Software Quality Journal (2020) 28:595-631
https://doi.org/10.1007/511219-019-09483-0

®

An automated approach to assess the similarity Check for
of GitHub repositories hadaiss

Phuong T. Nguyen’ . Juri Di Rocco’ - Riccardo Rubei’ - Davide Di Ruscio’

Published online: 15 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Open source software (OSS) allows developers to study, change, and improve the code
free of charge. There are several high-quality software projects which deliver stable and
well-documented products. Most OSS forges typically sustain active user and expert com-
munities which in turn provide decent levels of support both with respect to answering
user questions as well as to repairing reported software bugs. Code reuse is an intrinsic
feature of OSS, and developing a new system by leveraging existing open source compo-
nents can reduce development effort, and thus it can be beneficial to at least two phases
of the software life cycle, i.e., implementation and maintenance. However, to improve soft-
ware quality, it is essential to develop a system by learning from well-defined, mature
projects. In this sense, the ability to find similar projects that facilitate the undergoing
development activities is of high importance. In this paper, we address the issue of mining
open source software repositories to detect similar projects, which can be eventually reused
by developers. We propose CROSSSIM as a novel approach to model the OSS ecosystem
and to compute similarities among software projects. An evaluation on a dataset col-
lected from GitHub shows that our proposed approach outperforms three well-established
baselines.

Keywords Mining software repositories - Software similarity - Software quality -
SimRank

< Davide Di Ruscio
davide.diruscio@univagq.it

Phuong T. Nguyen
phuong.nguyen @univaq.it

Juri Di Rocco
juri.dirocco@univagq.it

Riccardo Rubei
riccardo.rubei @univag.it

Department of Information Engineering, Computer Science and Mathematics,
Universita degli Studi dell’ Aquila, Via Vetoio 2, 67100 L’ Aquila, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-019-09483-0&domain=pdf
http://orcid.org/0000-0002-5077-6793
mailto: davide.diruscio@univaq.it
mailto: phuong.nguyen@univaq.it
mailto: juri.dirocco@univaq.it
mailto: riccardo.rubei@univaq.it

596 Software Quality Journal (2020) 28:595-631

1 Introduction

Open source software (OSS) repositories contain a large amount of data, which can be
of high value when developing new software systems without reimplementing already in
place functionalities. The benefits resulting from the reuse of properly selected open source
projects are manyfold including the fact that the system being implemented relies on open
source code, “which is of higher quality than the custom-developed code’s first incarna-
tion” (Spinellis and Szyperski 2004). In addition to source code, also metadata available
from different related sources, e.g., communication channels and bug tracking systems, can
be beneficial to the development process if properly mined (Ponzanelli et al. 2014).

Mining OSS repositories In recent years, considerable effort has been made in the domain
of mining software repositories to conceive techniques and tools to help developers mine
and cope with the large amount of data available in OSS repositories. The main goal is
to support software developers by providing them with meaningful recommendations. This
is synthesized by relying on existing systems and past experiences. For instance, when a
developer works on a new project, it is possible to provide her with suggestions about which
libraries she should use, based on a comparison with other similar projects (Nguyen et al.
2018b; Thung et al. 2013). Moreover, it is possible to empower IDEs by means of tools
that continuously monitor the developer’s activities and contexts in order to activate dedi-
cated recommendation engines (Ponzanelli et al. 2014). In the scope of the CROSSMINER
project,' we aim at supporting the development of complex software systems by (i) enabling
monitoring, in-depth analysis, and evidence-based selection of open source components,
and (ii) facilitating knowledge extraction from large OSS repositories (Bagnato et al. 2018).
We attempt to support software developers by means of an advanced Eclipse-based IDE pro-
viding intelligent recommendations that go far beyond the current code completion-oriented
practice. To this end, metadata is curated from different OSS forges and processed to prop-
erly feed the recommendation engines (Nguyen et al. 2019b). By means of the augmented
IDE, developers are able to select open source software and get real-time recommendations
based on the conceived mining tools (Nguyen et al. 2018a).

Software similarity Copying and pasting is a common practice in software develop-
ment (Rattan et al. 2013). One of the main countermeasures to deal with software clone is
to measure structural similarity among programs, aiming to evaluate their correctness, style,
and uniqueness (Gitchell and Tran 1999). The concept of similarity is a key issue in various
contexts, such as detecting cloned code (Evans et al. 2009; Ragkhitwetsagul et al. 2018a, b;
Tiarks et al. 2011) software plagiarism (Leitdo 2004), or reducing test suite in model-based
testing (Coutinho et al. 2014; Khan et al. 2016). Nevertheless, a globally exact definition
of similarity is hard to come by since depending on the method used to compare items,
various types of similarity may be identified. According to Walenstein et al. (2006), a work-
able common understanding for software similarity is as follows: “the degree to which two
distinct programs are similar is related to how precisely they are alike.”

In the context of open source software, two projects are deemed to be similar if they
implement some features being described by the same abstraction, even though they may
contain various functionalities for different domains (McMillan et al. 2012). Given a soft-
ware system being developed, we are interested in finding a set of similar OSS projects

Uhttps://www.crossminer.org

@ Springer

https://www.crossminer.org

Software Quality Journal (2020) 28:595-631 597

with respect to different criteria, such as external dependencies, application domain, or API
usage (Nguyen et al. 2018b, ¢). This type of recommendation is beneficial to the develop-
ment since it allows developer to learn how similar projects are implemented. Understanding
the similarities among open source software projects allows for reusing of source code
and prototyping, or choosing alternative implementations (Schafer et al. 2007; Zhang et al.
2017). To aim for software quality (Spinellis and Szyperski 2004), developers normally
build their projects by learning from mature OSS projects having comparable functionali-
ties (Spinellis and Szyperski 2004). Furthermore, similarity has been used as a base by both
content-based and collaborative-filtering recommender systems to choose the most suitable
items for a given user (Schafer et al. 2007). In this sense, it is necessary to equip software
developers with suitable machinery which facilitates the similarity search process.

Nevertheless, measuring similarities among software systems has been considered as
a daunting task (Chen et al. 2015; McMillan et al. 2012). Furthermore, considering the
miscellaneousness of artifacts in open source software repositories, similarity computation
becomes more complicated as many artifacts and several cross relationships prevail. In this
sense, choosing the right technique to compute software/projects similarity is a question
that may arise at any time.

Goal of the paper The purpose of this paper is twofold. First, we propose CROSSSIM, an
approach that allows us to represent different project characteristics belonging to differ-
ent abstraction layers in a homogeneous manner, then SimRank (Jeh and Widom 2002), a
graph algorithm is applied to compute the similarities among nodes. Second, we present a
thorough literature review on various techniques for computing software similarities. In this
sense, our paper has the following contributions:

— proposing a novel approach to represent the OSS ecosystem by exploiting its mutual
relationships;

— developing an extensible and flexible framework for computing similarities among
open source software projects; and

— validating the performance of our proposed framework by means of three different
existing approaches to computing software similarities, namely MUDABLUE (Garg
et al. 2004), CLAN (McMillan et al. 2012), and REPOPAL (Zhang et al. 2017);

— presenting a comprehensive literature review on the field of software similarity
measurement.

Structure of the paper The paper is structured into the following sections. Section 2
motivates our work by providing an introduction to three approaches for detecting similar
software applications and open source projects. Section 3 brings in our proposed approach
for computing similarities between OSS projects. An evaluation on a real GitHub dataset
is described in Section 4. Afterwards, Section 5 presents the experimental results in detail.
In Section 6, we review the most notable approaches for detecting similar software appli-
cations and open source projects. Finally, Section 7 concludes the paper and draws some
perspective work.

