
Empirical Software Engineering (2021) 26: 69
https://doi.org/10.1007/s10664-021-09963-7

Development of recommendation systems
for software engineering: the CROSSMINER experience

Juri Di Rocco1 ·Davide Di Ruscio1 ·Claudio Di Sipio1 ·Phuong T. Nguyen1 ·
Riccardo Rubei1

Accepted: 19 March 2021
© The Author(s) 2021

Abstract
To perform their daily tasks, developers intensively make use of existing resources by con-
sulting open source software (OSS) repositories. Such platforms contain rich data sources,
e.g., code snippets, documentations, and user discussions, that can be useful for supporting
development activities. Over the last decades, several techniques and tools have been pro-
moted to provide developers with innovative features, aiming to bring in improvements in
terms of development effort, cost savings, and productivity. In the context of the EU H2020
CROSSMINER project, a set of recommendation systems has been conceived to assist soft-
ware programmers in different phases of the development process. The systems provide
developers with various artifacts, such as third-party libraries, documentation about how to
use the APIs being adopted, or relevant API function calls. To develop such recommenda-
tions, various technical choices have been made to overcome issues related to several aspects
including the lack of baselines, limited data availability, decisions about the performance
measures, and evaluation approaches. This paper is an experience report to present the
knowledge pertinent to the set of recommendation systems developed through the CROSS-
MINER project. We explain in detail the challenges we had to deal with, together with the
related lessons learned when developing and evaluating these systems. Our aim is to provide
the research community with concrete takeaway messages that are expected to be useful for
those who want to develop or customize their own recommendation systems. The reported
experiences can facilitate interesting discussions and research work, which in the end con-
tribute to the advancement of recommendation systems applied to solve different issues in
Software Engineering.

Keywords Recommendation systems · Empirical evaluation · Experience report

Communicated by: Ali Ouni, David Lo, Xin Xia, Alexander Serebrenik and Christoph Treude

This article belongs to the Topical Collection: Recommendation Systems for Software Engineering

� Davide Di Ruscio
davide.diruscio@univaq.it

Extended author information available on the last page of the article.

/ Published online: 14 May 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09963-7&domain=pdf
http://orcid.org/0000-0002-5077-6793
mailto: davide.diruscio@univaq.it

Empir Software Eng (2021) 26: 69

1 Introduction

Open-source software (OSS) forges, such as GitHub or Maven, offer many software projects
that deliver stable and well-documented products. Most OSS forges typically sustain vibrant
user and expert communities which in turn provide decent support, both for answering user
questions and repairing reported software bugs. Moreover, OSS platforms are also an essen-
tial source of consultation for developers in their daily development tasks (Cosentino et al.
2017). Code reusing is an intrinsic feature of OSS, and developing new software by leverag-
ing existing open source components allows one to considerably reduce their development
effort. The benefits resulting from the reuse of properly selected open-source projects are
manifold including the fact that the system being implemented relies on open source code,
“which is of higher quality than the custom-developed code’s first incarnation” (Spinel-
lis and Szyperski 2004). In addition to source code, also metadata available from different
related sources, e.g., communication channels and bug tracking systems, can be beneficial
to the development life cycle if being properly mined (Ponzanelli et al. 2016). Neverthe-
less, given a plethora of data sources, developers would struggle to look for and approach
the sources that meet their need without being equipped with suitable machinery. Such a
process is time-consuming since the problem is not a lack, but in contrast, an overload of
information coming from heterogeneous and rapidly evolving sources. In particular, when
developers join a new project, they have to typically master a considerable number of
information sources (often at a short time) (Dagenais et al. 2010). In this respect, the deploy-
ment of systems that use existing data to improve developers’ experience is of paramount
importance.

Recommendation systems are a crucial component of several online shopping systems,
allowing business owners to offer personalized products to customers (Linden et al. 2003).
The development of such systems has culminated in well-defined recommendation algo-
rithms, which in turn prove their usefulness in other fields, such as entertainment industry
(Gomez-Uribe and Hunt 2015), or employment-oriented service (Wu et al. 2014). Recom-
mendation systems in software engineering (Robillard et al. 2014) (RSSE hereafter) have
been conceptualized on a comparable basis, i.e., they assist developers in navigating large
information spaces and getting instant recommendations that are helpful to solve a particular
development task (Nguyen et al. 2019; Ponzanelli et al. 2016). In this sense, RSSE pro-
vide developers with useful recommendations, which may consist of different items, such
as code examples (Fowkes and Sutton 2016; Moreno et al. 2015; Nguyen et al. 2019), top-
ics (Di Rocco et al. 2020; Di Sipio et al. 2020), third-party components (Nguyen et al. 2019;
Thung et al. 2013), documentation (Ponzanelli et al. 2016; Rubei et al. 2020), to name a few.

While the issue of designing and implementing generic recommendation systems has
been carefully addressed by state-of-the-art studies (Proksch et al. 2015; Robillard et al.
2014), there is a lack of proper references for the design of a recommendation system in
a concrete context, i.e., satisfying requirements by various industrial partners. By means
of a thorough investigation of the related work, we realized that existing studies tackled
the issue of designing and implementing a recommendation system for software engineer-
ing in general. However, to the best of our knowledge, an experience report extracted from
real development projects is still missing. The report presented in this paper would come in
handy for those who want to conceive or customize their recommendation systems in a spe-
cific context. For example, a developer may be interested in understanding which techniques
are suitable for producing recommendations; or how to capture the developer’s context; or
which is the most feasible way to present recommendation outcomes, to name a few.

69 Page 2 of 40

Empir Software Eng (2021) 26: 69

In the context of the EU CROSSMINER project1 we exploited cutting-edge informa-
tion retrieval techniques to build recommendation systems, providing software developers
with practical advice on various tasks through an Eclipse-based IDE and dedicated ana-
lytical Web-based dashboards. Based on the project’s mining tools, developers can select
open-source software and get real-time recommendations while working on their develop-
ment tasks. This paper presents an experience report pertaining to the implementation of the
CROSSMINER recommendation systems, with focus on three main phases, i.e., Require-
ments elicitation, Development, and Evaluation. We enumerate the challenges that we faced
when working with these phases and present the lessons gained by overcoming the chal-
lenges. With this work, we aim at providing the research community at large with practical
takeaway messages that one can consult when building their recommendation systems.

Outline of the paper The paper is structured as follows: Section 2 gives an overview of the
CROSSMINER project and the underpinning motivations. Sections 3–5 discuss the chal-
lenges we had to address while conceiving the CROSSMINER recommendation systems
and the corresponding lessons learned that we would like to share with the community as
well as with potential developers of new recommendation systems. Section 6 reviews the
related work and finally, Section 7 sketches perspective work and concludes the paper.

2 The CROSSMINER project

In recent years, software development activity has reached a high degree of complexity, led
by the heterogeneity of the components, data sources and tasks. The adoption of recommen-
dation systems in software engineering (RSSE) aims at supporting developers in navigating
large information spaces and getting instant suggestions that might be helpful to solve a
particular development task (Robillard et al. 2014).

In the context of open-source software, developing new software systems by reusing
existing open-source components raises relevant challenges related to at least the following
activities (Karlsson 1995): (i) searching for candidate components, (ii) evaluating a set of
retrieved candidate components to find the most suitable ones, and (iii) adapting the selected
components to fit some specific requirements. The CROSSMINER project conceived tech-
niques and tools for extracting knowledge from existing open source components and use
it to provide developers with real-time recommendations that are relevant to the current
development task.

As shown in Fig. 1, the CROSSMINER components are conceptually in between the
developer and all the different and heterogeneous data sources (including source code, bug
tracking systems, and communication channels) that one needs to interact with when under-
standing and using existing open-source components. In particular, an Eclipse-based IDE
and Web-based dashboards make use of data produced by the mining tools working on the
the back-end of the CROSSMINER infrastructure to help developers perform the current
development tasks. CROSSMINER is under the umbrella of Eclipse Research Labs with the
name Eclipse SCAVA.2

1https://www.crossminer.org
2https://www.eclipse.org/scava/

Page 3 of 40 69

https://www.crossminer.org
https://www.eclipse.org/scava/

Empir Software Eng (2021) 26: 69

Fig. 1 CROSSMINER overview

2.1 CROSSMINER as a set of recommendation systems

Figure 2 shows CROSSMINER from a different perspective. In particular, CROSSMINER
can be seen as a set of recommendation systems, each designed to implement the four
main activities, which are typically defined for any recommendation systems, i.e., data
pre-processing, capturing context, producing recommendations, and presenting recommen-
dations (Robillard et al. 2014) as shown in the upper side of Fig. 2. Accordingly, the
CROSSMINER solution is made up of four main modules: the Data Preprocessing
module contains tools that extract metadata from OSS repositories (see the middle part
of Fig. 2). Data can be of different types, such as source code, configuration, or cross-
project relationships. Natural language processing (NLP) tools are also deployed to analyze
developer forums and discussions. The collected data is used to populate a knowledge base
which serves as the core for the mining functionalities. By capturing developers’ activi-
ties (Capturing Context), an IDE is able to generate and display recommendations
(Producing Recommendations and Presenting Recommendations). In par-
ticular, the developer context is used as a query sent to the knowledge base that answers
with recommendations that are relevant to the developer contexts (see the lower side of
Fig. 2). Machine learning techniques are used to infer knowledge underpinning the creation
of relevant real-time recommendations.

Fig. 2 High-level view of the CROSSMINER project

69 Page 4 of 40

Empir Software Eng (2021) 26: 69

Table 1 The CROSSMINER use cases

No. Artifact Description Developed tool

Similar OSS projects We crawl data from OSS platforms to find similar
projects to the system being developed, with respect
to different criteria, e.g., external dependencies, or
API usage (Nguyen et al. 2020). This type of rec-
ommendation is beneficial to the development since
it helps developer learn how similar projects are
implemented.

CrossSim

22 Additional components During the development phase, programmers search
for components that projects similar to the one under
developed have also included, for instance, a list
of external libraries (McMillan et al. 2010), or API
function calls (Moreno et al. 2015).

CrossRec, FOCUS

3 Code snippets Well-defined snippets showing how an API is used in
practice are extremely useful. These snippets provide
developers with a deeper insight into the usage of the
APIs being included (Nguyen et al. 2019).

FOCUS

4 Relevant topics GitHub uses tags as a means to narrow down the search
scope. The goal is to help developers approach reposito-
ries, and thus increasing the possibility of contributing to
their development and widespread their usage.

MNBN

The CROSSMINER knowledge base allows developers to gain insights into raw
data produced by different mining tools, which are the following ones:

– Source code miners to extract and store actionable knowledge from the source code of
a collection of open-source projects;

– NLP miners to extract quality metrics related to the communication channels, and
bug tracking systems of OSS projects by using Natural Language Processing and text
mining techniques;

– Configuration miners to gather and analyze system configuration artefacts and data to
provide an integrated DevOps-level view of a considered open source project;

– Cross-project miners to infer cross-project relationships and additional knowledge
underpinning the provision of real-time recommendations;

The CROSSMINER recommendation systems have been developed to satisfy the require-
ments by six industrial use-case partners of the project working on different domains including
IoT, multi-sector IT services, API co-evolution, software analytics, software quality assurance,
and OSS forges.3 In particular, Table 1 specifies the main use cases solicited by our indus-
trial partners. To satisfy the given requirements the following recommendation systems have
been developed:

– CrossSim (Nguyen et al. 2018, 2020) – It is an approach for recommending similar
projects with respect to the third-party library usage, stargazers and commiters, given a
specific project;

– CrossRec (Nguyen et al. 2019) – It is a framework that makes use of Cross Projects
Relationships among Open Source Software Repositories to build a library Recom-
mendation System on top of CrossSim;

3https://www.crossminer.org/consortium

Page 5 of 40 69

https://www.crossminer.org/consortium

Empir Software Eng (2021) 26: 69

Fig. 3 Main activities
underpinning the development of
the CROSSMINER
recommendation systems

– FOCUS (Nguyen et al. 2019, 2021) – The system assists developers by providing
them with API function calls and source code snippets that are relevant for the current
development context;

– MNBN (Di Sipio et al. 2020) – It is an approach based on a Multinomial Naive Bayesian
network technique to automatically recommend topics given the README file(s) of
an input repository.

By referring to Fig. 2, the developed recommendation systems are implemented in the
Knowledge Base component. Moreover, it is important to remark that even though such
tools can be used in an integrated manner directly from the Developer IDE, their com-
bined usage is not mandatory. They are different services that developers can even use
separately according to their needs.

For more details about the recommendation systems developed in the context of the
CROSSMINER projects, readers can refer to the related papers presenting them. Without
giving details on each tool’s inner technicalities, in the following sections, we focus on the
challenges we faced while conceiving the CROSSMINER recommendation systems, and on
the lessons that we learned on the way. We believe that sharing them with the community is
desirable because of two main motivations:

– The recommendation systems have been developed in a real context to cope with
industrial needs of different use-case partners;

– According to the evaluation procedure performed towards the end of the CROSS-
MINER project, the industrial partners have been particularly satisfied by the developed
recommendation systems, which have been mainly graded as excellent by most of the
partners that were asked to express their judgement in the range insufficient, sufficient,
good, excellent (see the public deliverable D8.164 for more details).

2.2 The CROSSMINER development process

The development of the CROSSMINER recommendation systems has been done by follow-
ing an iterative process, as shown in Fig. 3. In particular, to produce the recommendation
systems that are now part of the CROSSMINER platform, the following steps have been
undertaken:

– Requirement elicitation: identification of the expected features provided by the CROSS-
MINER platform in terms of recommendations and development support;

– Development: implementation of the needed recommendation systems to accommodate
the requirements defined in the previous step;

– Evaluation: assess the performance of the produced recommendations by using prop-
erly defined evaluation procedures and selected metrics.

