniques to recommend upgrades for third-party libraries.
URL https://codeocean.com/capsule/8397858/tree/v1.

Di Sipio, C., Rubei, R., Di Ruscio, D., & Nguyen, P. T. (2020). Using a multinomial
naïve Bayesian (MNB) network to automatically recommend topics for GitHub
repositories. In EASE’20, Proceedings of the 24th international conference on evaluation
and assessment in software engineering, EASE2020, Trondheim, Norway, April 15-17,
2020 (pp. 24–34). ACM, http://dx.doi.org/10.1145/3383219.3383227.

Duan, Y., Gao, L., Hu, J., & Yin, H. (2019). Automatic generation of non-intrusive
updates for third-party libraries in android applications. In 22nd international
symposium on research in attacks, intrusions and defenses, RAID 2019, Chaoyang
District, Beijing, China, September 23-25, 2019 (pp. 277–292). USENIX Association,
URL https://www.usenix.org/conference/raid2019/presentation/duan.

Erlenhov, L., Gomes de Oliveira Neto, F., Scandariato, R., & Leitner, P. (2019). Current
and future bots in software development. In 2019 IEEE/ACM 1st international
workshop on bots in software engineering (BotSE) (pp. 7–11). Montreal, QC, Canada:
IEEE, ISBN: 978-1-72812-262-5, http://dx.doi.org/10.1109/BotSE.2019.00009.

Fazzini, M., Xin, Q., & Orso, A. (2020). Apimigrator: an API-usage migration tool for
android apps. In Proceedings of the IEEE/ACM 7th international conference on mobile
software engineering and systems (pp. 77–80). Seoul Republic of Korea: ACM, ISBN:
978-1-4503-7959-5, http://dx.doi.org/10.1145/3387905.3388608, URL https://dl.
acm.org/doi/10.1145/3387905.3388608.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, http:
//www.deeplearningbook.org.

Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: a broad practical approach
(2nd ed.). Lawrence Earlbaum Associates.

He, H., He, R., Gu, H., & Zhou, M. (2021). A large-scale empirical study on java library
migrations: Prevalence, trends, and rationales. In ESEC/FSE 2021, Proceedings of the
29th ACM joint meeting on european software engineering conference and symposium
on the foundations of software engineering (pp. 478–490). New York, NY, USA:
Association for Computing Machinery, ISBN: 9781450385626, http://dx.doi.org/
10.1145/3468264.3468571.

He, Q., Li, B., Chen, F., Grundy, J., Xia, X., & Yang, Y. (2020). Diversified third-
party library prediction for mobile app development. IEEE Transactions on Software
Engineering, 1.

He, H., Xu, Y., Ma, Y., Xu, Y., Liang, G., & Zhou, M. (2021). A multi-metric
ranking approach for library migration recommendations. In 2021 IEEE international
conference on software analysis, evolution and reengineering (SANER) (pp. 72–83).
http://dx.doi.org/10.1109/SANER50967.2021.00016.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, [ISSN: 0899-7667] 9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.
8.1735.

Hora, A., & Valente, M. T. (2015). Apiwave: Keeping track of API popularity and
migration. In 2015 IEEE int. conf. on software maintenance and evolution (ICSME)
(pp. 321–323). http://dx.doi.org/10.1109/ICSM.2015.7332478.
13
Huang, J., Borges, N., Bugiel, S., & Backes, M. (2019). Up-to-crash: Evaluating third-
party library updatability on android. In 2019 IEEE European symposium on security
and privacy (EuroS P) (pp. 15–30). http://dx.doi.org/10.1109/EuroSP.2019.00012.

Katsuragawa, D., Ihara, A., Kula, R. G., & Matsumoto, K. (2018). Maintaining third-party
libraries through domain-specific category recommendations. In 2018 IEEE/ACM 1st
international workshop on software health (SoHeal) (pp. 2–9).

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In 14th international joint conference on artificial intelli-
gence (pp. 1137–1143). San Francisco: Morgan Kaufmann Publishers Inc., ISBN:
1-55860-363-8.

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers
update their library dependencies?: an empirical study on the impact of security
advisories on library migration. Empirical Software Engineering, 23(1), 384–417.
http://dx.doi.org/10.1007/s10664-017-9521-5, ISSN 1382-3256, 1573-7616.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
http://dx.doi.org/10.1038/nature14539.

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical
debt and its management. Journal of Systems and Software, [ISSN: 01641212] 101,
193–220. http://dx.doi.org/10.1016/j.jss.2014.12.027.

Nguyen, P. T., Di Rocco, J., Di Ruscio, D., & Di Penta, M. (2019). CrossRec: SUpporting
software developers by recommending third-party libraries. Journal of Systems and
Software, [ISSN: 0164-1212] Article 110460, URL http://www.sciencedirect.com/
science/article/pii/S0164121219302341.

Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule, T., & Di Penta, M.
(2019). FOCUS: A Recommender system for mining API function calls and usage
patterns. In ICSE ’19, Proceedings of the 41st international conference on software
engineering (pp. 1050–1060). Piscataway, NJ, USA: IEEE Press, http://dx.doi.org/
10.1109/ICSE.2019.00109.

Nguyen, P. T., Di Rocco, J., Di Sipio, C., Di Ruscio, D., & Di Penta, M. (2021). Rec-
ommending API function calls and code snippets to support software development.
IEEE Transactions on Software Engineering, 1. http://dx.doi.org/10.1109/TSE.2021.
3059907.

Nguyen, P. T., Di Rocco, J., Rubei, R., Di Sipio, C., & Di Ruscio, D. (2021). Recom-
mending third-party library updates with LSTM neural networks. In Procs. 11th
Italian information retrieval workshop 2021. URL http://52.178.216.184/paper7.pdf.

Nguyen, P. T., Di Ruscio, D., Pierantonio, A., Di Rocco, J., & Iovino, L. (2021).
Convolutional neural networks for enhanced classification mechanisms of meta-
models. Journal of Systems and Software, [ISSN: 0164-1212] 172, Article 110860.
http://dx.doi.org/10.1016/j.jss.2020.110860, URL https://www.sciencedirect.com/
science/article/pii/S0164121220302508.

Olah, C. (2020). Understanding LSTM networks. URL https://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

Ouni, A., Kula, R. G., Kessentini, M., Ishio, T., German, D. M., & Inoue, K. (2017).
Search-based software library recommendation using multi-objective optimization.
Information and Software Technology, [ISSN: 0950-5849] 83(C), 55–75. http://dx.
doi.org/10.1016/j.infsof.2016.11.007.

Raemaekers, S., van Deursen, A., & Visser, J. (2017). Semantic versioning and impact of
breaking changes in the maven repository. Journal of Systems and Software, [ISSN:
0164-1212] 129, 140–158, URL http://www.sciencedirect.com/science/article/pii/
S0164121216300243.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image
classification: A comprehensive review. Neural Computation, [ISSN: 0899-7667]
29(9), 2352–2449. http://dx.doi.org/10.1162/neco_a_00990.

Robillard, M. P., Maalej, W., Walker, R. J., & Zimmermann, T. (Eds.), (2014). Recom-
mendation systems in software engineering. Berlin, Heidelberg: http://dx.doi.org/
10.1007/978-3-642-45135-5, ISBN 978-3-642-45134-8 978-3-642-45135-5.

Rubei, R., Di Sipio, C., Nguyen, P. T., Di Rocco, J., & Di Ruscio, D. (2020). PostFinder:
MIning stack overflow posts to support software developers. Information and
Software Technology, [ISSN: 0950-5849] 127, Article 106367. http://dx.doi.org/10.
1016/j.infsof.2020.106367, URL http://www.sciencedirect.com/science/article/pii/
S0950584920301361.

Shi, X., Shao, X., Guo, Z., Wu, G., Zhang, H., & Shibasaki, R. (2019). Pedestrian
trajectory prediction in extremely crowded scenarios. Sensors, 19, 1223. http:
//dx.doi.org/10.3390/s19051223.

Sun, Z., Liu, Y., Cheng, Z., Yang, C., & Che, P. (2020). Req2Lib: A semantic
neural model for software library recommendation. In 2020 IEEE 27th international
conference on software analysis, evolution and reengineering (SANER) (pp. 542–546).
http://dx.doi.org/10.1109/SANER48275.2020.9054865, ISSN: 1534-5351.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In NIPS’14, Proceedings of the 27th international conference on neural
information processing systems - Volume 2 (pp. 3104–3112). Cambridge, MA, USA:
MIT Press.

Teyton, C., Falleri, J.-R., & Blanc, X. (2012). Mining library migration graphs. In
2012 19th Working Conf. on Reverse Engineering (pp. 289–298). http://dx.doi.org/
10.1109/WCRE.2012.38.

Thung, F., Lo, D., & Lawall, J. (2013). Automated library recommendation. In 2013
20th working conference on reverse engineering (WCRE) (pp. 182–191). http://dx.doi.
org/10.1109/WCRE.2013.6671293.