2 Background

Having access to similar software projects is beneficial to the development process. By
looking at a similar OSS project, developers learn how relevant classes are implemented,

@ Springer

598 Software Quality Journal (2020) 28:595-631

and in some certain extent, to reuse useful source code (Schafer et al. 2007; Zhang et al.
2017). Also, recommender systems rely heavily on similarity metrics to suggest suitable
and meaningful items for a given item (Di Noia et al. 2012; Schafer et al. 2007; Thung
et al. 2013). As a result, similarity computation among software and projects has attracted
considerable interest from many research groups. In recent years, several approaches have
been proposed to solve the problem of software similarity computation. Many of them deal
with similarity for software systems, others are designed for computing similarities among
open source software projects. Depending on the set of mined features, there are two main
types of software similarity computation techniques (Chen et al. 2015):

— Low-level similarity: it is calculated by considering low-level data, e.g., source code,
byte code, function calls, and API reference,

— High-level similarity: it is based on the metadata of the analyzed projects, e.g., similar-
ities in readme files, textual descriptions, and star events. Source code is not taken into
account.

This classification is used throughout this paper as a means to distinguish existing
approaches with regard to the input information used for similarity computation. In this
section, we provide a summary of three techniques for computing similarities among open
source projects, i.e., MUDABLUE (Garg et al. 2004), CLAN (McMillan et al. 2012), and
REPOPAL (Zhang et al. 2017).

MUDABIue Together with a tool for automatically categorizing open source repositories,
Garg et al. (2004) propose an approach for computing similarity between software projects
using source code. A pre-processing stage is performed to extract identifiers such as vari-
able names, function names, and to remove unrelated factors such as comment. With the
application of Latent Semantic Analysis (LSA) (Landauer 2006), software is considered as
a document and each identifier is considered as a word. LSA is used for extracting and
representing the contextual usage meaning of words by statistical computations applied to
a large corpus of text. In summary, MUDABLUE works in the following steps to compute
similarities between software systems:

(i) Extracts identifiers from source code and removes unrelated content;
(i) Creates an identifier-software matrix with each row corresponds to one identifier and
each column corresponds to a software system;
(iii) Removes unimportant identifiers, i.e., those that are too rare or too popular;
(iv) Performs LSA on the identifier-software matrix and computes similarity on the
reduced matrix using cosine similarity.

MUDABLUE has been evaluated on a database consisting of software systems written in
C. The outcomes of the evaluation were compared against two existing approaches, namely
GURU (Maarek et al. 1991), and the SVM-based method by Ugurel et al. (2002). The
evaluation shows that MUDABLUE outperforms these observed algorithms with respect to
precision and recall.

CLAN McMillan et al. propose CLAN, an approach for automatically detecting similar
Java applications by exploiting the semantic layers corresponding to package class hier-
archies (McMillan et al. 2012). CLAN works based on the document framework for
computing similarity, semantic anchors, e.g., those that define the documents’ features.
Semantic anchors and dependencies help obtain a more precise value for similarity com-
putation between documents. The assumption is that if two applications have API calls

@ Springer

Software Quality Journal (2020) 28:595-631 599

implementing requirements described by the same abstraction, then the two applications
are more similar than those that do not have common API calls. The approach uses API
calls as semantic anchors to compute application similarity since API calls contain pre-
cisely defined semantics. The similarity between applications is computed by matching the
semantics already expressed in the API calls.

Using a complete software application as input, CLAN represents source code files as a
term-document matrix (TDM). A TDM is used to store the features of a set of document and
it is a matrix where a row corresponds to a document and a column represents a term (Col-
lobert et al. 2011). Each cell in the matrix is the frequency that the corresponding term
appears in the document. By CLAN, a row contains a unique class or package and a column
corresponds to an application. SVD is then applied to reduce the dimension of the matrix.
Similarity between applications is computed as the cosine similarity between vector in the
reduced matrix. CLAN has been tested on a dataset with more than 8000 SourceForge?
applications and shows that it qualifies for the detection of similar applications (McMillan
et al. 2012).

MUDABLUE and CLAN are comparable in the way they represent software and source
code components like variables, function names, or API calls in a term-document matrix
and then apply LSA to find the similarity and to category the softwares. However, CLAN
has been claimed to help obtain a higher precision than MUDABLUE as it considers
only API calls to represent software systems. As shown later in this paper, CLAN is
more efficient than MUDABLUE as it produces recommendations in a much shorter
time.

RepoPal In contrast to many previous studies that are generally based on source code
(Garg et al. 2004; Liu et al. 2006; McMillan et al. 2012), RepoPal (Zhang et al. 2017) is
a high-level similarity metric and takes only repositories metadata as its input. With this
approach, two GitHub? repositories are considered to be similar if: (i) They contain similar
README . MD files; (ii) They are starred by users of similar interests; (iii) They are starred
together by the same users within a short period of time. Thus, the similarities between
GitHub repositories are computed by using three inputs: readme file, stars and the time gap
that a user stars two repositories.

Considering two repositories r; and rj, the following notations are defined: (i) f; and f;
are the readme files with ¢ being the set of terms in the files; (ii) U(r;) and U (r;) are the
set of users who starred r; and r;, respectively; and (iii) R(uy) is the set of repositories that
user uy already starred. There are three similarity indices as follows:

Readme-based similarity The similarity between two readme files is calculated as the
cosine similarity between their feature vectors f; and f;:

simy (r;, r;) = CosineSim(f;, f;) (D)

Stargazer-based similarity The similarity between a pair of users uy and u; is defined as
the Jaccard index (Jaccard 1912) of the sets of repositories that u; and u; have already
starred: sim,, (ug, u;) = Jaccard(R(ux), R(u;)). The star-based similarity between two

2SourceForge: https://sourceforge.net/
3 About GitHub: https://github.com/about

@ Springer

https://sourceforge.net/
https://github.com/about

600 Software Quality Journal (2020) 28:595-631

repositories r; and r; is the average similarity score of all pairs of users who already starred
riandr;:
1
simg(rj, rj) = ————— simy, (g, up) (2)
N [TRTAGH] 2 !
ur € U(ry)
u € Urj)

Time-based similarity It is supposed that if a user stars two repositories during a relative
short period of time, then the two repositories are considered to be similar. Based on this
assumption, given that T (ug, r;, r;) is the time gap that user uy stars repositories r; and rj,
the time-based similarity is computed as follows:

im, () 1 1 3)
simy (i, 7j) = ———————— E _
ST wennuepl, e T)]
i J

Finally, the similarity between two projects is the product of the three similarity indices:
sim(r, rj) = simy(r;, rj) X simg(ry, ;) x sim;(ri, ;) “4)

REPOPAL has been evaluated against CLAN using a dataset of 1000 Java repositories
(Zhang et al. 2017). Among them, 50 were chosen as queries. Success Rate, Confidence,
and Precision were used as the evaluation metrics. Experimental results in the paper show
that REPOPAL produces better quality metrics than those of CLAN.

The abovementioned approaches are either low-level or high-level similarity. It is evi-
dent that each of these similarity tools is able to manage a certain set of features. Thus, they
can only be applied in prescribed contexts and cannot exploit additional information when
this is available for similarity computation. We assume that combining various input infor-
mation in computing similarities is highly beneficial to the context of OSS repositories.
In other words, the ability to compute software similarity in a flexible manner is of highly
importance. For instance, in the context of the CROSSMINER project, the required project
similarity technique should be flexible enough to enable the development of different types
of recommendations as introduced in Section 1. Thus, we expect a tool being capable of
incorporating new features into the similarity computation without the need of modifying
its internal design. To this end, we anticipate a representation model that integrates semantic
relationships among various artifacts. The model should be able to consider implicit seman-
tic relationships and intrinsic dependencies among different users, repositories, and source
code by enabling similarity applications in different applicative scenarios.