4CROSSMINER D8.16 Case Study Evaluation - https://cordis.europa.eu/project/id/732223/results

69 Page 6 of 40

https://cordis.europa.eu/project/id/732223/results

Empir Software Eng (2021) 26: 69

Fig. 4 Map of challenges and lessons learned

In the following sections, such steps are described in detail. For each of them, we discuss
the challenges we had to overcome and the difficulties we had while conceiving the tools
as asked by the projects’ use-case partners. The methods we employed to address such
challenges are presented together with the corresponding lessons learned.

An overview of all the challenges and lessons learned are shown in the map depicted
in Fig. 4. For the sake of readability, challenges related to the requirement, development,
and evaluation phases are identified with the three strings RC, DC, and EC, respectively,
followed by a cardinal number. Similarly, the lessons learned are organized by distinguish-
ing them with respect to the requirement (RLL), development (DLL), and evaluation (ELL)
phases.

3 Challenges and lessons learned from eliciting the requirements
of the CROSSMINER recommendation systems

During the first six months of the project, we worked in tight collaboration with the indus-
trial partners of the consortium to understand what they were expecting from the project
technologies in terms of development support. For instance, the main business activity of
one of the use-case partners consisted in the development and maintainance of a software
quality assessment tool built atop of SonarQube.5 Whenever a new version of SonarQube

5https://www.sonarqube.org/

Page 7 of 40 69

https://www.sonarqube.org/

Empir Software Eng (2021) 26: 69

Fig. 5 pom.xml files of a project before (left) and after (right) having adopted third-party libraries
recommended by CrossRec

was released, they needed to upgrade their tool to make it work with the new version of the
SonarQube APIs. We, in turn, had to interact with the interested use-case partner to identify
the types of recommendations that might have been useful for them to manage their API
evolution problems. Other use case partners were asking for additional recommendations,
which were posing requirements that might have had ripple effects on the other one’s.

3.1 Challenges

RC1 - Clear understanding of the recommendation systems that are needed by
the end users: Getting familiar with the functionalities that are expected from the
final users of the envisioned recommendation systems is a daunting task. We might
risk spending time on developing systems that are able to provide recommendations,
which instead might not be relevant and in line with the actual user needs.

To deal with such a challenge and thus mitigate the risks of developing systems that might
not be in line with the user requirements, we developed proof-of-concept recommendation
systems. In particular, we implemented demo projects that reflected real-world scenarios in
terms of explanatory context inputs and corresponding recommendation items that the envi-
sioned recommendation systems should have produced. For instance, concerning CrossRec,
we experimented on the jsoup-example6 explanatory Java project for scraping HTML pages.
This project consists of source code and few related third-party libraries already included,
i.e., json-soup7 and junit8 as shown in the left-hand side of Fig. 5.

6https://github.com/MDEGroup/FOCUS-user-evaluation
7https://jsoup.org/
8https://junit.org/

69 Page 8 of 40

https://github.com/MDEGroup/FOCUS-user-evaluation
https://jsoup.org/
https://junit.org/

Empir Software Eng (2021) 26: 69

1 public static void getScoresFromLivescore()
2 throws IOException {
3 Document document =
4 Jsoup.connect("https://www.livescore.com/").get();
5 Elements scores =
6 document.getElementsByClass("sco");
7 scores = scores.parents();
8 ...
9 }

Listing 1 Partial implementation of the explanatory getScoresFromLivescore() method

By considering such project as input, CrossRec provides a list of additional libraries as
a suggestion that the project under development should also include. For instance, some
beneficial libraries to be recommended are as follows: (i) gson9 for manipulating JSON
resources; (ii) httpclient10 for client-side authentication, HTTP state management, and
HTTP connection management; and (iii) log4j11 to enable logging at runtime.

By carefully examining the recommended libraries, we see that they have a positive impact
on the project. To be concrete, the usage of the httpcomponent library allows the developer to
access HTML resources by unloading the result state management and client-server autho-
rization implementation on the library; meanwhile gson could provide a parallel way to
crawl public Web data; finally introducing a logging library, i.e., log4j, can improve the
project’s maintainability.

Concerning FOCUS, the process was a bit different, i.e., use-case partners were provid-
ing us with incomplete source code implementation and their expectations regarding useful
recommendations. Such artifacts were used as part of the requirements to implement the
system able to resemble them. The use-case partner expects to get code snippets that include
suggestions to improve the code, and predictions on next API function calls.

To agree with the use-case partners on the recommendations that were expected from
FOCUS, we experimented on a partially implemented method of the jsoup-example
project named getScoresFromLivescore shown in Listing 1. The method should be
designed so as being able to collect the football scores listed in the livescore.com home
page. To this end, a JSON document is initialized with a connection to the site URL in the
first line. By using the JSOUP facilities, the list of HTML element of the class sco is stored
in the variable score in the second line. Finally, the third line updates the scores with all
of the parents and ancestors of the selected scores elements.

Figure 6 depicts few recommendations that our use-case partners expected when we pre-
sented the example shown in Listing 1. The blue box contains the recommendation for
improving the code, i.e., the userAgent method is to prevent sites from blocking HTTP
requests, and to predict the next jsoup invocation. Furthermore, some recommendations
could be related to API function calls of a competitor library or extension. For this reason,
the green and red boxes contain invocations of HTMLUnit,12 a direct competitor of jsoup
that includes different browser user agent implementations, and jsoupcrawler a custom
extension of jsoup. FOCUS has been conceptualized to suggest to developers recommen-
dations consisting of a list of API method calls that should be used next. Furthermore, it

9https://github.com/google/gson
10https://hc.apache.org/
11https://logging.apache.org/
12http://htmlunit.sourceforge.net/

Page 9 of 40 69

livescore.com
https://github.com/google/gson
https://hc.apache.org/
https://logging.apache.org/
http://htmlunit.sourceforge.net/

Empir Software Eng (2021) 26: 69

Fig. 6 Recommended API calls for the getScoresFromLivescore() method in Listing 1

also recommends real code snippets that can be used as a reference to support developers
in finalizing the method definition under development. More code examples provided by
FOCUS are available in an online appendix.13

3.2 Lessons learned

RLL1 – Importance of a clear requirement definition process As previously mentioned,
we managed to address Challenge RC1 through a tight collaboration with the use case part-
ners. In particular, we applied the requirement definition process shown in Fig. 7, which
consists of the following steps and that in our opinion can be applied even in contexts that
are different from the CROSSMINER one:

– Requirement elicitation: The final user identifies use cases that are representative
and that identify the functionalities that the wanted recommendation systems should
implement. By considering such use cases, a list of requirements is produced;

– Requirement prioritization: The list of requirements produced in the previous step can
be very long, because users tend to add all the wanted and ideal functionalities even
those that might be less crucial and important for them. For this reason, it can be use-
ful to give a priority to each requirement in terms of the modalities shall, should, and
may. Shall is used to denote essential requirements, which are of highest priority for
validation of the wanted recommendation systems. Should is used to denote a require-
ment that would be not essential even though would make the wanted recommendation
systems working better. May is used to denote requirements that would be interesting
to satisfy and explore even though irrelevant for validating the wanted technologies;

– Requirement analysis by R&D partners: The prioritized list of requirements is ana-
lyzed by the research and development partners with the aim of identifying the major
components that need to be developed. Possible technological challenges that might

13https://github.com/crossminer/FOCUS

69 Page 10 of 40

https://github.com/crossminer/FOCUS

Empir Software Eng (2021) 26: 69

Fig. 7 Requirement definition process

compromise the satisfaction of some requirements are identified in this step and
considered in the next step of the process;

– Requirement consolidation and final agreement: By considering the results of the
analysis done by the R&D partners, the list of requirements is further refined and con-
solidated. After this step, user case partners have ensured highest priority requirements,
which will be implemented by R&D partners.

We have applied such a process in different projects and we successfully applied it
also for developing the recommendation systems that we identified in the context of the
CROSSMINER project.

RLL2 – Users skepticism Especially at the early stages of the wanted recommendation sys-
tems development, target users might be skeptical about the relevance of the potential items
that can be recommended. We believe that defining the requirements of the desired recom-
mendation systems in tight collaboration with the final users is the right way to go. Even
when the proposed approach has been evaluated employing adequate metrics, final users
still might not be convinced about the retrievable recommendations’ relevance. User studies
can be one of the possible options to increase the final users’ trust, even though a certain
level of skepticism might remain when the intended final users have not been involved in
the related user studies.

RLL3 – Importance of pilot applications Using a pilot application can be beneficial to
support the interactions between the final users and the developers of the wanted recom-
mendation systems. The application can allow the involved parties to tailor the desired
functionalities utilizing explanatory inputs and corresponding recommendations that the
envisioned system should produce.

4 Challenges and lessons learned from developing the CROSSMINER
recommendation systems

Once the requirements of the expected RSs were agreed with the use-case partners, we
started with the development of each identified RS.

DC1 – Awareness of existing and reusable recommendation techniques: Over
the last decades, several recommendation systems have been developed by both
academia and industry. When realizing a new type of recommendation system, it is
crucial to have a clear knowledge of the possible techniques and patterns that might
be employed to develop new ones. Since the solution space is extensive, comparing
and evaluating candidate approaches can be a very daunting task.

Page 11 of 40 69

Empir Software Eng (2021) 26: 69

To overcome such challenge we performed a rigorous literature review by reviewing
related studies emerging from premier venues in the Software Engineering domain, i.e.,
conferences such as ICSE, ASE, SANER, or journals such as TSE, TOSEM, JSS, to name a
few. Being aware of existing systems is also important for the evaluation phase. For studying
a recommendation system, besides conventional quantitative and qualitative evaluations, it
is necessary to compare it with state-of-the-art approaches. Such an issue is also critical
in other domains, e.g., Linked Data (Noia and Ostuni 2015), or music recommendations
(Nguyen et al. 2015; Schedl et al. 2018). When we started with the design of the systems,
the solution space was huge, considering the use-case partners’ requirements. However,
being aware of what already exists is very important to save time, resources, and avoid the
reimplementation of already existing techniques and tools. To this end, by analyzing the
existing literature about recommendation systems we identified and modeled their relevant
variabilities and commonalities.

Section 4.1 brings in the main design features of our recommendation systems. Specific
challenges that have faced to design the different tools are described in Sections 4.2–
4.4. The lessons learned by designing the CROSSMINER recommendation systems are
discussed in Section 4.5.

4.1 Main design features

Our results are documented using feature diagrams which are a common notation in
domain analysis (Czarnecki 2002). Figure 8 shows the top-level features or recommendation
systems, i.e., Data Preprocessing, Capturing Context, Producing Recommendations, and
Presenting Recommendations in line with the main functionalities typically implemented
by recommendation systems.

We extracted all the shown components mainly from existing studies (Bobadilla et al.
2013; LASER 2015; Robillard et al. 2014) as well as from our development experience
under the needs of the CROSSMINER project. The top-level features shown in Fig. 8 are
described below.

Data preprocessing In this phase techniques and tools are applied to extract valuable infor-
mation from different data sources according to their nature. In particular, structured data
adheres to several rules that organize elements in a well-defined manner. Source code and
XML documents are examples of this category. Contrariwise, unstructured data may rep-
resent different content without defining a methodology to access the data. Documentation,
blog, and plain text fall into this category. Thus, the data preprocessing component must be
carefully chosen considering the features of these miscellaneous sources.

ASTParsing involves the analysis of structured data, typically the source code of
a given software project. Several libraries and tools are available to properly perform
operations on ASTs, e.g., fetching function calls, retrieving the employed variables, and ana-
lyzing the source code dependencies. Additionally, snippets of code can be analyzed using
Fingerprints, i.e., a technique that maps every string to a unique sequence of bits. Such
a strategy is useful to uniquely identify the input data and compute several operations on it,
i.e., detect code plagiarism as shown in Zheng et al. (2018).

Moving to unstructured input, Tensors can encode mutual relationships among data,
typically users’ preferences. Such a feature is commonly exploited by collaborative filtering
approaches as well as by heavy computation on the input data to produce recommenda-
tions. Plain text is the most spread type of unstructured data and it includes heterogeneous

69 Page 12 of 40

Empir Software Eng (2021) 26: 69

Fig. 8 Main design features of recommendation systems in software engineering

content, i.e., API documentation, repository’s description, Q&A posts, to mention a few.
A real challenge is to extract valuable elements without losing any relevant informa-
tion. Natural processing language (NLP) techniques are employed to perform this task by
means of both syntactic and semantic analysis. Stemming, lemmatization, and tokeniza-

Page 13 of 40 69

Empir Software Eng (2021) 26: 69

tion are the main strategies successfully applied in existing recommendation systems. Even
the MNBN approach previously presented employs such techniques as preparatory task
before the training phase. Similarly to tensors, GraphRepresentation is useful to
model reciprocal associations among considered elements. Furthermore, graph-based data
encodings can be used to find peculiar patterns considering nodes and edges semantic.

Capturing context After the data preprocessing phase, the developer context is
excerpted from the programming environment to enable the underpinning recommen-
dation engine. A well-founded technique primarily employed in the ML domain is the
FeatureExtraction to concisely represent the developer’s context. Principal Compo-
nent Analysis (PCA) and Latent Semantic analysis (LDA) are just two of such techniques
employed for such a purpose. Keyword extraction and APICallExtraction are
two techniques mostly used when the Capturing Context phase has to analyze source code.
Capturing context often involves the search over big software projects. Thus, a way to store
and access a large amount of data is necessary to speed up the recommendation item deliv-
ery. Indexing is a technique mainly used by the code search engines to retrieve relevant
elements in a short time.