http://dx.doi.org/10.1109/ICSM.2012.6405311
http://dx.doi.org/10.1109/ICSM.2012.6405311
http://dx.doi.org/10.1109/ICSM.2012.6405311
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb2
http://dx.doi.org/10.5281/zenodo.1489120
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb4
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb4
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb4
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb4
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb4
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.3115/v1/W14-4012
https://www.aclweb.org/anthology/W14-4012
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017
http://dx.doi.org/10.1007/s10664-021-09963-7
http://dx.doi.org/10.1145/3382494.3410690
https://codeocean.com/capsule/8397858/tree/v1
http://dx.doi.org/10.1145/3383219.3383227
https://www.usenix.org/conference/raid2019/presentation/duan
http://dx.doi.org/10.1109/BotSE.2019.00009
http://dx.doi.org/10.1145/3387905.3388608
https://dl.acm.org/doi/10.1145/3387905.3388608
https://dl.acm.org/doi/10.1145/3387905.3388608
https://dl.acm.org/doi/10.1145/3387905.3388608
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb16
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb16
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb16
http://dx.doi.org/10.1145/3468264.3468571
http://dx.doi.org/10.1145/3468264.3468571
http://dx.doi.org/10.1145/3468264.3468571
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb18
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb18
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb18
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb18
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb18
http://dx.doi.org/10.1109/SANER50967.2021.00016
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ICSM.2015.7332478
http://dx.doi.org/10.1109/EuroSP.2019.00012
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb23
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb23
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb23
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb23
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb23
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb24
http://dx.doi.org/10.1007/s10664-017-9521-5
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://dx.doi.org/10.1109/ICSE.2019.00109
http://dx.doi.org/10.1109/ICSE.2019.00109
http://dx.doi.org/10.1109/ICSE.2019.00109
http://dx.doi.org/10.1109/TSE.2021.3059907
http://dx.doi.org/10.1109/TSE.2021.3059907
http://dx.doi.org/10.1109/TSE.2021.3059907
http://52.178.216.184/paper7.pdf
http://dx.doi.org/10.1016/j.jss.2020.110860
https://www.sciencedirect.com/science/article/pii/S0164121220302508
https://www.sciencedirect.com/science/article/pii/S0164121220302508
https://www.sciencedirect.com/science/article/pii/S0164121220302508
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.1016/j.infsof.2020.106367
http://dx.doi.org/10.1016/j.infsof.2020.106367
http://dx.doi.org/10.1016/j.infsof.2020.106367
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://dx.doi.org/10.3390/s19051223
http://dx.doi.org/10.3390/s19051223
http://dx.doi.org/10.3390/s19051223
http://dx.doi.org/10.1109/SANER48275.2020.9054865
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://refhub.elsevier.com/S0957-4174(22)00638-8/sb41
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/WCRE.2012.38
http://dx.doi.org/10.1109/WCRE.2013.6671293
http://dx.doi.org/10.1109/WCRE.2013.6671293
http://dx.doi.org/10.1109/WCRE.2013.6671293


Expert Systems With Applications 202 (2022) 117267P.T. Nguyen et al.
Visser, J., van Deursen, A., & Raemaekers, S. (2012). Measuring software library
stability through historical version analysis. In ICSM ’12, Proceedings of the 2012
IEEE international conference on software maintenance (ICSM) (pp. 378–387). USA:
IEEE Computer Society, ISBN: 9781467323130, http://dx.doi.org/10.1109/ICSM.
2012.6405296.

Wang, Y., Chen, B., Huang, K., Shi, B., Xu, C., Peng, X., Wu, Y., & Liu, Y. (2020). An
empirical study of usages, updates and risks of third-party libraries in java projects.
In 2020 IEEE international conference on software maintenance and evolution (ICSME)
(pp. 35–45). http://dx.doi.org/10.1109/ICSME46990.2020.00014.
14
Xu, S., Dong, Z., & Meng, N. (2019). Meditor: Inference and application of API
migration edits. In 2019 IEEE/ACM 27th int. conf. on program comprehension (ICPC)
(pp. 335–346). http://dx.doi.org/10.1109/ICPC.2019.00052.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights Into Imaging, [ISSN:
1869-4101] 9(4), 611–629. http://dx.doi.org/10.1007/s13244-018-0639-9.

http://dx.doi.org/10.1109/ICSM.2012.6405296
http://dx.doi.org/10.1109/ICSM.2012.6405296
http://dx.doi.org/10.1109/ICSM.2012.6405296
http://dx.doi.org/10.1109/ICSME46990.2020.00014
http://dx.doi.org/10.1109/ICPC.2019.00052
http://dx.doi.org/10.1007/s13244-018-0639-9

	DeepLib: Machine translation techniques to recommend upgrades for third-party libraries
	Introduction
	Motivations and background
	Motivating example
	GitHub Dependabot
	Long short-term memory neural networks
	Sequence-to-sequence learning

	Proposed approach
	Architecture
	DeepLib-α: Recommending the next version for a single library
	DeepLib-β: Recommending the next version for the whole set of libraries

	Evaluation
	Research questions
	Data extraction
	Settings and metrics

	Results
	Explanatory example
	RQ1: How well can DeepLib-α recommend the next version for a single library?
	RQ2: How well can DeepLib-β recommend the next version for a set of libraries?
	RQ3: What contributes to an improvement in DeepLib's performance?

	Discussion
	Applicability and future developments of DeepLib
	Threats to validity

	Related work
	Recommendation of TPLs
	Recommendation of migration

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