In the next section, we propose a novel approach that attempts to effectively exploit
the rich metadata infrastructure provided by the OSS ecosystem to compute software sim-
ilarities. To validate the performance of the proposed approach, we conduct a thorough
evaluation on a real dataset collected from GitHub and we compare our tool with the three
similarity metrics introduced above.

3 CRrRossSIM: a novel approach for computing similarities among
GitHub repositories

Based on the observations in Section 2, we come to the conclusion that a representation
model that incorporates various features and semantic relationships is highly beneficial to
similarity computation. We find inspiration from a related field, namely Linked Data and
Semantic Web (Bizer et al. 2009), to realize such a model. Linked Data is a representation

@ Springer

Software Quality Journal (2020) 28:595-631 601

method that allows for the interlinking and semantic querying of data. The proliferation of
Linked Data in recent years has enabled numerous applications. Two prominent examples
are Linked Data for building music platform as by BBC Music (Kobilarov et al. 2009) and
for developing map application as by OpenStreetMap (Stadler et al. 2012). The core of
Linked Data is an RDF* graph that is made up several nodes and oriented links to represent
the semantic relationships among various artifacts. Thanks to this feature, the representation
paves the way for various computations. One of the main applications of RDF is similarity
computation for supporting recommender systems (Di Noia et al. 2012).

By considering the analogy of typical applications of RDF graphs and the problem of
detecting the similarity of open source projects, we developed CROSSSIM (Cross project
Relationships for computing Open Source Software Similarity) (Nguyen et al. 2018c), an
approach that makes use of graphs for modeling different types of relationships in the
OSS ecosystem (Nguyen et al. 2018b). Similar to RDF graphs, the representation model
can capture the semantic features and considers the intrinsic connections between various
actors. Specifically, the graph model has been chosen since it allows for flexible data inte-
gration and facilitates numerous similarity metrics (Blondel et al. 2004). We consider the
community of developers together with OSS projects, libraries, source code, etc., and their
mutual interactions as an ecosystem. In this system, either humans or non-human factors
have mutual dependencies and implications on the others. There, several connections and
interactions prevail, such as developers commit to repositories, users star repositories, or
projects contain source code files, just to name a few. The graph representation allows for
the computation of similarities among nodes by means of several graph algorithms.

The architecture of CROSSSIM is depicted in Fig. 1. In particular, the approach imports
project data from existing OSS repositories @ and represents them into a graph-based rep-
resentation by means of the OSS Ecosystem Representor module Q. Depending on the
considered repository (and thus to the information that is available for each project), the
graph structure to be generated has to be properly configured. For instance in case of
GitHub, specific configurations have to be specified in order to enable the representation
in the target graphs of the stars assigned to each project. Such a configuration is “forge”
specific and specified once, e.g., SourceForge does not provide the star-based system avail-
able in GitHub. The Graph Similarity Calculator module @, depending on the similarity
function to be applied, computes similarity on the source graph-based representation of the
input ecosystems to generate matrices ® representing the similarity value for each pair of
input projects. A detailed description of the proposed graph-based representation of open
source projects is given in Section 3.1. Details about the implemented similarity algorithm
are given in Section 3.2.

3.1 Aknowledge graph for the 0SS ecosystem

By means of the graph representation, we transform the relationships among various arti-
facts in the OSS ecosystem into a mathematically computable format. The representation
model considers different artifacts in a united fashion by taking into account their mutual,
both direct and indirect, relationships as well as their co-occurrence as a whole.

The following relationships are used to build graphs representing the OSS ecosystems
and eventually to calculate similarity exploiting the algorithm presented in the next section.

“https://www.w3.0org/TR/2014/REC-rdf11-concepts-20140225/

@ Springer

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

602 Software Quality Journal (2020) 28:595-631

® ® ®

—o
o >
‘. L]
L] Lzt e oot Bt
0oss 0SS Ecosystem Graph Similiarit imilari i
Repositories Representor OSS Graph Calculator Similarity Matrices
Configurations Graph Algorithm

Fig.1 Overview of the CROSSSIM approach

These vocabularies can also be flexibly augmented upon additional features of input data,
even though our current definition seems to cover the most prevailing relationships (Nguyen
et al. 2018a).

— commits € Developer x Project: this relationship represents the projects or libraries
that a user contributes to the development;

— contains C File x API: a source file or a communication post with code snippets
containing an API function from a third-party library;

— extends C Class x Class: a class inherits an abstract class. Two classes extend a same
abstract class have a bond since they share a certain number of common functionalities;

— implements C File x File: it represents a specific relation that can occur between the
source code given in two different files, e.g., a class specified in one file implementing
an interface given in another file;

— hasSourceCode C Project x File: an OSS project contains a source file;

— invokes C Class x API: this is the case when a class calls an API function from a third-
party library. API calls can be extracted from source files using suitable code parsers;

In the scope of this paper, we concentrate on studying the performance of CROSSSIM by
exploiting high-level information, i.e., isUsedBy, develops, and stars, which are described
as follows:

— isUsedBy C Library x Project: a project includes a third-party library to make use of
the library’s functionalities. For the sake of presentation, in the rest of this paper, library
and dependency are used interchangeably to indicate a third-party library;

— develops C Developer x Class: a developer contributes to the development of a class
in a software project;

— stars C User x Project: it represents projects that a given user has starred. This
relationship is only applicable to GitHub.

Figure 2 depicts an example of the graph representation for various OSS artifacts.
There are several semantic edges to describe the mutual relationship between graph nodes.
For example, the edge includes describes the relationship between a project and a third-
party library, whereas the edge hasSourceCode dictates that a project contains a source
code file. The graph structure facilitates similarity computation (Blondel et al. 2004). For
instance, several existing algorithms are able to compute the similarity between project#1
and project#2 as they are indirectly connected by the pair of edges, i.e., hasSourceCode and
implements (Jeh and Widom 2002; Nguyen et al. 2018c). This semantic path reflects the
actual relevance of the projects, they contain classes that implement a common interface.

@ Springer

Software Quality Journal (2020) 28:595-631 603

ery o e o
s o "t o

invok(:s@ invokes

2z,
%,
Loy, e {%6
kg W &,
S &,
L ; ;
»

o %
isUsedBy isUsedBy, ”
Rl projeci1 B aDp o o)

<
& Ve <o,
, o uty,
\5\? ing
;
“ N

project#3 @ B contains

Fig.2 A Knowledge Graph for the representation of the OSS ecosystem

s

The similarity is further enforced by another path via hasSourceCode and invokes, lead-
ing to two API functions, i.e., API#I and API#2. The two projects are a bit more similar
since they invoke same APIs. Analogously, the similarity between project#1 and project#3
can also be inferred since they both include two third-party libraries /ib#1 and lib#2, and
projects share similar libraries are considered to be similar (McMillan et al. 2012).

The graph structure allows for similarity computation on different artifacts. For instance,
it is possible to compute similarities among developers: we see that developers dev#I and
dev#2 share a common activity, they develop two classes, i.e., HttpSocket.java and Ftp-
Socket.java and these classes are somehow similar. In particular, both HttpSocket.java and
FtpSocket.java implement Socket.java; furthermore, they all invoke API#] and API#2 in
their code.

To understand how to incorporate existing APIs into current code, a developer normally
looks for API documentations that describe the constituent functions. For instance, Stack-
Overflow provides the developer with a broader insight of API usage, and in some cases,
with sound code examples (Baltes et al. 2018; Ponzanelli et al. 2014). In Fig. 2, there is a
StackOverflow post, i.e., Post#1 contains code snippets with two function calls API#2 and
API#3. In practice, this is a typical scenario when users discuss the usage of libraries con-
taining API#2 and API#3. In this respect, it might be helpful if we recommend Post#1 to
the developer of class FtpSocket.java. This is completely feasible since the graph structure
allows one to compute the similarity between Post#1 and FitpSocket.java. In the end, a rec-
ommendation engine can provide the developer with a list of StackOverflow posts that are
relevant to the code being developed.