Producing recommendations In this phase, the actual recommendation algorithms are
chosen and executed to produce suggestions that are relevant for the user context, once
it is previously captured. By several variating parameters such as type of the required
input and the underlying structure, we can elicit different features as represented in the
diagram shown in Fig. 8. Concerning Data Mining techniques, some of them are
based on pattern detection algorithms, i.e., Clustering, FrequentItemsetMining,
and AssociationRuleMining. Clustering is usually applied to group objects
according to some similarity functions. The most common algorithm is the K-means
based on minimizing the distance among the items. A most representative element called
centroid is calculated through a linkage function. After such a computation, this algo-
rithm can represent a group of elements by referring to the most representative value.
FrequentItemsetMining aims to group items with the same frequencies, whereas
AssociationRuleMining uses a set of rules to discover possible semantic relation-
ships among the analysed elements. Similarly, the EventStreamMining technique aims
to find recurrent patterns in data streams. A stream is defined as a sequence of events usu-
ally represented by a Markov chain. Through this model, the algorithm can exploit the
probability of each event to establish relationships and predict a specific pattern. Finally,
TextMining techniques often involve information retrieval concepts such as entropy,
latent semantic analysis (LSA), or extended boolean model. In the context of producing
recommendations, such strategies can be used to find similar terms by exploiting different
probabilistic models that analyze the correlation among textual documents.

The availability of users’ preferences can affect the choice of recommendation algo-
rithms. Filtering strategies dramatically exploit the user data, e.g., their ratings assigned
to purchased products. ContentBasedFiltering (CBF) employs historical data refer-
ring to items with positive ratings. It is based on the assumption that items with similar
features have the same score. Enabling this kind of filtering requires the extraction of the
item attributes as the initial step. Then, CBF compares the set of active items, namely the
context, with possible similar items using a similarity function to detect the closer ones
to the user’s needs. DemographicFiltering compares attributes coming from the

69 Page 14 of 40

Empir Software Eng (2021) 26: 69

users themselves instead of the purchased items. These two techniques can be combined in
HybridFiltering techinques to achieve better results.

So far, we have analyzed filtering techniques that tackle the features of items and users.
CollaborativeFiltering (CF) approaches analyze the user’s behaviour directly
through its interaction with the system, i.e., the rating activity. UserBased CF relies on
explicit feedback coming from the users even though this approach suffers from scalability
issues in case of extensive data. The ItemBased CF technique solves this issue by exploit-
ing users’ ratings to compute the item similarity. Finally, ContextAwareFiltering
involves information coming from the environment, i.e., temperature, geolocalization, and
time, to name a few. Though this kind of filtering goes beyond the software engineering
domain, we list it to complete the filtering approaches landscape.

The MemoryBased approach acts typically on user-item matrixes to compute
their distance involving two different methodologies, i.e., SimilarityMeasure and
AggregatationApproach. The former involves the evaluation of the matrix sim-
ilarity using various concepts of similarity. For instance, JaccardDistance mea-
sures the similarity of two sets of items based on common elements, whereas the
LevenshteinDistance is based on the edit distance between two strings. Similarly,
the CosineSimilarity measures the euclidean distance between two elements. Besides
the concept of similarity, techniques based on matrix factorization are employed to make
the recommendation engine more scalable. Singular value decomposition (SVD) is a tech-
nique being able to reduce the dimension of the matrix and summarize its features. Such
a strategy is used to cope with a large amount of data, even though it is computationally
expensive. AggregatationApproaches analyze relevant statistical information of the
dataset such as the variance, mean, and the least square. To mitigate bias lead by the noise
in the data, the computation of such indexes use adjusted weigths as a coefficient to rescale
the results.

To produce the expected outcomes, MemoryBased approaches require the direct
usage of the input data that cannot be available under certain circumstances. Thus,
ModelBased strategies can overcome this limit by generating a model from the data itself.
MachineLearning offers several models that can support the recommendation activity.
NeuralNetwork models can learn a set of features and recognize items after a training
phase. By exploiting different layers of neurons, the input elements are labeled with dif-
ferent weights. Such values are recomputed during different training rounds in which the
model learns how to classify each element according to a predefined loss function. Depend-
ing on the number of layers, the internal structure of the network, and other parameters, it is
possible to use different kinds of neural networks including Deep Neural Networks (DNN),
Recurrent Neural Networks (RNN), Feed-forward Neural Networks (FNN), or Convolutional
Neural Networks (CNN). Besides ML models, a recommendation system can employ several
models to suggest relevant items. GeneticAlgorithms are based on evolutionary prin-
ciples that hold in the biology domain, i.e., natural species selection. FuzzyLogic relies
on a logic model that extends classical boolean operators using continuous variables. In this
way, this model can represent the real situation accurately. Several probabilistic models can
be used in a recommendation system. BayesianNetwork is mostly employed to classify
unlabeled data, although it is possible to employ it in recommendation activities.

Besides all these well-founded techniques, recommended items can be produced by
means of Heuristics techniques to encode the knowhow of domain experts. Heuristics
employ different approaches and techniques together to obtain better results as well as to

Page 15 of 40 69

Empir Software Eng (2021) 26: 69

overcome the limitations of other techniques. On the one hand, heuristics are easy to imple-
ment as they do not rely on a complex structure. On the other hand, they may produce results
that are sub-optimal compared to more sophisticated techniques.

Presenting recommendations As the last phase, the produced recommendation items
need to be properly presented to the developer. To this end, several strategies involve
potentially different technologies, including the development of extensions for IDEs and
dedicated Web-based interfaces. IDEIntegration offers several advantages, i.e., auto-
complete shortcuts and dedicated views showing the recommended items. The integration
is usually performed by the development of a plug-in, as shown in existing recommen-
dation systems (Lv et al. 2015; Ponzanelli et al. 2016). Nevertheless, developing such an
artifact requires much effort, and the integration must take into account possible incom-
patibilities among all deployed components. A more flexible solution is represented by
WebInterfaces in which the recommendation system can be used as a stand-alone
platform. Even though the setup phase is more accessible rather than the IDE solution, pre-
senting recommendations through a web service must handle some issues, including server
connections, and suitable response times. For presentation purposes, interactive data struc-
tures might be useful in navigating the recommended items. TraversableGraph is just
one successful example of this category. Strathcona (Holmes et al. 2005) makes use of this
technique to show the snippets of code rather than simply retrieving them as ranked lists. In
this way, final users can figure out additional details about the recommended items.

4.2 Development challenges for CrossSim and CrossRec

DC2 – Measuring similarities among software systems: Considering the miscel-
laneousness of artifacts in open source software repositories, similarity computation
becomes more complicated as many artifacts and several cross relationships prevail.

In OSS forges like GitHub, there are several connections and interactions, such as devel-
opment commit to repositories, user star repositories, or projects contain source code files,
to mention a few. To conceptualize CrossSim (Nguyen et al. 2020), we came up with the
application of a graph-based representation to capture the semantic features among various
actors, and consider their intrinsic connections. We modeled the community of develop-
ers together with OSS projects, libraries, source code, and their mutual interactions as an
ecosystem. In this system, either humans or non-human factors have mutual dependencies
and implications on the others. Graphs allow for flexible data integration and facilitates
numerous similarity metrics (Blondel et al. 2004).

We decided to adopt a graph-based representation to deal with the project similarity
issue because some of the co-authors already addressed a similar problem in the context of
Linked Data. The analogy of the two problems inspired us to apply the similarity technique
already developed (Nguyen et al. 2015) to calculate the similarity of representative soft-
ware projects. The initial evaluations were encouraging and consequently, we moved on by
refining the approach and improving its accuracy.

69 Page 16 of 40

Empir Software Eng (2021) 26: 69

Despite the need to better support software developers while they are programming, very
few works have been conducted concerning the techniques that facilitate the search for suit-
able third-party libraries from OSS repositories. We designed and implemented CrossRec
on top of CrossSim: the graph representation was exploited again to compute similarity
among software projects, and to provide inputs for the recommendation engine.

Understanding the features that are relevant for the similarity calculation was a critical
task, which required many iterations and evaluations. For instance, at the beginning of the
work we were including in the graph encoding information about developers, source code,
GitHub star events when available, etc. However, by means of the performed experiments,
we discovered that encoding only dependencies and star events is enough to get the best
performance of the similarity approach (Nguyen et al. 2020).

To sum up, concerning the features shown in Fig. 8, both CrossSim and CrossRec
make use of a graph-based representation for supporting the Data Preprocessing activity.
Concerning the Producing Recommendation phase, item-based collaborative filtering tech-
niques have been exploited. For the Capturing Context phase, the project being developed
is encoded in terms of different features, including used third-party libraries, and README
files. Recommendations are presented to the user directly in the used Eclipse-based
development environment.

4.3 Development challenges for FOCUS

During the development process, rather than programming from scratch, developers look
for libraries that implement the desired functionalities and integrate them into their existing
projects (Nguyen et al. 2018). For such libraries, API function calls are the entry point
which allows one to invoke the offered functionalities. However, in order to exploit a library
to implement the required feature, programmers need to consult various sources, e.g., API
documentation to see how a specific API instance is utilized in the field. Nevertheless, from
these external sources, there are only texts providing generic syntax or simple usage of the
API, which may be less relevant to the current development context. In this sense, concrete
examples of source code snippets that indicate how specific API function calls are deployed
in actual usage, are of great use (Moreno et al. 2015).

Several techniques have been developed to automate the extraction of API usage pat-
terns (Robillard et al. 2013) in order to reduce developers’ burden when manually searching
these sources and to provide them with high-quality code examples. However, these tech-
niques, based on clustering (Niu et al. 2017; Wang et al. 2013; Zhong et al. 2009) or
predictive modeling (Fowkes and Sutton 2016), still suffer from high redundancy and poor
run-time performance.

By referring to the features shown in Fig. 8, differently from other existing approaches
which normally rely on clustering to find API calls, FOCUS implements a context-aware
collaborative-filtering system that exploits the cross relationships among different artifacts
in OSS projects to represent them in a graph and eventually to predict the inclusion of
additional API invocations. Given an active declaration representing the user context, we
search for prospective invocations from those in similar declarations belonging to compara-
ble projects. Such a phase is made possible by a proper data preprocessing technique, which
encodes the input data by means of a tensor. The main advantage of our tool is that it can
recommend real code snippets that match well with the development context. In contrast
with several existing approaches, FOCUS does not depend on any specific set of libraries

Page 17 of 40 69

Empir Software Eng (2021) 26: 69

and just needs OSS projects as background data to generate API function calls. More impor-
tantly, the system scales well with large datasets using the collaborative-filtering technique
that filters out irrelevant items, thus improving efficiency. The produced recommendations
are shown to the users directly in the Eclipse-based IDE.

DC3 - Curating a dataset for training and testing API recommenders requires
significant effort: To provide input data in the form of a tensor, it is necessary to
parse projects for extracting their constituent declarations and invocations.

A major obstacle that we needed to overcome when implementing FOCUS is as follows.
To provide input data in the form of a tensor, it was necessary to parse projects to extract
their constituent declarations and invocations. However, FOCUS relies on Rascal (Basten
et al. 2015) to function, which in turn works only with compilable Java source code. To
this end, we populated training data for the system from two independent sources. First, we
curated a set of Maven jar files which were compilable by their nature. Second, we crawled
and filtered out to select only GitHub projects that contain informative .classpath, which
is an essential requirement for running Rascal. Once the tensor has been properly formu-
lated, FOCUS can work on the collected background data, being independent of its origin.
One of the considered datasets was initially consisting of 5,147 Java projects retrieved
from the Software Heritage archive (Di Cosmo and Zacchiroli 2017). To satisfy the base-
line constraints, we first restricted the dataset to the list of projects that use at least one of
the considered third-party libraries. Then, to comply with the requirements of FOCUS, we
restricted the dataset to those projects containing at least one pom.xml file. Because of
such constraints, we ended up with a dataset consisting of 610 Java projects. Thus, we had
to create a dataset ten times bigger than the used one for the evaluation.

4.4 Development challenges of MNBN

In recent years, GitHub has been at the forefront of platforms for storing, analyzing and
maintaining the community of OSS projects. To foster the popularity and reachability of
their repositories, GitHub users make daily usage of the star voting system as well as fork-
ing (Borges and Valente 2018; Jiang et al. 2017). These features allow for increasing the
popularity of a certain project, even though the search phase has to cope with a huge num-
ber of items. To simplify this task, GitHub has introduced in 2017 the concept of topics,
a list of tags aiming to describe a project in a succinct way. Immediately after the avail-
ability of the topics concept, the platform introduced Repo-Topix (Ganesan 2017) to assist
developers when creating new projects and thus, they have to identify representative topics.
Though Repo-Topix is already in place, there are rooms for improvements, e.g., in terms of
the coverage of the recommended topics, and of the underpinning analysis techniques. To
this end, we proposed MNBN (Di Sipio et al. 2020), an approach based on a Multinomial
Naive Bayesian network technique to automatically recommend topics given the README
file(s) of an input repository.

The main challenges related to the development of MNBN concern three main dimen-
sions as follows: (i) identification of the underpinning algorithm, (ii) creation of the training
dataset, and (iii) usage of heterogeneous reusable complements, and they are described
below.

69 Page 18 of 40

Empir Software Eng (2021) 26: 69

DC4 – Selection of the right ML algorithms: Due to the well-known no-free
lunch theorem that holds for any Machine Learning (ML) approach (Wolpert and
Macready 1997), selecting the suitable model for the problem at hand is one of the
possible pitfalls.