The graph structure allows for the integration of different relationships as depicted in
Fig. 2. CROSSSIM has been designed as a general framework to compute software similarity
by exploiting both low-level and high-level features.

3.2 SimRank: computing graph similarity

Graph similarity is an active field and receives a significant attention from the research
community. Computing similarity among graph nodes has been applied to solve different
problems in Computer Science. For instance, graph algorithms have been used to measure
the similarities among social network nodes (Nassar et al. 2018; Wang et al. 2015b), proteins
(Kollias et al. 2014), RDF graph nodes (Di Noia et al. 2012), to name a few.

In this paper, we apply graph similarity to solve the problem of computing the similarities
among various OSS projects. First, we recall some notations as follows. A directed graph

@ Springer

604 Software Quality Journal (2020) 28:595-631

is defined as a tuple G = (V, E, R), where V is the set of vertices, E is the set of edges,
and R represents the relationship among the nodes. A graph consists of nodes and oriented
links with semantic relationships (Bizer et al. 2009). A triple <subject, predicate, object>
with (subject, object € V) and predicate € E states that node subject is connected to node
object by means of the edge labeled with predicate. To evaluate the similarity of two nodes
in a graph, their intrinsic characteristics like nodes, links, and their mutual interactions are
incorporated into the similarity calculation (Di Noia et al. 2012). Among others, feature-
based semantic similarity metrics gauge the similarity between graph nodes as a measure
of commonality and distinction of their hallmarks. By feature-based similarity, objects are
represented as a set of common and distinctive features and the similarity between two
objects is computed by comparing their features (Tversky 1977).

Many semantic similarity metrics first attempt to characterize resources in graphs repre-
senting sets of features and then perform similarity calculation on them. SimRank has been
developed to calculate similarities based on mutual relationships between graph nodes (Jeh
and Widom 2002). Considering two nodes, the more similar nodes point to them, the more
similar the two nodes are. We take an example in Fig. 3 to illustrate how SimRank works
in practice. There, node 1 is similar to node 2 since both are pointed by node 5. Compara-
bly, node 3 is similar to node 4 as they are pointed by node 6. As a result, the two nodes o
and B are highly similar because they are concurrently pointed by other four nodes in the
graph, i.e., 1, 2, 3, and 4, considering that 1 and 2 as well as 3 and 4 are pairwise similar.
In this sense, the similarity between « and B is computed by using a fixed-point function,
taking into consideration the accumulative similarity by their pointing nodes. Given k > 0
we have R® (a,) = 1 withw = B and R®(«, B) = 0 with k = 0 and & # B, SimRank
is computed as follows (Jeh and Widom 2002):

()] (B

*k+D) _ A ® (1. (o). I
RV e B) = s B ; Y ROUi@). 1;(8))

j=1

where A is a damping factor (0 < A < 1); I («) and I (B) are the set of incoming neighbors
of @ and B, respectively. |7 («)| - |1(B)] is the factor used to normalize the sum, thus forcing

R®(«, B) €10, 1].

\° °/

Fig.3 An example of how SimRank works

@ Springer

Software Quality Journal (2020) 28:595-631 605

By using the graph representation as in Section 3.1, we are able to transform the OSS
ecosystem into a mathematically computable format. This graph structure allows for the
application of various similarity algorithms. In CROSSSIM, we adopt SimRank as the
mechanism for computing similarities among OSS graph nodes. However, other similarity
algorithms can also be flexibly integrated into CROSSSIM, as long as they are designed for
graphs (Nguyen et al. 2015). The utilization of SimRank is convenient and practical also
when various relationships are incorporated into the graph. Given the circumstances, the
algorithm does not need to be changed since it only works on the basis of nodes and edges.
In this sense, CROSSSIM is a versatile similarity tool as it can accept various input features
regardless of their format.

To study the performance of CROSSSIM, we conducted a comprehensive evaluation using
a dataset collected from GitHub. To aim for an unbiased comparison, we opted for existing
evaluation methodologies from other studies of the same type (Lo et al. 2012; McMillan
et al. 2012; Zhang et al. 2017). Together with other metrics typically used for evaluations,
i.e., Success rate, Confidence, and Precision, we decided to use also Ranking to measure the
sensitivity of the similarity tools to ranking results. The details of our evaluation are given
in the next section.

4 Evaluation

In this section, we describe the process that has been conceived and applied to evaluate
the performance of CROSSSIM compared with some baselines. We opt for MUDABLUE,
CLAN, and REPOPAL to compare with CROSSSIM. The rationale behind the selection
of these approaches is that they are well-established algorithms and have demonstrated
their effectiveness in various settings. According to Zhang et al. (2017), by applying the
same experiment settings and evaluating on the same dataset, the authors demonstrated
that REPOPAL outperforms CLAN in terms of Confidence and Precision. Meanwhile,
CLAN has a better performance than that of MUDABLUE, also with respect to Confi-
dence and Precision (McMillan et al. 2012). Furthermore, REPOPAL works on GitHub
Java repositories containing rich metadata that is suitable for building graph by CROSS-
SiM. Intuitively, we consider all these tools as a good starting point for a performance
comparison. Furthermore, our evaluation aims at comparing two low-level similarity tools,
i.e., MUDABLUE and CLAN with two high-level similarity ones, i.e., REPOPAL and
CROSSSIM.

The evaluation process that has been applied is shown in Fig. 4 and consists of
activities and artifacts that are going to be explained later on this section. In particu-
lar, a set of Java projects (see Section 4.1) has been crawled to feed as input for the
computation by all approaches, i.e., MUDABLUE, CLAN, REPOPAL, and CROSSSIM.
Afterwards, a set of projects is selected as queries to compute similarities against all the
remaining OSS projects. Once the scores have been computed, for each similarity tool,
some of the top similar projects are chosen, mixed with results by the other tools, and
eventually evaluated by humans. The outcomes are then analyzed using various quality
metrics.

Since the implementations of the baselines are no longer available for public use, we
reimplemented MUDABLUE, CLAN, and REPOPAL by strictly following the descriptions
in the original papers (Garg et al. 2004; McMillan et al. 2012; Zhang et al. 2017). Such
implementations, including the CROSSSIM one, are available online in GitHub (Nguyen
et al. 2018d) to facilitate future research.

@ Springer

606 Software Quality Journal (2020) 28:595-631

MUDABIue based
ranked results

Mix and shuffle

Data
._>~ Collection Data Set

| i
' H
of the results H E
| H Success rate i
1 - : ™
CLAN based : caleulation /4
’ H H
ranked results Mixed and ! |
BIDaRl S MUDABIlue shuffled results ' :
Rl Similarity s P M Confidence 4
Computation Similarity Matrix g v
RepoPal based H calculation)
H
ranked results Human i E
CLAN Similarity CLAN labeling ' :
9 e Similarity Matrix CrossSim based J:* Precmgn .)
ranked results PN calculation /
H
RepoPal RepoPal :
M Similarity Matrix Labeled results : Ranking
omputation . Lig g)
Rgtrlgvgl of . correlation H
H
CrossSim CrossSim $*~ i similarity) : :
—X Similarity 1 Similarity Matrix o H . H
c 5 / ! Execution H
H time H
' H
H H
Definition of : H H
—] ueries i i H
e 2 Q E Calculation of metrics i

Fig.4 Evaluation process

4.1 Dataset

To compare the performance of CROSSSIM with those of the baselines, it is necessary to
execute them on the same set of OSS projects. The collected dataset needs to be suitable
as input for all four similarity engines. By MUDABLUE and CLAN, there are no specific
requirements since both tools rely solely on source code to function.

For REPOPAL and CROSSSIM, we can consider only projects that satisfy certain criteria.
In particular, the collected projects have to meet the following requirements:

- Provisding the specification of their dependencies by means of code .xml or .gradle
files;

— Including at least 9 dependencies—a project with no or little information about
dependencies may adversely affect the performance of CROSSSIM;

— Having the README . md file available—this is needed to enable the application of
RepoPal;

— Being starred by at least 20 users as required by REPOPAL to work.

Furthermore, we realized that the final outcomes of a similarity algorithm have to be
validated by human beings, and in case the projects are irrelevant by their very nature, the
perception given by human evaluators would also be dissimilar in the end. This is valueless
for the evaluation of similarity. Thus, to facilitate the analysis, instead of crawling projects in
arandom manner, we first manually observed projects in some specific categories (e.g., PDF
processors, JSON parsers, Object Relational Mapping projects, and Spring MVC related
tools). Once a certain number of projects for each category had been obtained, we also
started collecting randomly to get projects from various categories.

Using the GitHub API, we crawled projects to provide input for the evaluation. Though
the number of projects that fulfill the requirements of a single approach is high, the number
of projects that meet the requirements of all approaches is considerably lower. For example,
a project contains both pom.xml and README . md, albeit having only 5 dependencies,

SThe files pom. xm1 and with the extension . gradle are related to management of dependencies by means
of Maven (https://maven.apache.org/) and Gradle (https://gradle.org/), respectively.

@ Springer

https://maven.apache.org/
https://gradle.org/

Software Quality Journal (2020) 28:595-631 607

1000- O . 1000

Issues.

400
300
200
100
0

Forks
Forks

T © 1000 0o " 100 200
Commits Stars
(a) Number of forks, commits, and pull re- (b) Number of forks and stars, and issues

quests

Fig.5 The projects and their number of forks, commits, pull requests, stars, and issues

does not meet the constraints and must be discarded. The scraping is time consuming as for
each project, at least 6 queries must be sent to get the relevant data. As a matter of fact,
GitHub already sets a rate limit for an ordinary account®, with a total number of 5000 API
calls per hour being allowed. And for the search operation, the rate is limited to 30 queries
per minute. Due to these reasons, we ended up getting a dataset of 580 projects that are
eligible for the evaluation. The dataset we collected is published together with all tools for
public usage (Nguyen et al. 2018d).

Figure 5 a and b provide a summary on the projects and the number of forks, commits,
stars, pull requests, and issues. The number of pull requests for most of the projects is con-
siderably low, i.e., lower than 100; however, their number of forks and commits is high.
Forking is a means to contribute to the original repositories (Jiang et al. 2017). Furthermore,
there is a strong correlation between forks and stars (Borges et al. 2016), as it is further wit-
nessed in Fig. 5b. A project with a high number of forks means that it can be considered as
a sign of a well-maintained and well-received project. Similarly, as commits have a signif-
icant influence on the source code (Behnamghader et al. 2017), the number of commits is
also a good indicator of how a project has been developed.

Further than collecting projects for each category, we also started collecting random
projects. These projects serve as a means to test the stability of the algorithms. If the algo-
rithms work well, they will not perceive randomly added projects as similar to projects of
some other specific categories. To this end, the categories and their corresponding cardinal-
ity to be studied in our evaluation are listed in Table 1. This is an approximate classification
since a project might belong to more than one category.

SGitHub Rate Limit: https://developer.github.com/v3/rate_limit/

@ Springer

https://developer.github.com/v3/rate_limit/

608 Software Quality Journal (2020) 28:595-631

Table 1 List of software

categories No. Name No. of projects

1 SPARQL, RDF, Jena Apache 21
2 PDF Processor 8

3 Selenium Web Test 26
4 ORM 13
5 Spring MVC 51
6 Music Player 25
7 Boilerplate 38
8 Elastic Search 55
9 Hadoop, MapReduce 52
10 JSON 20
11 Miscellaneous Categories 271

As can be seen in Table 1, among 580 considered projects, 309 of them belong to some
specific categories, such as SPARQL, RDF, Jena Apache, Selenium Test, Elastic Search,
and Spring MVC. The other 271 projects being selected randomly belong to Miscellaneous
Categories. These categories disperse in several domains and sometimes it happens that
there is only one project in a category. For the sake of clarity, we do not introduce the full
list of the categories in this paper.

4.2 Similarity computation

To explain how the graph representation is exploited in CROSSSIM, Fig. 6 sketches the sub-
graph for representing the relationships between two projects AskNowQA/AutoSPARQL
and AKSW/SPARQL2NL. The orange nodes are dependencies and their real names are

depicted in Table 2. The turquoise nodes are developers who already starred the repositories.
Every node is encoded using a unique number across the whole graph. To compute similarity

Legend
— stars
—> isUsedBy

/QNQQV/Q

@ AKSW/SPARQL2NL @ AskNowQA /AutoSPARQL

X 12 nodes Q

(139;151; 153; 155; 163; 164; 171; 173; 176; 196; 201; 210)

o

/
o

N\

Fig. 6 Sub-graph showing a fragment of the representation for three projects, i.e.,
AskNowQA/AutoSPARQL, AKSW/SPARQL2NL, and eclipse/rdf4j

@ Springer

https://github.com/AskNowQA/AutoSPARQL
https://github.com/AKSW/SPARQL2NL
https://github.com/AskNowQA/AutoSPARQL
https://github.com/AKSW/SPARQL2NL
https://github.com/eclipse/rdf4j

Software Quality Journal (2020) 28:595-631 609

Table 2 Shared dependencies in

Fig. 6 ID Name
139 org.apache.jena:jena-arq
151 org.dllearner:components-core
153 net.didion.jwnl:jwnl
155 net.sourceforge.owlapi:owlapi-distribution
163 net.sf.jopt-simple:jopt-simple
164 jaws:core
171 com.aliasi:lingpipe
173 org.dllearner:components-ext
176 org.apache.opennlp:opennlp-tools
196 org.apache.solr:solr-solrj
201 org.apache.commons:commons-lang3
210 javax.servlet:servlet-api
548 org.slf4j:logdj-over-sif4;

between the two projects, SimRank is applied following (5) and the damping factor A is
empirically set to 0.85 according to some existing studies (Jeh and Widom 2002; Nguyen
et al. 2015). The final result that lies between 0 and 1 is the similarity between two projects
AskNowQA/AutoSPARQL and AKSW/SPARQL2NL.

In the evaluation, we also investigate the effect of highly frequent libraries on the predic-
tion performance. By analyzing the dataset in Section 4.1 and counting the number of all
libraries, we obtained a ranked list of libraries, sorted according to the frequency of occur-
rence in the projects. Table 3 depicts the list of the six most frequent libraries in the dataset.
For example, junit:unit is the most popular library and it is included by 447 projects. The
second item on the list is org.slf4j:slf4j-api whose frequency is much lower, it is found in
217 projects. The least popular one among the libraries in Table 3 is org.slf4j:slf4j-log4j12,
and it appears in 129 projects.

Query definition Among 580 projects in the dataset, 50 have been selected as queries. We
did not sample them randomly but selected those coming from some specific categories.
This is due to the fact that the dataset is rather small and if we randomly selected queries
which do not belong to any categories, we may end up retrieving irrelevant projects, and
this is not useful for the validation process. We assume that the random selection can be
done only when more projects available for training. To aim for variety, the queries have
been chosen to cover different categories, e.g., SPARQL and RDF, Selenium Test, Elastic
Search, Spring MVC, Hadoop, Music Player as listed in Table 4.