Concerning the Machine Learning domain, all relevant results have been obtained
through empirical observations undertaken on different assessments. Thus, to better under-
stand the context of the addressed problem we analyzed existing approaches that deal with
the issue of text classification using ML models. Among the analyzed tools, the Source
Code Classifier (SCC) tool (Alreshedy et al. 2018) can classify code snippets using the
MNB network as the underlying model. In particular, this tool discovers the programming
language of each snippet coming from StackOverflow posts. The results show that Bayesian
networks outperform other models in the textual analysis task by obtaining 75% of accuracy
and success rate. Furthermore, there is a subtle correlation between the Bayesian classifier
and the TF-IDF weighting scheme (Kibriya et al. 2005). A comprehensive study has been
conducted by comparing TF-IDF with the Supporting Vector Machine (SVM) using differ-
ent datasets. The study varies the MNB parameters to investigate the impacts of the two
mentioned preprocessing techniques for each of them. The evaluation demonstrates that the
TF-IDF scheme leads to better prediction performance than the SVM technique. Thus, we
decided to adopt the mentioned MNBN configuration considering these two findings (i) this
model can adequately classify text content and (ii) the TF-IDF encoding leads benefits in
terms of overall accuracy.

DC5 – Creation of training datasets for Bayesian networks: To make the
employed Bayesian network accurate, each topic must be provided with a similar
number of training projects; otherwise, the obtained results can be strongly affected
by the unbalanced distribution of the considered topics.

To mitigate such issues, we decided to train and evaluate the approach by considering 134
GitHub featured topics. In this respect, we analyzed 13,400 README files by considering
100 repositories for each topic. To collect such artifacts, we needed to be aware of the
constraints imposed by the GitHub API, which limit the total number of requests per hour
to 5,000 for authenticated users and 60 for unauthorized requests.

DC6 – Usage of reusable heterogeneous components to develop new recom-
mendation systems: The orchestration of heterogeneous components was another
challenge related to the development of MNBN.

Though the employed Python libraries are flexible, they involve managing different tech-
nical aspects, i.e., handling access to Web resources, textual engineering, and language
prediction. Moreover, each component has a well-defined set of input elements that dramat-
ically impact on the outcomes. For instance, the README encoding phase cannot occur
without the data provided by the crawler component, which gets data from GitHub. In the
same way, the topic prediction component strongly relies on the feature extraction per-

Page 19 of 40 69

Empir Software Eng (2021) 26: 69

formed by the TF-IDF weighting scheme. Thus, we succeeded in developing MNBN by
putting significant efforts in composing all the mentioned components coherently.

To summarize, concerning Fig. 8, NLP techniques have been applied to support the data
preprocessing phase of MNBN. A model-based approach consisting of a Bayesian network
underpins the overall technique to produce recommendations. The user context consists
of an input README file, which is mined employing a keyword extraction phase. The
produced recommendations are shown to the user directly in the employed Eclipse-based
IDE.

4.5 Lessons learned

Developing the CROSSMINER recommendation systems has been a long journey, which
allows us to garner many useful experiences. These experiences are valuable resources,
which we can rely on in the future whenever we are supposed to run similar projects.

DLL1 – Selecting the right representation can be of paramount importance:
A suitable encoding helps capture the intrinsic features of the OSS ecosystem to
facilitate the computation of similarities among software projects, moreover it paves
the way for various recommendations.

With respect to the features shown in Fig. 8, the used graph representation facilitates
different recommendations, i.e., CrossSim, CrossRec, and FOCUS making use of a graph-
based representation for supporting the Data Preprocessing activity. We selected such a
representation since some of the co-authors have gained similar experiences in the past
and consequently, we followed the intuition to try with the adoption of graphs, and graph-
similarity algorithms also in the mining OSS repositories. We started with CrossSim, and
subsequently we found that the graph-based representation is also suitable to develop
CrossRec and FOCUS.

DLL2 – Do not pretend to immediately find the optimal solution (move on iter-
atively): Conceiving the right techniques and configurations to satisfy user needs
can be a long and iterative process.

For conceiving all the recommendation systems we developed in CROSSMINER, we
followed an iterative process aiming to find the right underpinning algorithms and config-
urations to address the considered problems with the expected accuracy. It can be a very
strenuous and Carthusian process that might require some stepping back if the used tech-
nique gives evidence of inadequacy for the particular problem at hand, fine-tune the used
methods, and collect more data both for training and testing. For instance, in the case
of CrossSim we had to make four main iterations to identify the features of open source
projects relevant for solving the problem of computing similarities among software projects.
During the initial iterations, we encoded more than the necessary metadata. For instance,
we empirically noticed that encoding information about developers contributing to projects
might reduce the accuracy of the proposed project similarity technique.

69 Page 20 of 40

Empir Software Eng (2021) 26: 69

DLL3 – Start first with the techniques you already know and move on from
there: Starting with low-hang fruits allowed us to gain experience of the domain of
interest and to quickly produce even sub-optimal results that can still be encouraging
while finding better solutions.

During the execution of CROSSMINER, we had a tight schedule, and once we agreed
with the requirements by our use case partners, we started first with approaching problems
that were similar to those we had already in the past. In other words, we first got low-hang
fruits and then moved on from them. In this respect, we began early with CrossSim since we
noticed some similarities with the problem that one of the co-authors previously addressed
(Nguyen et al. 2015). In this way, we managed to gain additional expertise and knowledge in
the domain of recommendation systems, while still satisfying essential requirements elicited
from the partners. Afterwards, we succeeded in addressing more complicated issues, i.e.,
recommending third-party libraries with CrossRec (Nguyen et al. 2019) and API function
calls and code snippets with FOCUS (Nguyen et al. 2019, 2021).

5 Challenges and lessons learned from the evaluation
of the CROSSMINER recommendation systems

Once the recommendation systems had been realized, it was necessary to compare them
with existing state-of-the-art techniques. Evaluating a recommendation system is a chal-
lenging task since it involves identifying different factors. In particular, there is no golden
rule for evaluating all possible recommendation systems due to their intrinsic features as
well as heterogeneity. To evaluate a new system, various questions need to be answered, as
they are listed as follows:

– Which evaluation methodology is suitable? Assessing RSSE can be done in different
ways. Conducting a user study has been accepted as the de facto method to analyze
the outcome of a recommendation process by several studies (McMillan et al. 2012;
Moreno et al. 2015; Ponzanelli et al. 2016; Zhang et al. 2017; Zhong et al. 2009).
However, user studies are cumbersome, and they may take a long time to finish. Fur-
thermore, the quality of a user study’s outcome depends very much on the participants’
expertise and willingness to participate. In this sense, setting up an automated evalua-
tion, in which the manual intervention is not required (or preferably limited), is greatly
helpful.

– Which metric(s) can be used? Choosing suitable metrics accounts for an important
part of the whole evaluation process. While accuracy metrics, such as success rate,
precision and recall have been widely used to measure the prediction performance, we
suppose that additional metrics should be incorporated into the evaluation (Ge et al.
2010; Nguyen et al. 2019), aiming to study RSSE better.

– How to prepare/identify datasets for the evaluation? One needs to take into account
different parameters when it comes to choosing a dataset for evaluation. Moreover, the
data used to evaluate a system depends very much on the underpinning algorithms.
In this sense, advanced techniques and methods for curating suitable data are highly
desirable.

– What could be a representative baseline for comparison? To show the features of a
new conceived tool and give evidence of its novelty and advantages, it is necessary

Page 21 of 40 69

Empir Software Eng (2021) 26: 69

to compare it with existing approaches with similar characteristics. Since the solution
space is vast, comparing and evaluating candidate approaches can be a daunting task.

Answering such questions gives place to different challenges as described in the
following subsection.

5.1 Challenges

EC1 – Identification of the suitable evaluation methodolgy: Deciding the eval-
uation methodolgy to be applied has to take into account several aspects including
the time and efforts that have been allocated for such a phase in the project the work
is contextualized.

User studies can be done as field studies or as controlled experiments. By the former,
the participants with different programming experience levels have to complete a list of
tasks using the proposed recommendation system without any intervention. The latter is
conducted in a monitored environment, and the assigned tasks are carefully tailored for
specific purposes. Although these strategies produce remarkable results in various work,
there are some issues to be tackled. Among others, the selection of the participants has a
crucial role to play.

It is worth noting that the selection of ground-truth data from an active project impacts the
evaluation, and it might jeopardize the integrity of the evaluation process. Different aspects,
i.e., the scope of the recommendation, the recommendation input, the size of the ground
truth, and the characteristics of the selected objects, should be carefully considered to mimic
a real usage scenario when it comes to an automatized evaluation. For instance, randomly
choosing the ground truth size and objects does not guarantee that the evaluation mimics
a real usage scenario. The ground truth extraction strategies that have been employed for
evaluating the CROSSMINER recommendation systems are explained below.

CrossRec Given a set of libraries that an active project uses, CrossRec returns a set of
additional libraries that similar projects to the active project have also included. For this
reason, in the CrossRec evaluation process, given an active project, a half of its libraries
are used as the ground-truth, and the remaining are used as the query. In this case, we split
randomly into such sets the libraries that an active project includes.

FOCUS Given a list of method declaration and method invocations pairs, and an active
method context, FOCUS predicts the next method invocations that can be added to the
active declaration. To simulate a developer’s behaviour at different stages of a development
project, we performed various evaluation experiments by varying the size of the recommen-
dation query and the size of the ground-truth data. In particular, four different configurations
have been considered in the evaluation to mimic the following scenarios:

– the developer is at an early stage of the development process, and the active method is
almost empty;

– the developer is at an early stage of the development process, and the active method
implementation is well defined;

– the developer is near to the end of the development process, and the active method is
almost empty;

69 Page 22 of 40

Empir Software Eng (2021) 26: 69

– the project is in an advanced development phase, and the active method implementation
is well defined.

The ground truth data is extracted accordingly to the scenario that the evaluation mimics.

MNBN Given an active project, the MNBN recommendation system uses the content of
README file(s) to recommend relevant GitHub topics. Since the recommendation input
does not coincide with the object of the recommendation, we used the whole list of topics
that an active project uses as ground-truth.

It is our firm belief that user studies are inevitable in many contexts. For the evaluation
of CrossSim, a user study is a must, since there are no other ways to evaluate the simi-
larity between two OSS repositories, rather than the manual scoring done by humans. We
may avoid user studies in some specific cases. For instance, when evaluating CrossRec, we
realized that with the application of the ten-fold cross-validation technique, we can rely on
the available data to perform the evaluation, without resorting to a user study. For FOCUS,
while we can use data to evaluate its performance, we assume that its usability and useful-
ness can be properly studied only with a user study, where developers are asked to give their
opinion on a specific API call recommended by the system.

EC2 – Selection of the right evaluation metrics: Deciding which evaluation met-
rics for evaluating new recommendation systems has to be done by considering
several aspects, including the datasets that are available, the existing baselines (if
any), and the employed evaluation methodology.

The recommendation outcome is normally a ranked list of items, e.g., third-party
libraries (Nguyen et al. 2019; Thung et al. 2013), API calls (Moreno et al. 2015; Nguyen
et al. 2019), or GitHub topics (Di Sipio et al. 2020). Normally, a developer pays attention
only to the top-N items. Thus, by comparing the items in the ranked list with those stored as
ground-truth data, we can examine how well the recommendation system performs. There
are various metrics to analyze the performance of a recommendation system. To our knowl-
edge, several studies in RSSE focus only on accuracy (Bruch et al. 2008; Fowkes and Sutton
2016; McMillan et al. 2012; Thung et al. 2013). However, in the scope of CROSSMINER,
we realized that while accuracy is a good metric for evaluating an RS, it is not enough
for studying all the performance traits of the outcomes, as it is the case with conventional
recommendation systems (Ge et al. 2010). As a result, other metrics should also be incorpo-
rated to analyze various quality aspects as they are presented as follows. First, the following
notations are defined:

– N is the cut-off value for the list of recommended items;
– for a testing project p, the ground-truth dataset is named as GT(p);
– REC(p) is the top-N items, it is a ranked list in descending order of real scores, with

RECr(p) being the item in the position r;
– if a recommended item i ∈ REC(p) for a testing project p is found in the ground truth

of p, i.e., GT(p), hereafter we call this as a match or hit.

The metrics that have been employed for evaluating the CROSSMINER recommendation
systems are explained below.

Page 23 of 40 69

Empir Software Eng (2021) 26: 69

Success rate. Given a set of P testing projects, this metric measures the rate at which
a system can return at least a match among top-N recommended items for every project
p ∈ P (Thung et al. 2013). It is formally defined as follows:

success rate@N = countp∈P (
∣
∣GT (p)

⋂
(∪N

r=1RECr(p))
∣
∣ > 0)

|P | (1)

where the function count() counts the number of times that the boolean expression specified
in its parameter is true.

Accuracy. Given a list of top-N items, precision@N, recall@N, and normalized dis-
counted cumulative gain (nDCG) are utilized to measure the accuracy of the recommenda-
tion results.

Precision@N is the ratio of the top-N recommended items belonging to the ground-truth
dataset:

precision@N(p) =
∑N

r=1

∣
∣GT (p)

⋂
RECr(p)

∣
∣

N
(2)

Recall@N is the ratio of the ground-truth items appearing in the N items (Davis and
Goadrich 2006; Di Noia et al. 2012; Nguyen et al. 2015):

recall@N(p) =
∑N

r=1

∣
∣GT (p)

⋂
RECr(p)

∣
∣

|GT (p)| (3)

nDCG Precision and recall reflect well the accuracy, however they neglect ranking sensi-
tivity (Bellogı́n et al. 2013). nDCG is an effective way to measure if a system can present
highly relevant items on the top of the list:

nDCG@N(p) = 1

iDCG
·

N
∑

i=1

2rel(p,i)

log2(i + 1)
(4)

where iDCG is used to normalize the metric to 1 when an ideal ranking is reached.