Table 3 Most frequent

dependencies in the considered Dependency Frequency

dataset
junit:junit 447
org.slf4j:slf4j-api 217
com.google.guava:guava 171
log4j:log4j 156
commons-io:commons-io 151
org.slf4j:slf4j-log4j12 129

@ Springer

https://github.com/AskNowQA/AutoSPARQL
https://github.com/AKSW/SPARQL2NL

610 Software Quality Journal (2020) 28:595-631

Table 4 List of queries for evaluation (Nguyen et al. 2018d)

No. Project name No. Project name
1 neo4j-contrib/sparql-plugin 26 mariamhakobyan/elasticsearch-river-katka
2 AskNowQA/AutoSPARQL 27 OpenTSDB/opentsdb-elasticsearch
3 AKSW/Sparqlify 28 codelibs/elasticsearch-cluster-runner
4 AKSW/SPARQL2NL 29 opendatasoft/elasticsearch-plugin-geoshape
5 pranab/beymani 30 huangchen007/elasticsearch-rest-command
6 sayems/java.webdriver 31 pitchpoint-solutions/sfs
7 psaravan/JamsMusicPlayer 32 javanna/elasticsearch-river-solr
8 webdriverextensions/webdriverextensions 33 mesos/hadoop
9 dadoonet/spring-elasticsearch 34 pentaho/big-data-plugin
10 seleniumQuery/seleniumQuery 35 asakusafw/asakusafw
11 bonigarcia/webdrivermanager 36 klarna/HiveRunner
12 selenium-cucumber/selenium-cucumber-java 37 sonalgoyal/hiho
13 conductor-framework/conductor 38 pyvandenbussche/spargles
14 caelum/vraptor 39 lintool/Ivory
15 caelum/vraptor4 40 GoogleCloudPlatform/bigdata-interop
16 KEN-LJQ/WMS 41 Conductor/kangaroo
17 white-cat/jeeweb 42 datasalt/pangool
18 livrospringmvc/lojacasadocodigo 43 laserson/avro2parquet
19 spring-projects/spring-mvc-showcase 44 Knewton/KassandraMRHelper
20 sonian/elasticsearch-jetty 45 blackberry/KaBoom
21 testIT-WebTester/webtester-core 46 jt6211/hadoop-dns-mining
22 elastic/elasticsearch-metrics-reporter-java 47 xebia/Xebium
23 elastic/elasticsearch-support-diagnostics 48 TheAndroidMaster/Pasta-Music
24 SpringDataElasticsearchDevs/spring-data- 49 SubstanceMobile/GEM
elasticsearch
25 javanna/elasticshell 50 markzhai/LyricHere

Retrieval of similarity scores Our evaluation has been conducted in line with some other
existing studies (Lo et al. 2012; McMillan et al. 2012; Zhang et al. 2017). In particular, for
each query in the set of the 50 projects defined in the previous step, similarity is computed
against all the remaining projects in the dataset using the SimRank algorithm discussed in
Section 3.2. From the retrieved projects, only top 5 are selected for the subsequent evalu-
ation steps. For every query, similarity is also computed using MUDABLUE, CLAN, and
REPOPAL to get the top-5 most similar retrieved projects.

4.3 User evaluation

For each similarity tool, the outcomes of the computation are a ranked list of similar
projects. It is necessary to evaluate how relevant the projects are, compared with the
query project. Since a user evaluation is the only way to evaluate the outcome (McMillan
et al. 2012; Zhang et al. 2017), we involved a group of 15 software developers to participate
in the manual evaluation. Some of the participants are master students, and most of them
work as software developers or researchers in academic and industry. Before the evaluation,

@ Springer

https://github.com/neo4j-contrib/sparql-plugin
https://github.com/mariamhakobyan/elasticsearch-river-kafka
https://github.com/AskNowQA/AutoSPARQL
https://github.com/OpenTSDB/opentsdb-elasticsearch
https://github.com/AKSW/Sparqlify
https://github.com/codelibs/elasticsearch-cluster-runner
https://github.com/AKSW/SPARQL2NL
https://github.com/opendatasoft/elasticsearch-plugin-geoshape
https://github.com/pranab/beymani
https://github.com/huangchen007/elasticsearch-rest-command
https://github.com/sayems/java.webdriver
https://github.com/pitchpoint-solutions/sfs
https://github.com/psaravan/JamsMusicPlayer
https://github.com/javanna/elasticsearch-river-solr
https://github.com/webdriverextensions/webdriverextensions
https://github.com/mesos/hadoop
https://github.com/dadoonet/spring-elasticsearch
https://github.com/pentaho/big-data-plugin
https://github.com/seleniumQuery/seleniumQuery
https://github.com/asakusafw/asakusafw
https://github.com/bonigarcia/webdrivermanager
https://github.com/klarna/HiveRunner
https://github.com/selenium-cucumber/selenium-cucumber-java
https://github.com/sonalgoyal/hiho
https://github.com/conductor-framework/conductor
https://github.com/pyvandenbussche/sparqles
https://github.com/caelum/vraptor
https://github.com/lintool/Ivory
https://github.com/caelum/vraptor4
https://github.com/GoogleCloudPlatform/bigdata-interop
https://github.com/KEN-LJQ/WMS
https://github.com/Conductor/kangaroo
https://github.com/white-cat/jeeweb
https://github.com/datasalt/pangool
https://github.com/livrospringmvc/lojacasadocodigo
https://github.com/laserson/avro2parquet
https://github.com/spring-projects/spring-mvc-showcase
https://github.com/Knewton/KassandraMRHelper
https://github.com/sonian/elasticsearch-jetty
https://github.com/blackberry/KaBoom
https://github.com/testIT-WebTester/webtester-core
https://github.com/jt6211/hadoop-dns-mining
https://github.com/elastic/elasticsearch-metrics-reporter-java
https://github.com/xebia/Xebium
https://github.com/elastic/elasticsearch-support-diagnostics
https://github.com/TheAndroidMaster/Pasta-Music
https://github.com/SpringDataElasticsearchDevs/spring-data-elasticsearch
https://github.com/SubstanceMobile/GEM
https://github.com/SpringDataElasticsearchDevs/spring-data-
https://github.com/javanna/elasticshell
https://github.com/markzhai/LyricHere

Software Quality Journal (2020) 28:595-631 611

we sent each evaluator a tutorial on how to conduct the scoring process. Furthermore, to get
information about the participants related to their development background, we sent them a
questionnaire similar to the one presented in CLAN evaluation dataset (2018) and McMillan
et al. (2012). According to the survey, all the participants are capable of at least 2 different
programming languages, and their favorite code platform is StackOverflow, where they nor-
mally search for posts that are useful for their current development tasks. In addition, most
of them tend to re-use code fragments collected from external sources quite often.

Figure 7 a depicts the number of years that the developers have spent for software devel-
opment activities. All the participants have at least 7 years of programming experience, two
of them have more than 20 years. In Fig. 7b, we show the number of people and their cor-
responding number of years of programming experience for different languages. Among
others, Java is the programming language that all developers are knowledgeable about, with
at least 2 years of experience. Nine of the developers have spent more than 7 years working
with Java. This is highly advantageous for our user evaluation since all projects included in
the dataset introduced in Section 4.1 are written in Java, and we assume that skillful devel-
opers shall have a better judgment about the similarities among projects. The knowledge of
different programming languages, i.e., Perl, Python, C/C++, is also a plus for the evaluation
process.

By the user evaluation, in order to have a fair evaluation, for each query, we mixed and
shuffled the top-5 results generated from the computation by each similarity metric in a
single Google form and presented them to the evaluators who then inspected and given
a score to every pair. This mimics a faste test where users are asked to evaluate a prod-
uct, e.g., food or drink, without having a priori knowledge about what is being addressed
(Ghose and Lowengart 2001; Pettigrew and Charters 2008). This aims at eliminating any
bias or prejudice against a specific similarity metric. In particular, given a query, a manual
labeling process is performed to evaluate the similarity between the query and the corre-
sponding retrieved projects. The participants are asked to label the similarity for each pair
of projects (i.e., <query, retrieved project>) with regard to their application domains and
functionalities using the scales listed in Table 5 (McMillan et al. 2012).