TopRank It measures the percentage of the first top elements in the ground-truth data:

T op rank = TpRank(r)

|R| × 100% (5)

where TpRank(r) returns 1 if the first predicted element belongs to UsrTp(r), 0 otherwise.

Sales diversity In merchandising systems, sales diversity is the ability to distribute the
products across several customers (Nguyen et al. 2015; Vargas and Castells 2014). In the
context of mining software repositories, sales diversity means the ability of the system to
suggest to projects as much items, e.g., libraries, code snippets, as possible, as well as to
spread the concentration among all the items, instead of presenting a specific set of them
(Robillard et al. 2014).

Catalog coverage measures the percentage of items recommended to projects:

coverage@N =
∣
∣∪p∈P ∪N

r=1 RECr(p)
∣
∣

|I | (6)

where I is the set of all items available for recommendation and P is the set of projects.

69 Page 24 of 40

Empir Software Eng (2021) 26: 69

Entropy evaluates if the recommendations are concentrated on only a small set or spread
across a wide range of items:

entropy = −
∑

i∈I

(
#rec(i)

total

)

ln

(
#rec(i)

total

)

(7)

where #rec(i) = countp∈P (
∣
∣(∪N

r=1RECr(p)) � i
∣
∣), (i ∈ I) is the number of projects get-

ting i as a recommendation, total denotes the total number of recommended items across
all projects.

Novelty The metric gauges if a system is able to expose items to projects. Expected pop-
ularity complement (EPC) is utilized to measure novelty and is defined as follows (Vargas
and Castells 2011, 2014):

EPC@N =
∑

p∈P

∑N
r=1

rel(p,r)∗[1−pop(RECr (p))]
log2(r+1)

∑

p∈P

∑N
r=1

rel(p,r)
log2(r+1)

(8)

where rel(p, r) = ∣
∣GT (p)

⋂
RECr(p)

∣
∣ represents the relevance of the item at the r posi-

tion of the top-N list to project p; pop(RECr(p)) is the popularity of the item at the
position r in the top-N recommended list. It is computed as the ratio between the number
of projects that receive RECr(p) as recommendation over the number of projects that are
recommended items among the most often recommended ones. Equation 8 implies that the
more unpopular items a system recommends, the higher the EPC value it obtains and vice
versa.

Confidence Given a pair of <query, retrieved item> confidence is the score the evaluator
assigns to the similarity between the two items;

Ranking In a ranked list, it is necessary to have a good correlation with the scores given
by the human evaluation (Bruch et al. 2008). The Spearman’s rank correlation coeffi-
cient rs (Spearman 1904) is used to measure how well a similarity metric ranks the
retrieved projects given a query. Considering two ranked variables r1 = (ρ1, ρ2, .., ρn) and

r2 = (σ1, σ2, .., σn), rs is defined as: rs = 1 − 6
∑n

i=1(ρi−σi)
2

n(n2−1)
. We also employed Kendall’s

tau coefficient (Kendall 1938), which is used to measure the ordinal association between
two considered quantities. Both rs and τ range from -1 (perfect negative correlation) to
+1 (perfect positive correlation); rs = 0 or τ = 0 implies that the two variables are not
correlated.

Recommendation time Being able to provide recommended items in a limited amount of
time is important, especially for applications that require instant recommendations. This
metric evaluates the duration of time, starting from when a user sends the query until the
final recommendations are returned.

Depending on the context, we have to choose a suitable set of metrics to evaluate a
recommendation system. For example, with CrossSim we can only make use of Success
rate, Confidence, Precision, Ranking, and Execution time to evaluate the tool, since we
relied on a user study. Meanwhile, with CrossRec or FOCUS, since we can use the ten-
fold cross validation technique (i.e., by exploiting the testing data which was already split
into query and ground-truth data), we evaluated them using Accuracy, Precision, Recall,
Diversity, and Novelty.

Page 25 of 40 69

Empir Software Eng (2021) 26: 69

EC3 – Identification of the datasets that are eligible and available for evalua-
tion: The datasets used for evaluation very much depend on the recommendation
algorithms being used.

For each developed tool, we had to go through the following dimensions related to
datasets:

– Which format? Depending on the employed recommendation techniques (e.g., collab-
orative filtering, CNNs, etc.) we had to identify the proper ways to encode the created
datasets. For instance, to enable the application of a graph-based similarity algorithm
underpinning CrossSim, we had to encode the different features of OSS projects in a
graph-based representation. The same datasets needed to be represented in a TF-IDF
format to enable the application of FOCUS;

– Which preprocessing process should be applied to create the dataset? To minimize the
size of the input datasets and thus to make their manipulation efficient, we had to per-
form different data filtering tasks. For instance, in the case of CrossSim, to enable the
application of the employed graph-similarity algorithm, we identified the features that
are relevant for the task. For example, information about software developers, source
code, and GitHub topics was filtered out from the available datasets even though it was
easy to encode all of them as elements in the input graphs. Similar data filtering phases
were also performed in CrossRec to enable the recommendation of third-party libraries
that might be added in the project under development. Indeed, such data filtering phases
have to be performed without compromising the performance (in terms of accuracy,
precision, recall, etc.) of the approach under evaluation;

– Which limitations should we tackle when collecting the dataset? The primary limita-
tions we experienced when evaluating the CROSSMINER recommendation systems
were related to the GitHub APIs restrictions. Unfortunately, the adoption of alterna-
tive sources like GHTorrent (Gousios 2013) was not enough due to the lack of needed
artifacts such as source code. Knowing such limitations in advance, when collecting
projects from GitHub, we decided to save as much data as possible for every single
project. The goal was to enable the reuse of the collected data even for perspective eval-
uations to be done for future recommendation systems to be developed in the context
of CROSSMINER.

EC4 – Identification of the baseline(s) to compare with: To showcase the features
of a new conceived tool as well as to demonstrate its novelty, it is necessary to com-
pare it with existing approaches with similar features. In fact, choosing the correct
baseline is a challenging activity, as to ensure a fair comparison, the baselines to be
considered must be endowed with reusable tools and datasets.

While in general, authors of the selected baselines published their tools and dataset
online, it is the case that many of them are faulty, or not well maintained, or even worse:
no longer available. In particular, while developing the CROSSMINER recommendation
systems we always tried our best to identify the baselines to be used for the evaluations.
Unfortunately, often they were not available, which indeed led to difficulties in the eval-
uation. For instance, for evaluating CrossSim, since the implementations of the baselines

69 Page 26 of 40

Empir Software Eng (2021) 26: 69

were no longer available for public use, we had to re-implement them by strictly following
the descriptions in the original papers (Garg et al. 2004; McMillan et al. 2012; Zhang et al.
2017). That was not possible for evaluating MNBN due to the lack of details in the publicly
available documents describing the corresponding baseline. In general, whenever a baseline
is selected, and it is not available online, we contacted its authors for the original implemen-
tation. It was rare that we got a response from the authors with the tool and/or data. Thus, for
the particular cases of the developed recommendation systems, either we re-implemented
the tool, as it is the case with CrossSim, or we compared by performing experiments on the
datasets that have been used in the original papers, as we did for CrossRec.

Table 2 summarizes the main factors related to the evaluation of our proposed rec-
ommendation systems. Depending on the intrinsic characteristics of each tool, different
metrics and methodologies were employed to evaluate them. For example, to study Cross-
Sim (Nguyen et al. 2018, 2020), a user study with several developers’ involvement was the
only option since there is no automated method to evaluate the similarity between two OSS
projects. Meanwhile, with CrossRec (Nguyen et al. 2019), FOCUS (Nguyen et al. 2019),
and MNBN (Di Sipio et al. 2020), we relied only on data to investigate their performance.
Moreover, depending on the availability of baselines and quality requirements, we used dif-
ferent evaluation metrics, such as Accuracy (Precision, Recall, TopRank) or Sales Diversity
(Coverage, Entropy). Choosing suitable data plays an important role in the evaluations, and
it depends on various factors, such as systems’ characteristics, baselines, evaluation pur-
poses, or even constraints imposed by OSS platforms, e.g., GitHub and the Maven central
repository. The selection of baselines was also a significant issue, considering their com-
plexity and relevance with our tools. For evaluating CrossRec, we were able to consider
three different tools for comparison, i.e., LibRec (Thung et al. 2013), LibFinder (Ouni et al.
2017), and LibCUP (Saied et al. 2018). While with FOCUS, only PAM (Fowkes and Sutton
2016) was selected to benchmark since other relevant tools such as MAPO (Zhong et al.
2009) and UP-Miner (Wang et al. 2013) were no longer available. In summary, we believe
that there are many factors when it comes to design and evaluate a recommendation system,
and we should carefully investigate the most probable scenarios to select the optimal one.

5.2 Lessons learned

ELL1 –User studies are cumbersome, and they can take a long time to be conducted and
completed The quality of a user study’s outcome depends very much on the participants’
expertise and willingness to participate. People are often not very keen on the experiments,
since there is no incentive/reward for performing the required tasks. Moreover, there is a
trade-off between domain-expert developers, who may not need a recommendation system
to develop, and students who have never used this type of system. As a result, we evaluated
CrossSim by involving 15 developers of different background of knowledge. Aiming at a
reliable evaluation, for each query we mixed and shuffled the top-5 results generated from
the computation by each similarity metric in a single Google form and presented them to the
evaluators who then inspected and given a score to every pair. Thus, we managed to mimic
a taste test where users are asked to judge a product, e.g., food or drink, without having
a priori knowledge about what is being evaluated (Ghose and Lowengart 2001; Pettigrew
and Charters 2008). In this way, we removed any bias or prejudice against a specific simi-
larity metric. The participants were asked to label the similarity for each pair of query and
retrieved project regarding their application domains and functionalities. Furthermore, we
also allowed for cross-checking, i.e., the results of one developer were validated by the oth-
ers. To perform such evaluation for CrossSim and compare it with the baselines, it has been

Page 27 of 40 69

Empir Software Eng (2021) 26: 69

Ta
bl
e
2

C
R

O
SS

M
IN

E
R

re
co

m
m

en
da

tio
n

sy
st

em
s:

ev
al

ua
tio

n
fa

ct
s

C
ro

ss
Si

m
C

ro
ss

R
ec

FO
C

U
S

M
N

B
N

(N
gu

ye
n

et
al

.2
01

8)
(N

gu
ye

n
et

al
.2

01
9)

(N
gu

ye
n

et
al

.2
01

9,
20

21
)

(D
iS

ip
io

et
al

.2
02

0)

M
et

ho
do

lo
gy

C
ro

ss
-V

al
.

U
se

r
st

ud
y

M
et

ri
c

Su
cc

es
s

ra
te

Pr
ec

is
io

n

R
ec

al
l

nD
C

G

To
pR

an
k

C
ov

er
ag

e

E
nt

ro
py

N
ov

el
ty

C
on

fi
de

nc
e

R
an

ki
ng

T
im

e

D
at

as
et

So
ur

ce
G

itH
ub

G
itH

ub
G

itH
ub

,M
av

en
ce

nt
ra

lr
ep

os
ito

ry
G

itH
ub

Si
ze

58
0

pr
oj

ec
ts

1,
20

0
pr

oj
ec

ts
3,

60
0

pr
oj

ec
ts

13
,4

00
pr

oj
ec

ts

A
rt

if
ac

t
M

et
ad

at
a

M
et

ad
at

a
So

ur
ce

co
de

R
E

A
D

M
E

fi
le

s

B
as

el
in

e
M

U
D

A
B

lu
e

(G
ar

g
et

al
.

20
04

),
C

L
A

N
(M

cM
ill

an
et

al
.

20
12

),
R

ep
oP

al
(Z

ha
ng

et
al

.2
01

7)

L
ib

R
ec

(T
hu

ng
et

al
.

20
13

),
L

ib
Fi

nd
er

(O
un

i
et

al
.

20
17

),
L

ib
C

U
P

(S
ai

ed
et

al
.2

01
8)

U
P-

M
in

er
(W

an
g

et
al

.
20

13
),

PA
M

(F
ow

ke
s

an
d

Su
tto

n
20

16
)

N
on

e

69 Page 28 of 40

Empir Software Eng (2021) 26: 69

crucial to design the experimental settings properly and clearly define the manual evaluation
tasks by adhering to the taste-test methodology.

ELL2 – In some certain contexts, the k-fold cross-validation technique is a good alter-
native to user studies As previously mentioned, through CROSSMINER, we realized that
user studies are cumbersome, and they can take a long time to conduct and complete. How-
ever, we experienced that the assessment can also be automatized by means of case studies
or data itself. By the former, use cases are pre-selected for the recommendation. By the lat-
ter, we set up an automated evaluation, in which the manual intervention is not required, or
preferably limited. Depending on the availability of data, we managed to avoid performing
user studies by employing the k-fold cross validation technique (Wong 2015), which has
been popularly chosen as the evaluation method for a model in Machine Learning. By this
method, a dataset is divided into k equal parts (folds). For each validation round, one fold
is used as a testing and the remaining k-1 folds are used as training data. Such an evalua-
tion attempts to mimic a real scenario: the system should produce recommendations for a
project based on the data available from a set of existing projects. The artifact being con-
sidered as the recommendation target is called object. For instance, regarding third-party
libraries recommendation (Nguyen et al. 2019; Thung et al. 2013), objects are libraries that
a system provides as its outcome. It is essential to study if the recommendation system is
useful by providing the active project with relevant libraries, exploiting the training data. To
this end, we keep a certain amount of objects for each active project and use them as input
for the recommendation engine, which can be understood as the query. The rest is taken out
and used as ground-truth data. The ground-truth data is compared with the recommenda-
tion outcomes to validate the system’s performance. It is expected that the recommendation
system can retrieve objects that match up the ones stored as ground-truth data.