For example, an OSS project p; that performs the sending of files across a TCP/IP net-
work is somehow similar to an OSS project p that exchanges text messages between two
users, i.e., Score(p1, p2) = 3. However, an OSS project p3 with the functionalities of a pure
text editor is dissimilar to both p; and p», i.e., Score(p1, p2) = Score(pi, p3) = 1. Given

7-8 years

200% python [N |7

9-12 years

c/c T 8

@ 1-3 years
[4-6 years

Per] [- 3 B> 7 years
0 2 4 6 8 10 12 14 16
Number of people
(a) People and years of experience (b) Languages and years of experience

>13 years

Fig.7 a, b A summary of the participants’ software development experience

@ Springer

612 Software Quality Journal (2020) 28:595-631

Table 5 Similarity scales

Scale Description Score

Dissimilar The functionalities of the retrieved project are completely different 1

from those of the query project

Neutral The query and the retrieved projects share a few functionalities 2
in common

Similar The two projects share a large number of tasks and functionalities 3
in common

Highly similar The two projects share many tasks and functionalities in common 4

and can be considered the same

a query, a retrieved project is considered as a false positive if its similarity to the query
is labeled as Dissimilar (1) or Neutral (2). In contrast, true positives are those retrieved
projects that have a score of 3 or 4, i.e., Similar or Highly similar. A good similarity
approach should produce as much true positives as possible.

To aim for a reliable comparison, we followed the same procedures utilized by related
work. For overlapping pairs, i.e., those that appear in the ranked lists of two or more algo-
rithms, we chose just one of them and presented it to one of the participants. This aims
to avoid having one pair with different scores. Furthermore, the labeling results by a par-
ticipant were then double-checked by another one to aim for soundness of the outcomes.
By carefully investigating the results, we realized that in most cases, the evaluators agree
on the evaluation scores. In case there is any disagreement about a final score between
any two evaluators, a senior researcher is involved to inspect the pair again to reach a
consensus.

4.4 Evaluation metrics

To evaluate the outcomes of the algorithms with respect to the user evaluation, the following
metrics have been considered as typically done in related work (Lo et al. 2012; McMillan
et al. 2012; Zhang et al. 2017):

— Success rate: if at least one of the top-5 retrieved projects is labeled Similar or Highly
similar, the query is considered to be successful. Success rate is the ratio of successful
queries to the total number of queries;

— Confidence: Given a pair of <query, retrieved project> the confidence of an evaluator
is the score she assigns to the similarity between the projects;

— Precision: The precision for each query is the proportion of projects in the top-5 list
that are labeled as Similar or Highly similar by humans.

Further than the previous metrics, we propose an additional one to measure the ranking
produced by the similarity tools. For a query, a similarity tool is deemed to be good if all
top-5 retrieved projects are relevant. In case there are false positives, i.e., those that are
labeled Dissimilar and Neutral, it is expected that these will be ranked lower than the true
positives. In case an irrelevant project has a higher rank than that of a relevant project, we
suppose that the similarity tool is generating an improper recommendation. The Ranking
metric presented below is a means to evaluate whether a similarity metric produces properly
ranked recommendations.

@ Springer

Software Quality Journal (2020) 28:595-631 613

— Ranking: The obtained human evaluation has been analyzed to check the correlations
among the ranking calculated by the similarity tools and the scores given by the human
evaluation. To this end, the Spearman’s rank correlation coefficient ry (Spearman 1904)
is used to measure how well a similarity metric ranks the retrieved projects given a
query. Considering two ranked variables r; = (p1, p2, .., pn) and r, = (o1, 02, .., 0y),

ry is defined as follows: rg = 1 — %. Because of the large number of ties,
we also used Kendall’s tau (1938) coefficient, which is used to measure the ordinal
association between two considered quantities. Both r; and t range from —1 (perfect
negative correlation) to +1 (perfect positive correlation); r¢ = 0 or T = 0 implies that
the two variables are not correlated.

Finally, we consider also the execution time related to the application of the four
approaches on the dataset to obtain the corresponding similarity matrices.

4.5 Research questions

To study the performance of the considered tools in detecting similar projects for the set of
queries, the following research questions are considered:

— RQ;: Which graph configuration brings the best performance to CROSSSIM? Our
proposed approach allows for a flexible computation by incorporating different fea-
tures in a graph. We investigate which types of edges sustain similarity computation by
considering different test configurations. In this way, we identify the configuration that
fosters the best prediction outcome for CROSSSIM.

— RQ»: Which similarity approach between MUDABLUE, CLAN, REPOPAL, and
CROSSSIM yields a better performance in terms of Success rate, Confidence, Preci-
sion, and Ranking? By this question, we compare the performance of the approaches
concerning the ability to produce accurate recommendations. In the context of soft-
ware development, providing relevant results is of highly importance since a developer
would expect a set of similar projects to the project being developed.

— RQs3: Which similarity approach is more efficient with respect to execution time?
An important factor for a similarity tool is the ability to compute within an acceptable
amount of time. This research question aims at measuring the time needed for a tool to
produce a final recommendation.

5 Experimental results

In Section 5.1, the data that has been obtained as discussed in the previous section is ana-
lyzed to answer the research questions, i.e., RQq, RQ;, and RQs3. Afterwards, Section 5.2
presents discussions related to the experimental outcomes. Finally, threats to the validity of
the evaluation are also discussed in Section 5.3.

5.1 Data analysis
RQ: Which graph configuration brings the best performance to CROSSSIM?
We investigate the implication of graph structure on the outcome of CROSSSIM by con-

sidering various types of edges. This aims at identifying the set of features that contribute to
the performance gain. First, only star events are used to build the graph with the stars edges

@ Springer

614 Software Quality Journal (2020) 28:595-631

Table 6 CROSSSIM test

configurations Configuration Stars isUsedBy Develops Fre. deps.
CROSSSIM| v X X X
CROSSSIM; X v X X
CROSSSIM; v v X X
CROSSSIMy4 v v v X
CROSSSIM; v v X v
CROSSSIMg v v v v

(see Fig. 2), and this configuration is called CROSSSIM;. Correspondingly, in CROSSSIM>,
the graph is built with only the isUsedBy edges by using only dependencies. By CROSS-
SiM3, we consider both the relationships stars and isUsedBy together to compute similarity.
Afterwards, we extend CROSSSIM3 by incorporating also committers, i.e., the develops
relationship, and this yields configuration CROSSSIM4. Similarly, with CROSSSIMs, we
investigate the effect of frequent dependencies by adding them to CROSSS1M3. Finally, we
take into account all the abovementioned edges, resulting in CROSSSIMg. Table 6 gives a
detailed description of the test configurations used to internally compare CROSSSIM.

Since the manual evaluation is a time-consuming process, we decided to exploit only a
subset of the queries to address this research question. In particular, we selected the first 20
queries in Table 4, i.e., from number 1 to 20 and provided as input for CROSSSIM and the
results are depicted in Table 7.

Among the configurations, CROSSSIM, gains the lowest prediction performance. In
particular, it gets 0.90 as success rate and 0.51 as precision. This implies that using
only dependencies as features does not contribute to a good performance. Compared with
CROSSSIM,, CROSSSIM| has a slightly better performance as its success rate and precision
are 0.95 and 0.61, respectively. By referring back to the REPOPAL approach (see Section 2),
where information related to the star event such as stargazers and star time gap is used
to compute similarity, we come to the conclusion that stars are useful for the detection of
similar GitHub repositories. However, we assume that more investigations are needed to
understand better the effect of stars on similarity computation. This issue remains as a future
work.