ELL3 – The quality of data depends on the particular application domain of interest
Through CROSSMINER, we further confirmed the importance of having the availability of
big data and high-quality data for training and evaluation activities. The definition of data
quality cannot be given in general, and it very much depends on the particular application
of interest. According to our experience, creating a dataset, which can be rightly used for
both training and evaluating the developed recommendation systems, can require signifi-
cant effort, which can be comparable to that needed to realize the conceived approach. For
instance, to implement MNBN, we devoted a huge effort to create the dataset that was sup-
posed to be balanced with respect to the considered GitHub featured topics. Moreover, it
can be challenging to collect big datasets, especially when there are several constraints to be
satisfied. For instance, in the case of the FOCUS evaluation, one of the considered datasets
was initially consisting of 5,147 Java projects retrieved from the Software Heritage archive
(Di Cosmo and Zacchiroli 2017). To comply with the requirements of the baseline, we first
restricted the dataset to the list of projects that use at least one of the considered third-party
libraries. Then, to comply with the requirements of FOCUS, we restricted the dataset to
those projects containing at least one pom.xml file. Because of such constraints, we ended
up with a dataset consisting of 610 Java projects. Thus, we had to create a dataset ten times
bigger than the used one for the evaluation.

ELL4 – Candidate baselines might not be reusable When conceiving new recommenda-
tion systems there can be no baselines to compare with. There are at least two motivations:
(i) the proposed approach is the first attempt dealing with the considered problem; (ii) the
tools and datasets of existing baselines are no longer available or reusable. In such cases,

Page 29 of 40 69

Empir Software Eng (2021) 26: 69

according to the facts shown in Table 2, the k-fold cross-evaluation has been a valuable
technique that allowed us to evaluate most of the proposed recommendation systems even
when the baselines were not available. Concerning CrossSim, we decided to perform a user
study, to mitigate any bias related to the fact that we re-implemented all the baselines.

ELL5: Novelty and diversity are good indicators that are worth considering Many exist-
ing approaches just choose to recommend popular items, e.g., USE (Moreno et al. 2015),
PROMPTER (Ponzanelli et al. 2016), LibRec (Thung et al. 2013). Through the evaluation
of CrossRec, we demonstrated that further than popularity, novelty and diversity are good
indicators for assessing if the recommendation outcomes are meaningful. Among others,
the ability to recommend items in the long tail is essential: we can suggest things even when
extremely unpopular since a small number of projects use each. However, they turn out to
be useful as all of them match those stored as ground-truth. This implies that the novelty of
a ranked list is important: a system should recommend libraries that are novel (Castells et al.
2011), i.e., those that have been rarely seen. In this sense, we see that CrossRec can pro-
duce good outcomes, not only in terms of success rate and accuracy but also sales diversity
and novelty. Moreover, serendipity has been widely exploited to evaluate recommendation
systems in other domains. Serendipity means that items are obtained by chance but turn out
to be useful. However, it seems that the metric has been neglected in evaluating recommen-
dation systems in software engineering. Investigating the importance of serendipity in the
context of source code/library recommendation can be an interesting topic. For example, a
recommendation engine provides a developer with an artifact, e.g., a third-party library or
an API function call, which does not belong to the ground-truth data at all; however, it is
indeed useful for the current project.

6 Related work

In this section we provide a literature review on the development and usage of recommen-
dation systems in software engineering. More importantly, we associate our work to various
existing studies, aiming to highlight its main contributions.

In their book (Robillard et al. 2014), Robillard et al. focus on the techniques and applica-
tions of recommendation systems in software engineering. The work presents a pragmatic
approach to system design, implementation, and evaluation. Similarly, Proksch et al. (2014)
present a comprehensive report on different phases that need to be considered when devel-
oping an effective recommender system to support the development activities. Though these
studies are highly related to our work, they provide a set of guidelines for developing and
evaluating a generic recommendation system. In other words, such guidelines are not tai-
lored to any specific recommendation systems. There is a lack of proper references for
anyone who wants to customize their implementation for a specific context. For exam-
ple, a developer is interested in understanding which techniques can be used for producing
recommendations; or which evaluation metrics are suitable for the results obtained by con-
ducting a user study. And this is where our work comes in: we complement the existing
studies by reporting on a specific use case, i.e., recommendation systems developed through
the CROSSMINER project to satisfy requirements imposed by various industrial partners.
More importantly, we provide the community at large with detailed challenges and lessons.
In this respect, our work is expected to be a practical benchmark, when it comes to design
and implementation of a recommendation system for mining OSS repositories.

69 Page 30 of 40

Empir Software Eng (2021) 26: 69

Pakdeetrakulwong et al. (2014) investigate the impact of recommendation systems on
the software development life cycle (SDLC). By analyzing several state-of-the-art studies,
they identified three main components of a recommendation system, i.e., a mechanism to
collect data, a recommendation engine, and a user interface to deliver recommendations. A
recommendation system should support a developer throughout the SDLC phases, ranging
from design to testing. Among others, the most supported one by existing recommender
tools is the implementation phase, in which software engineers turn components designed
in a previous phase into code. Although implementation is a crucial phase in the software
engineering (SE) domain, the other phases are required, i.e., collecting requirements, design
phase, and testing. To be more concrete, a recommendation system should be able to provide
several types of items, including UML diagrams and artifacts. A promising filed is Seman-
tic Web and Ontologies, which are used to describe software components in SE that allow
information sharing among team members. Moreover, most of RSSEs use a pull approach to
deliver recommendations: it means that recommended items are provided without any spe-
cific request made by the user. Reversely, the work (Pakdeetrakulwong et al. 2014) suggests
using a push approach, in which the user can trigger the delivery of the recommendations
reactively.

Maki et al. (2015) propose a feature model to represent the problem of capturing contexts
in the RSSE domain. As a preliminary analysis, the authors discuss 23 papers and classify
them in the following six categories:

– Change task: this type of recommendation system aims to support the developer in
managing the evolution of the current programming task;

– API usage: this type of RSSEs supports the usage of external third-party libraries;
– Refactoring task: recommendation systems that support refactoring activities fall in this

category;
– Solving exception, failure, and bug: this kind of RSSEs handles the exception and

unexpected behaviours of the considered software systems;
– Recommending software components and components’ design: it recommends entire

software components to be integrated into the software projects under development;
– Exploring local codebases and visited source locations: this type of system supports

the information search over different data sources, i.e., online datasets

In the same paper (Maki et al. 2015), the authors show that the examined tools work
in practice, but they fail to address the capturing context phase accurately. Such a phase
plays an essential role in the overall recommendation process, as it is performed at the early
stages of the production. According to the authors (Maki et al. 2015) the context extrac-
tion phase should be triggered (i) reactively or (ii) proactively. The former is led by certain
actions captured in the development environment, e.g., page scrolling or considering idle
times. Contrariwise, the latter is activated directly by the user. Then, the capturing phase
is performed by setting the scope and the elements to be extracted. The scope dimension
depends on the goal that the RSSE wants to achieve. Thus, recommendation systems can
consider as snippets of code as the context as well as the entire project. Considering the
possible extracted elements, they can be related to valuable elements of the code, i.e., vari-
ables, methods or identifiers. Similarly to the previous phase, the treatment of the excepted
data can be different according to the RSSE’s aims. Standard techniques to perform this
step involve parsing, weighting or filtering. The final step is the delivery of the recom-
mendations, according to various output formats, i.e., bag-of-words, AST, dendrograms,
annotated graphs, and weighted vectors. The findings of the work suggest that most of the

Page 31 of 40 69

Empir Software Eng (2021) 26: 69

analyzed tools do not cover the context extraction activity properly. Thus, there are room of
improvements in this filed that can bring substantial contribution in the RSSE domain.

Happel et al. (2008) discuss relevant issues that a recommendation system must address:
context-awareness, pro-activeness of the system, and appropriate knowledge representation
are the main factors that impact on the quality of recommendations. Context-awareness
becomes very relevant in software projects in which developers collaboratively work on
shared resources. The pro-activeness of recommendation systems still demands further
research due to the limited maturity of existing tools concerning such an aspect. A proactive
approach should improve the accuracy of the recommendation by reducing the scope of the
context. Finally, recommendation systems should take into account more flexible represen-
tations of knowledge by considering new techniques, e.g., Semantic Web analysis to make
the system more transparent. After these considerations, the authors suggest that a com-
bination of the context-awareness and the information provision can significantly improve
the quality of the recommended items. In our work, we focus on recommendation systems
for mining OSS forges, e.g., GitHub, the Maven Central Repository, or Stack Overflow.
Moreover, we tailor their design to satisfy different requirements of our industrial partners.

Gasparic and Janes (2016) provide a systematic literature review (SLR) on RSSE tools.
The study aims to characterize RSSEs following the software engineers’ perspective. In
particular, the SLR focuses on the required inputs, on the benefits offered by the recom-
mendation process, and on the required effort to provide the recommended items. As the
topic is too broad, the authors put some constraints in building the research query. Rec-
ommendation systems that do not belong to the software engineering domain are excluded
from the analysis. Among these, the study considers only stable tools, i.e., not snapshot
versions or reusable components. Additionally, the considered tools strictly support source
code development and exclude other types of activities. Considering these boundaries, they
conduct the review by analyzing every aspect of the process from the input extraction phase
to the retrieved item. After an iterative process, 46 papers are selected for consideration. The
major finding of the work is that most of the considered RSSEs use a reactive approach to
provide recommendations. Reversely, proactive recommendations are not popular yet. The
analyzed tools are focused on the development phase, but the testing phase is crucial in SE
projects. Thus, future RSSEs should consider it as a possible application domain. Moreover,
the examined context extraction techniques are not able to excerpt broader context, i.e.,
they miss crucial elements useful to recommend valuable items. Concerning the presenta-
tion layer, tools should improve the explanation of the given recommendations and provide
users with more information about their usage in concrete situations, i.e., context-aware
recommendations.

A taxonomy of recommendation systems as well as the possible phases involved in
the recommendation process has been provided (Isinkaye et al. 2015). The work describes
recommendation process as an iterative cycle represented by three steps, i.e., informa-
tion gathering, learning, and recommendations delivery. Information gathering involves
the user’s feedback collection at the beginning of the entire process after the system has
issued the wanted recommendation. The user profile is considered to retrieve the proper
items by looking at the user’s needs in the presentation. Concerning information gathering,
the authors classify possible feedback into explicit, implicit and hybrid. Explicit feedback
is given directly by the user, i.e., through ratings which contain accurate information, but
require effort to obtain. On the other hand, implicit feedback is inferred directly by the sys-
tem without involving the user. However, they are less accurate than the explicit ones. The
hybrid feedback is a combination of the previous two techniques. Typical implementations
use the inferred data to check the feedback given by the user or allow the user to provide only

69 Page 32 of 40

Empir Software Eng (2021) 26: 69

a subset of information. Then, the learning phase employs them to excerpt the user’s char-
acteristics and to build a custom profile. Overall, this study (Isinkaye et al. 2015) highlights
the contribution of different techniques as well as their strengths and weakness consider-
ing several factors, i.e., availability of the meta-data, user ratings, and the learner model, to
name a few. In the present paper, we conceptualized a novel taxonomy for the main design
features for recommendation systems in software engineering. Such a taxonomy is intended
to provide system designers with the most pertinent technical details for their problems, i.e.,
tailoring the design to satisfy the requirements imposed by use-case partners.

An extensive guideline that deals with challenges, issues, and basic blocks related to the
development of RSSEs has been provided (LASER 2015) to summarize well-established
practices to show all the phases needed for the development of such systems. The first step
involves problem framing, i.e., the identification of context, the tasks to be completed, and
the target users of the recommended items. The context represents the development envi-
ronment which brings plenty of information about the current task, which is the issue or
functionality that the user is addressing. Finally, the target user determines what kind of rec-
ommended items have to be provided and when: a novice developer’s needs are profoundly
different from those of expert ones. Thus, the final recommendation items might be com-
pletely different according to their experience level. Considering these aspects, the authors
grouped RSSEs into four main categories:

– Hotspot recommender: it provides recommendations about methods and classes that
belong to the current context;

– Navigation recommender: it suggests locations where the developer can find hints
related to the current task;

– Snippet recommender: it produces snippets of code related to the developer’s context;
– Documentation recommender: it aggregates posts coming from websites and A&Q

forums to enhance the documentation of the APIs of interest.

Moving to the recommendation process, input sources must be handled to capture the
developer’s context. Due to their heterogeneity, RSSEs can employ different strategies and
choose the most suitable for a certain context, such as static analysis, user feedback, struc-
turing or destructuring techniques. This phase is usually followed by a preprocessing phase,
in which data is rearranged for the following steps. Then, a recommendation algorithm
is performed to obtain the recommendation item. According to the study (LASER 2015),
recommendation algorithms fall in one of the following classes:

– Heuristic approaches make effort on the implementation and usually derive from
empirical evaluation;

– Data mining and machine learning techniques are adopted when a large amount of data
are available, by exploiting different algorithm and models;

– Collaborative filtering typically employs user-item matrices to filter data and find
similar items.

The outcome of the recommendation algorithm is delivered to the target user in the pre-
senting recommendation phase. It is characterized by the level of interaction with the target
user, which defines if the RSSE is proactive or reactive.

The work presented in this paper shares several similarities with the studies previ-
ously outlined. However, by leveraging the experiences we developed in the context of the
CROSSMINER project, the presented challenges and lessons learned can complement the
previous attempts of conceptualizing recommendation systems with the aim of identifying
their strengths and limitations when being applied in the context of software development.

Page 33 of 40 69

Empir Software Eng (2021) 26: 69

7 Conclusion and future work

Developing complex software systems by reusing existing open source components is a
challenging task. In the EU CROSSMINER project we worked on dealing with such a prob-
lem by conceiving several recommendation systems to meet the needs identified by six
use-case partners working on different domains including IoT, multi-sector IT services, API
co-evolution, software analytics, software quality assurance, and OSS forges.

In this paper, we presented an experience report on the various recommendation sys-
tems that have been developed in CROSSMINER. We attempt to share with the community
the main challenges we had to overcome as well as the corresponding lessons during the
three different phases to build and evaluate recommendation systems, i.e., requirement,
development, and evaluation.

Being focused on heterogeneous recommendation systems allowed us to garner many
useful experiences and learn important lessons. In the first place, the process yields up a list
of actionable items when designing and implementing recommendation systems , namely:
(i) the skepticism that final users can have especially at the early stages of the development
and usage of the proposed recommendation systems; (ii) difficulties in retrieving and cre-
ating datasets to be used both for training and evaluation purposes; (iii) criticalities related
to the selection of baselines for evaluation especially when the related tools are no longer
available; (iv) the variety of evaluation approaches and metrics that can be employed to
assess the strengths and limitations of the conceived recommendation systems.

The first contribution of our work is a taxonomy of the main design features for recom-
mendation systems in software engineering. We believe that such a taxonomy would come
in handy for those who perform a fresh start on investigating which techniques are most
suitable for their problems, i.e., tailoring their design to meet the requirements imposed by
industrial use-case partners. The second contribution of the paper is a benchmark consisting
of the challenges and lessons learned that might be useful for developers that need to con-
ceive new recommendation systems and thus, have to encompass the three related phases,
i.e., requirement elicitation, development, and evaluation. For instance, through the evalu-
ation of various systems, we realized that the selection of suitable evaluation metrics helps
shed light on the performance traits that cannot be revealed by conventional indicators. In
particular, while precision and recall represent the right choices for assessing the quality of
the proposed recommendation systems, additional metrics typically used in entirely differ-
ent domains like sales diversity, and serendipity can also be useful for studying a system’s
performance. Among others, the ability to recommend items in the long tail is important:
we can recommend items even when they are extremely unpopular since each is used by a
small number of projects. However, they turn out to be useful as all of them match those
stored as ground-truth. This implies that the novelty of a ranked list is important: a system
should be able to recommend libraries that are novel (Castells et al. 2011), i.e., those that
have been rarely seen.

For future work, we plan to consolidate the lessons learned by applying in the Model
Driven Engineering domain the techniques and tools we developed in CROSSMINER.
Moreover, we are also working on a low-code infrastructure to support the development of
recommendation systems. In particular, by relying on the presented taxonomy, we devel-
oped a metamodel to represent and manage the peculiar components of recommendation
systems (Di Sipio et al. 2020). Dedicated supporting tools are also under development to
enable citizen developers to easily model and build their custom recommendation systems.
The results obtained so far are encouraging even though there is still significant work to be
done to enable the development of recommendation systems in a low-code manner.

69 Page 34 of 40

Empir Software Eng (2021) 26: 69

Acknowledgements The research described in this paper has been carried out as part of the CROSSMINER
Project, which has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 732223. We thank the anonymous reviewers for their valuable comments and
suggestions that helped us improve the paper.

Funding Open access funding provided by Università degli Studi dell’Aquila within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alreshedy K., Dharmaretnam D., German D. M., Srinivasan V., Gulliver T. A. (2018) SCC: automatic
classification of code snippets. CoRR arXiv:1809.07945

Basten B., Hills M., Klint P., Landman D., Shahi A., Steindorfer M. J., Vinju J. J. (2015) M3: a general model
for code analytics in rascal. In: 2015 IEEE 1st international workshop on software analytics (SWAN),
pp 25–28

Bellogı́n A., Cantador I., Castells P. (2013) A comparative study of heterogeneous item recommendations in
social systems. Information Science 221:142–169. https://doi.org/10.1016/j.ins.2012.09.039

Blondel V. D., Gajardo A., Heymans M., Senellart P., Dooren P. V. (2004) A measure of similarity between
graph vertices: applications to synonym extraction and web searching. SIAM Review 46:647–666.
https://doi.org/10.2307/20453570

Bobadilla J., Ortega F., Hernando A., Gutiérrez A. (2013) Recommender systems survey. Knowledge-Based
Systems 46:109–132

Borges H., Valente M. T. (2018) What’s in a GitHub star? Understanding repository starring prac-
tices in a social coding platform. Journal of Systems and Software 146:112–129. arXiv:1811.07643.
https://doi.org/10.1016/j.jss.2018.09.016

Bruch M., Schäfer T., Mezini M. (2008) On evaluating recommender systems for API usages. In: Proceedings
of the 2008 international workshop on recommendation systems for software engineering, RSSE ’08.
ACM, New York, pp 16–20

Castells P, Vargas S, Wang J (2011) Novelty and diversity metrics for recommender systems: choice, dis-
covery and relevance. In: International workshop on diversity in document retrieval (DDR 2011) at
the 33rd European conference on information retrieval (ECIR 2011). Dublin, Ireland. http://ir.ii.uam.es/
rim3/publications/ddr11.pdf

Cosentino V., Cánovas Izquierdo J. L., Cabot J. (2017) A systematic mapping study of software development
with github. IEEE Access 5:7173–7192. https://doi.org/10.1109/ACCESS.2017.2682323

Czarnecki K. (2002) Domain engineering. pp. 433–444. American Cancer Society. https://doi.org/10.1002/
0471028959.sof095. https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095

Dagenais B., Ossher H., Bellamy R. K. E., Robillard M. P., de Vries J. P. (2010) Moving into a new soft-
ware project landscape. In: Proceedings of the 32nd ACM/IEEE international conference on software
engineering - volume 1, ICSE ’10. ACM, New York, pp 275–284

Davis J., Goadrich M. (2006) The relationship between precision-recall and ROC curves. In: Proceedings of
the 23rd international conference on machine learning, ICML ’06. ACM, New York, pp 233–240

Di Cosmo R., Zacchiroli S. (2017) Software heritage: why and how to preserve software source code. In:
14th international conference on digital preservation, pp 1–10. Kyoto

Di Noia T., Mirizzi R., Ostuni V. C., Romito D., Zanker M. (2012) Linked open data to support content-
based recommender systems. In: Proceedings of the 8th international conference on semantic systems,
I-semantics ’12. ACM, New York, pp 1–8

Di Rocco J., Di Ruscio D., Di Sipio C., Nguyen P., Rubei R. (2020) Topfilter: an approach to recommend
relevant github topics. In: Proceedings of the 14th ACM / IEEE international symposium on empirical

Page 35 of 40 69

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1809.07945
https://doi.org/10.1016/j.ins.2012.09.039
https://doi.org/10.2307/20453570
http://arxiv.org/abs/1811.07643
https://doi.org/10.1016/j.jss.2018.09.016
http://ir.ii.uam.es/rim3/publications/ddr11.pdf
http://ir.ii.uam.es/rim3/publications/ddr11.pdf
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1002/0471028959.sof095
https://doi.org/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095

Empir Software Eng (2021) 26: 69

software engineering and measurement (ESEM), ESEM ’20. Association for Computing Machinery,
New York. https://doi.org/10.1145/3382494.3410690

Di Sipio C., Di Ruscio D., Nguyen P. T. (2020) Democratizing the development of recommender systems
by means of low-code platforms. In: Proceedings of the 23rd ACM/IEEE international conference on
model driven engineering languages and systems: companion proceedings, MODELS ’20. Association
for Computing Machinery, New York. https://doi.org/10.1145/3417990.3420202

Di Sipio C., Rubei R., Di Ruscio D., Nguyen P. T. (2020) Using a multinomial naı̈ve bayesian (MNB) network
to automatically recommend topics for github repositories. In: Proceedings of the 24th international con-
ference on evaluation and assessment in software engineering, EASE2020, Trondheim, Norway, April
15-17, 2020, EASE’20. ACM, pp 24–34. https://doi.org/10.1145/3383219.3383227

Fowkes J., Sutton C. (2016) Parameter-free probabilistic API mining across GitHub. In: Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering, FSE 2016.
ACM, New York, pp 254–265

Ganesan K. (2017) Topic suggestions for millions of repositories - The GitHub Blog. https://github.blog/
2017-07-31-topics/

Garg P. K., Kawaguchi S., Matsushita M., Inoue K. (2004) MUDABLue: an automatic categorization sys-
tem for open source repositories. In: 2013 20th Asia-Pacific software engineering conference (APSEC),
pp 184–193

Gasparic M., Janes A. (2016) What recommendation systems for software engineering recommend: a system-
atic literature review. Journal of Systems and Software 113:101–113. https://doi.org/10.1016/j.jss.2015.
11.036. https://linkinghub.elsevier.com/retrieve/pii/S0164121215002605

Ge M., Delgado-Battenfeld C., Jannach D. (2010) Beyond accuracy: evaluating recommender sys-
tems by coverage and serendipity. In: Proceedings of the fourth ACM conference on recom-
mender systems, RecSys ’10. Association for Computing Machinery, New York, pp 257–260.
https://doi.org/10.1145/1864708.1864761

Ghose S., Lowengart O. (2001) Taste tests: impacts of consumer perceptions and preferences on brand
positioning strategies. Journal of Targeting, Measurement and Analysis for Marketing 10(1):26–41

Gomez-Uribe C. A., Hunt N. (2015) The netflix recommender system: algorithms, business value, and
innovation. ACM Transactions on Management Information Systems 6(4):13:1–13:19

Gousios G. (2013) The ghtorrent dataset and tool suite. In: Proceedings of the 10th working conference on
mining software repositories, MSR ’13. IEEE Press, Piscataway, pp 233–236. http://dl.acm.org/citation.
cfm?id=2487085.2487132

Happel H. J., Maalej W. (2008) Potentials and challenges of recommendation systems for software devel-
opment. In: Proceedings of the 2008 international workshop on Recommendation systems for software
engineering - RSSE ’08. ACM Press, Atlanta, Georgia, p 11

Holmes R., Walker R. J., Murphy G. C. (2005) Strathcona example recommendation tool. SIGSOFT Softw.
Eng. Notes 30(5):237–240. https://doi.org/10.1145/1095430.1081744

Isinkaye F., Folajimi Y., Ojokoh B. (2015) Recommendation systems: principles, methods and evaluation.
Egyptian Informatics Journal 16(3):261–273

Jiang J., Lo D., He J., Xia X., Kochhar P. S., Zhang L. (2017) Why and how developers fork what from whom
in GitHub. Empirical Software Engineering 22(1):547–578. https://doi.org/10.1007/s10664-016-9436-6

Karlsson E. A. (ed) (1995) Software reuse: a holistic approach. Wiley, New York
Kendall M. G. (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93. http://www.jstor.org/

stable/2332226
Kibriya A. M., Frank E., Pfahringer B., Holmes G. (2005) Multinomial naive bayes for text categorization

revisited. In: Webb G. I., Yu X. (eds) AI 2004: advances in artificial intelligence. Springer, Berlin,
pp 488–499

LASER (2015) LASER: software engineering: international summer schools, LASER 2013-2014, Elba,
Italy: revised tutorial lectures. No. 8987 in Lecture notes in computer science Programming and software
engineering. Springer, Cham

Linden G., Smith B., York J. (2003) Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Computing 7(1):76–80

Lv F., Zhang H., Lou J. G., Wang S., Zhang D., Zhao J. (2015) Codehow: effective code search based on
API understanding and extended boolean model (E). In: 30th IEEE/ACM international conference on
automated software engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pp 260–270

Maki S., Kpodjedo S., Boussaidi G. E. (2015) Context extraction in recommendation systems in software
engineering: a preliminary survey. In: CASCON ’15, Markham, Canada. IBM Corp., USA, pp 151–160

McMillan C., Grechanik M., Poshyvanyk D. (2012) Detecting similar software applications. In: Proceedings
of the 34th international conference on software engineering, ICSE ’12. IEEE Press, Piscataway, pp 364–
374

69 Page 36 of 40

https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1145/3417990.3420202
https://doi.org/10.1145/3383219.3383227
https://github.blog/2017-07-31-topics/
https://github.blog/2017-07-31-topics/
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1016/j.jss.2015.11.036
https://linkinghub.elsevier.com/retrieve/pii/S0164121215002605
https://doi.org/10.1145/1864708.1864761
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/1095430.1081744
https://doi.org/10.1007/s10664-016-9436-6
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226

Empir Software Eng (2021) 26: 69

McMillan C., Poshyvanyk D., Grechanik M. (2010) Recommending source code examples via API call
usages and documentation. In: Proceedings of the 2Nd international workshop on recommendation
systems for software engineering, RSSE ’10. ACM, New York, pp 21–25

Moreno L., Bavota G., Di Penta M., Oliveto R., Marcus A. (2015) How can I use this method? In: 37th
international conference on software engineering. IEEE, Piscataway, pp 880–890

Nguyen P., Tomeo P., Di Noia T., Di Sciascio E. (2015) An evaluation of SimRank and personalized PageR-
ank to build a recommender system for the web of data. In: Proceedings of the 24th international
conference on world wide web, WWW ’15 companion. Association for Computing Machinery, New
York, pp 477–1482. https://doi.org/10.1145/2740908.2742141

Nguyen P. T., Di Rocco J., Di Ruscio D. (2018) Mining software repositories to support OSS developers:
a recommender systems approach. In: Proceedings of the 9th italian information retrieval workshop,
Rome, Italy, May, 28-30, 2018

Nguyen P. T., Di Rocco J., Di Ruscio D., Di Penta M. (2019) CrossRec: supporting soft-
ware developers by recommending third-party libraries. Journal of Systems and Software,
110460. https://doi.org/10.1016/j.jss.2019.110460. http://www.sciencedirect.com/science/article/pii/
S0164121219302341

Nguyen P. T., Di Rocco J., Di Ruscio D., Ochoa L., Degueule T., Di Penta M. (2019) FOCUS: A recom-
mender system for mining API function calls and usage patterns. In: Proceedings of the 41st international
conference on software engineering, ICSE ’19. IEEE Press, Piscataway, pp 1050–1060

Nguyen P. T., Di Rocco J., Di Sipio C., Di Ruscio D., Di Penta M. (2021) Recommending api
function calls and code snippets to support software development. IEEE Trans Softw Eng, 1–1.
https://doi.org/10.1109/TSE.2021.3059907

Nguyen P. T., Di Rocco J., Rubei R., Di Ruscio D. (2018) Crosssim: exploiting mutual relationships to
detect similar OSS projects. In: 2018 44th euromicro conference on software engineering and advanced
applications (SEAA), pp 388–395

Nguyen P. T., Di Rocco J., Rubei R., Di Ruscio D. (2020) An automated approach to assess the similarity of
GitHub repositories. Software Quality Journal. https://doi.org/10.1007/s11219-019-09483-0

Nguyen P. T., Tomeo P., Di Noia T., Di Sciascio E. (2015) Content-based recommendations via DBpedia and
freebase: a case study in the music domain. In: Proceedings of the 14th international conference on the
semantic web - ISWC 2015 - volume 9366. Springer, New York, pp 605–621

Niu H., Keivanloo I., Zou Y. (2017) API usage pattern recommendation for software development. Journal
of Systems Software 129:127–139

Noia T. D., Ostuni V. C. (2015) Recommender systems and linked open data. In: Faber W., Paschke A. (eds)
Reasoning Web. Web Logic Rules - 11th International Summer School 2015, Berlin, Germany, July 31 -
August 4, 2015, Tutorial Lectures, Lecture Notes in Computer Science, vol 9203. Springer, pp 88–113.
https://doi.org/10.1007/978-3-319-21768-0 4

Ouni A., Kula R. G., Kessentini M., Ishio T., German D. M., Inoue K. (2017) Search-based software library
recommendation using multi-objective optimization. Information and Software Technology 83(C):55–75

Pakdeetrakulwong U., Wongthongtham P., Siricharoen W. V. (2014) Recommendation systems for software
engineering: a survey from software development life cycle phase perspective. pp. 137–142. IEEE

Pettigrew S., Charters S. (2008) Tasting as a projective technique. Qualitative Market Research: An
International Journal 11(3):331–343

Ponzanelli L., Bavota G., Di Penta M., Oliveto R., Lanza M. (2016) Prompter: turning the IDE
into a self-confident programming assistant. Empirical Software Engineering 21(5), 2190–2231.
https://doi.org/10.1007/s10664-015-9397-1. http://link.springer.com/10.1007/s10664-015-9397-1

Ponzanelli L., Bavota G., Penta M. D., Oliveto R., Lanza M. (2016) Prompter - turning the IDE into a
self-confident programming assistant. Empir Softw Eng 21(5):2190–2231

Proksch S., Bauer V., Murphy G. C. (2014) How to build a recommendation system for software engineering.
In: Meyer B., Nordio M. (eds) Software engineering - international summer schools, LASER 2013-2014,
Elba, Italy, Revised Tutorial Lectures, Lecture Notes in Computer Science, vol 8987. Springer, pp 1–42.
https://doi.org/10.1007/978-3-319-28406-4 1

Proksch S., Bauer V., Murphy G. C. (2015) How to build a recommendation system for software engineering.
In: Meyer B., Nordio M. (eds) Advances in the theory and practice of software engineering - LASER
2013-2014, LNCS, vol 8987. Springer, pp 1–42. http://tubiblio.ulb.tu-darmstadt.de/77729/

Robillard M. P., Bodden E., Kawrykow D., Mezini M., Ratchford T. (2013) Automated API property
inference techniques. IEEE Transactions on Software Engineering 39(5):613–637

Robillard M. P., Maalej W., Walker R. J., Zimmermann T. (eds) (2014) Recommendation systems in software
engineering. Springer, Berlin

Rubei R., Di Sipio C., Nguyen P. T., Di Rocco J., Di Ruscio D. (2020) PostFinder: mining
stack overflow posts to support software developers. Information and Software Technology 127,

Page 37 of 40 69

https://doi.org/10.1145/2740908.2742141
https://doi.org/10.1016/j.jss.2019.110460
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://www.sciencedirect.com/science/article/pii/S0164121219302341
https://doi.org/10.1109/TSE.2021.3059907
https://doi.org/10.1007/s11219-019-09483-0
https://doi.org/10.1007/978-3-319-21768-0_4
https://doi.org/10.1007/s10664-015-9397-1
http://link.springer.com/10.1007/s10664-015-9397-1
https://doi.org/10.1007/978-3-319-28406-4_1
http://tubiblio.ulb.tu-darmstadt.de/77729/

Empir Software Eng (2021) 26: 69

106367. https://doi.org/10.1016/j.infsof.2020.106367. http://www.sciencedirect.com/science/article/pii/
S0950584920301361

Saied M. A., Ouni A., Sahraoui H., Kula R. G., Inoue K., Lo D. (2018) Improving reusability of software
libraries through usage pattern mining. Journal of Systems Software 145:164–179

Schedl M., Zamani H., Chen C., Deldjoo Y., Elahi M. (2018) Current challenges and visions in music
recommender systems research. International Journal Multimedia Information Retrieval 7(2), 95–116.
https://doi.org/10.1007/s13735-018-0154-2

Spearman C. (1904) The proof and measurement of association between two things. The American Journal
of Psychology 15(1):72–101

Spinellis D., Szyperski C. (2004) How is open source affecting software development? IEEE Software
21(1):28–33

Thung F., Lo D., Lawall J. (2013) Automated library recommendation. In: 2013 20th working conf. on reverse
engineering (WCRE), pp 182–191

Vargas S., Castells P. (2011) Rank and relevance in novelty and diversity metrics for recommender systems.
In: Proceedings of the fifth ACM conference on recommender systems, RecSys ’11. ACM, New York,
pp 109–116

Vargas S., Castells P. (2014) Improving sales diversity by recommending users to items. In: Eighth ACM
conference on recommender systems, recsys ’14, Foster City, Silicon Valley, CA, USA - October 06 -
10, 2014, pp 145–152

Wang J., Dang Y., Zhang H., Chen K., Xie T., Zhang D. (2013) Mining succinct and high-coverage API
usage patterns from source code. In: 10th working conference on mining software repositories. IEEE,
Piscataway, pp 319–328. https://doi.org/10.1109/MSR.2013.6624045

Wolpert D., Macready W. (1997) No free lunch theorems for optimization. IEEE Transactions on Evolution-
ary Computation 1(1):67–82. https://doi.org/10.1109/4235.585893. http://ieeexplore.ieee.org/document/
585893/

Wong T. T. (2015) Performance evaluation of classification algorithms by K-fold and leave-one-out cross
validation. Pattern Recognition 48(9):2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

Wu L., Shah S., Choi S., Tiwari M., Posse C. (2014) The browsemaps: Collaborative filtering at LinkedIn.
In: RSWEb@recsys, CEUR workshop proceedings, vol 1271. CEUR-WS.org

Zhang Y., Lo D., Kochhar P. S., Xia X., Li Q., Sun J. (2017) Detecting similar repositories on GitHub. In:
2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER),
vol 00, pp 13–23

Zheng M., Pan X., Lillis D. (2018) CodEX: source code plagiarism detection based on abstract syntax tree.
In: Proceedings for the 26th AIAI irish conference on artificial intelligence and cognitive science trinity
college Dublin, Dublin, Ireland, December 6-7th, 2018, pp 362–373

Zhong H., Xie T., Zhang L., Pei J., Mei H. (2009) MAPO: mining and recommending API usage patterns.
In: 23rd European conference on object-oriented programming. Springer, Berlin, pp 318–343

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Juri Di Rocco is a postdoctoral researcher at the University of
L’Aquila, Italy. He obtained a PhD in Computer Science from the
University of L’Aquila. He is interested in several aspects of software
language engineering and Model Driven Engineering (MDE) includ-
ing domain specific modelling languages, model transformation,
model differencing, modelling repositories and mining techniques.
More information is available at https://jdirocco.github.io/. Contact
him at juri.dirocco@univaq.it.

69 Page 38 of 40

https://doi.org/10.1016/j.infsof.2020.106367
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://www.sciencedirect.com/science/article/pii/S0950584920301361
https://doi.org/10.1007/s13735-018-0154-2
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/4235.585893
http://ieeexplore.ieee.org/document/585893/
http://ieeexplore.ieee.org/document/585893/
https://doi.org/10.1016/j.patcog.2015.03.009
https://jdirocco.github.io/
juri.dirocco@univaq.it

Empir Software Eng (2021) 26: 69

DavideDi Ruscio is an Associate Professor at the DISIM - University
of L’Aquila. His main research interests are related to several aspects
of Software Engineering, Open Source Software, and Model Driven
Engineering (MDE) including domain specific modelling languages,
model transformation, model differencing, coupled evolution, and
recommendation systems. He has published more than 150 papers in
various journals, conferences and workshops on such topics. He is a
member of the steering committee of the International Conference on
Model Transformation (ICMT), of the Software Language Engineer-
ing (SLE) conference, of the Seminar Series on Advanced Techniques
& Tools for Software Evolution (SATTOSE), of the Workshop on
Modelling in Software Engineering at ICSE (MiSE) and of the Inter-
national Workshop on Robotics Software Engineering (RoSE). He is
in the editorial board of the International Journal on Software and
Systems Modeling (SoSyM), of IEEE Software, of the Journal of
Object Technology, and of the IET Software journal. More infor-
mation is available at http://people.disim.univaq.it/diruscio/. Contact
him at davide.diruscio@univaq.it.

Claudio Di Sipio is a PhD student at the Unversity of L’Aquila, Italy.
He is working on mining techniques to analyse open source software
and he is also investigating the application of low-code platforms to
support the development of recommendation systems. Contact him at
claudio.disipio@graduate.univaq.it.

Phuong T. Nguyen is a postdoctoral researcher at the University of
L’Aquila, Italy. He obtained a PhD in Computer Science from the
University of Jena, Germany. Since the graduation, he has worked as
a university teaching and research assistant in Vietnam and Italy. His
research interests include Computer Networks, Semantic Web, and
Recommender Systems. Recently, he has been working to develop
recommender systems in Software Engineering for mining open
source code repositories. Contact him at phuong.nguyen@univaq.it.

Page 39 of 40 69

http://people.disim.univaq.it/diruscio/
davide.diruscio@univaq.it
claudio.disipio@graduate.univaq.it
phuong.nguyen@univaq.it

Empir Software Eng (2021) 26: 69

Riccardo Rubei is a PhD student at the Unversity of L’Aquila, Italy.
He is working on mining techniques to analyse open source soft-
ware with the aim of providing developers with useful real-time
recommendations. Contact him at riccardo.rubei@graduate.univaq.it.

Affiliations

Juri Di Rocco1 ·Davide Di Ruscio1 ·Claudio Di Sipio1 ·Phuong T. Nguyen1 ·
Riccardo Rubei1

Juri Di Rocco
juri.dirocco@univaq.it

Claudio Di Sipio
claudio.disipio@graduate.univaq.it

Phuong T. Nguyen
phuong.nguyen@univaq.it

Riccardo Rubei
riccardo.rubei@graduate.univaq.it

1 DISIM - University of L’Aquila, L’Aquila, Italy

69 Page 40 of 40

riccardo.rubei@graduate.univaq.it
http://orcid.org/0000-0002-5077-6793
mailto: juri.dirocco@univaq.it
mailto: claudio.disipio@graduate.univaq.it
mailto: phuong.nguyen@univaq.it
mailto: riccardo.rubei@graduate.univaq.it

	Development of recommendation systems for software engineering: the CROSSMINER experience
	Abstract
	Introduction
	Outline of the paper

	The CROSSMINER project
	CROSSMINER as a set of recommendation systems
	The CROSSMINER development process

	Challenges and lessons learned from eliciting the requirements of the CROSSMINER recommendation systems
	Challenges
	Lessons learned
	RLL1 – Importance of a clear requirement definition process
	RLL2 – Users skepticism
	RLL3 – Importance of pilot applications

	Challenges and lessons learned from developing the CROSSMINER recommendation systems
	Main design features
	Data preprocessing
	Capturing context
	Producing recommendations
	Presenting recommendations

	Development challenges for CrossSim and CrossRec
	Development challenges for FOCUS
	Development challenges of MNBN
	Lessons learned

	Challenges and lessons learned from the evaluation of the CROSSMINER recommendation systems
	Challenges
	CrossRec
	FOCUS
	MNBN
	nDCG
	TopRank
	Sales diversity
	Novelty
	Confidence
	Ranking
	Recommendation time

	Lessons learned
	ELL1 – User studies are cumbersome, and they can take a long time to be conducted and completed
	ELL2 – In some certain contexts, the k-fold cross-validation technique is a good alternative to user studies
	ELL3 – The quality of data depends on the particular application domain of interest
	ELL4 – Candidate baselines might not be reusable
	ELL5: Novelty and diversity are good indicators that are worth considering

	Related work
	Conclusion and future work
	References
	Affiliations