We consider CROSSSIM;5 in combination with CROSSSIMg to observe the effect of the
adoption of committers. According to Table 7, CROSSSIM;5 gains a success rate of 100%,
with a precision of 0.75. The number of false positives by CROSSSIMg goes up, thereby
worsening the overall performance considerably with 0.70 being as the precision. The per-
formance degradation is further witnessed by considering CROSSSIM3 and CROSSSIMy
together. Both get 100% as success rate; however, CROSSSIM3 obtains a better precision,
i.e., 0.80 compared with 0.76 by CROSSSIM4. We come to the conclusion that the inclusion
of all developers who have committed updates at least once to a project in the graph is coun-
terproductive as it adds a decline in precision. In this sense, we make an assumption that the

Table 7 Comparison of different CROSSSIM configurations

CROSSSIM| CROSSSIMz CROSSSIM3 CROSSSIMg4 CROSSSIMs CROSSSIMg

Success rate (%) 95 90 100 100 100 100
Precision 0.62 0.51 0.80 0.76 0.75 0.70

@ Springer

Software Quality Journal (2020) 28:595-631 615

Table 8 Comparison of the

similarity approaches MUDABLUE CLAN REPOPAL CROSSSIM3
Success rate (%) 60 60 100 100
Precision 0.22 0.22 0.71 0.78
Execution time (min) 380 22 240 12
Spearman’s (ry) —0.01 —0.08 —0.132 —0.230

Numbers in italic represent Kendall’s tau (t) —0.01 —0.07 —0.108 —0.214

higher values

deployment of a weighting scheme for developers may help counteract the degradation in
performance.

Next, CROSSSIM3 and CROSSSIM;5 are considered together to analyze the effect of the
removal of the most frequent dependencies. CROSSSIM3 outperforms CROSSSIMs as it
gains a precision of 0.80, the highest value among all, compared with 0.75 by CROSS-
SiMs. The removal of the most frequent dependencies helps also improve the performance
of CROSSSIMy in comparison with CROSSSIM¢. Together, this implies that the elimination
of too popular dependencies in the original graph is a profitable amendment. This is under-
standable once we get a deeper insight into the design of SimRank presented in Section 3.2.
There, two projects are deemed to be similar if they share a same dependency, or in other
words their corresponding nodes in the graph are pointed by a common node. However, with
frequent dependencies as in Table 3, this characteristic may not hold anymore. For example,
two projects are pointed by junit:junit because they use JUnit’ for testing. Since testing is
a common functionality of many software projects, it does not help contribute towards the
characterization of a project and thus, needs to be removed from the considered graph.

Among the considered experimental configurations, CROSSSIM3, where star events
and dependencies are used together to build the graph, obtains the best prediction
performance. The graph structure considerably affects the outcome of the similarity com-
putation. In this sense, finding a graph structure that facilitates similarity computation is
of paramount importance.

RQ»: Which similarity approach between MUDABLUE, CLAN, REPOPAL, and CROSS-
SIM yields a better performance in terms of Success rate, Confidence, Precision, and
Ranking? For this research question, we compared the best configuration CROSSS1M3 with
the baselines. The experimental results are shown in Table 8 and Fig. 8. In particular, Table 8
depicts Success rate, Precision, Execution time, Spearman’s (r;), and Kendall’s tau (t) for
all similarity tools. The obtained results demonstrate that REPOPAL is a good choice for
computing similarity among OSS projects. Its success rate and precision are superior to
those of MUDABLUE and CLAN. Both MUDABLUE and CLAN obtain a success rate of
60%; however, REPOPAL gets a success rate of 100%. Furthermore, the precision of MUD-
ABLUE and CLAN is 0.22 which is considerably lower than 0.71, the corresponding value
for REPOPAL.

In comparison with the other tools, CROSSSIM3 has a better performance concerning
Success rate and Precision. Both REPOPAL and CROSSSIM3 gain a Success rate of 100%.
However, CROSSSIM3 gets (.78 as precision which is higher than 0.71, the corresponding

7JUnit: http://junit.org/junit5/

@ Springer

http://junit.org/junit5/

616 Software Quality Journal (2020) 28:595-631

0o MUDABIuell 0 CLAN 0 RepoPal I CrossSims

140
130

12
120]
Ll
100
85 g3
80
65

of projects

60

(@3]
ot

41 ‘
40 » 36 37
30 ‘52

25

i I ﬁﬁ
4

1 2 3
Similarity score

Fig.8 Confidence

value by REPOPAL. In this sense, CROSSSIM outperforms the baselines with respect to
success rate and precision.

The Confidence for the similarity tools is shown in Fig. 8. MUDABLUE has more false
negatives than CLAN does, i.e., pairs that are scored with 1 or 2. In particular, the number
of project pairs that have been assigned the score of 1 is 111 for both MUDABLUE and
CLAN. Meanwhile, the corresponding number of pairs that have the score of 2 is 85 and
83 for MUDABLUE and CLAN, respectively. In addition, CLAN has more true positives,
i.e., scores of either 3 or 4. In this sense, we conclude that CLAN has a slightly better
performance in comparison with MUDABLUE. By this index, i.e., Confidence, CROSSSIM3
yields a better outcome as it has more scores that are either 3 or 4 and less scores that are 1 or
2. For the similarity score of 3, CROSSSIM3 finds 130 relevant projects, whereas REPOPAL
returns 122 projects. The same trend can also be witnessed for the similarity score of 4: the
number of projects that REPOPAL and CROSSSIM3 retrieve is 55 and 65, respectively. It is
evident that CROSSSIM3 achieves a better Confidence compared with that of REPOPAL.

In addition to the conventional quality indexes, we investigated the ranking produced by
the metrics using the Spearman’s (ry) and Kendall’s tau (t) correlation indexes. The aim is
to see how good is the correlation between the rank generated by each metric and the scores
given by the developers, which are already sorted in descending order. In this way, a lower r;
(r) means a better ranking. Both indexes ry and t are computed for all 50 queries and related
first five results. The value of ry is —0.230 for CROSSSiM3 and —0.132 for REPOPAL. The
value of 7 is —0.214 for CROSSSIM3 and —0.108 for REPOPAL. By this quality index,
CROSSSIM3 performs slightly better than REPOPAL. Compared with MUDABLUE, CLAN
obtains a superior ranking with respect to both ry and 7. In particular, CLAN obtains —0.08
and —0.07 for ry and 7, respectively; and MUDABLUE gets —0.01 for both r¢ and .

@ Springer

Software Quality Journal (2020) 28:595-631 617

The experimental results confirm the claim made by the authors of REPOPAL (Zhang
et al. 2017): The system obtains a better recommendation performance than CLAN in terms
of Success rate, Precision, and Confidence. Furthermore, the ranking by REPOPAL is also
better to those of MUDABLUE and CLAN.

Compared to MUDABLUE, CLAN, and REPOPAL, CROSSSIM gains a better perfor-
mance in terms of Success rate, Precision, Confidence, and Ranking. The obtained results
confirm our hypothesis that the incorporation of various features, e.g., dependencies and
star events into graph facilitates similarity computation. Furthermore, CROSSSIM is more
flexible as it can include other artifacts in similarity computation without affecting the
internal design.

RQ5: Which similarity approach is more efficient with respect to execution time? We mea-
sure the time needed to produce recommendations for all the four similarity approaches.
The execution time related to the application of the analyzed techniques is shown in the
third row of Table 8. For the experiments, a laptop with Intel Core i5-7200U CPU @
2.50GHz x 4, 8GB RAM, Ubuntu 16.04 was used. In such a configuration, REPOPAL takes
~4 h to generate the similarity matrix, whereas the execution of CROSSSIM3, including
both the time for generating the input graph and that for generating the similarity matrix,
takes ~12 min. Such an important time difference is due to the time needed to calcu-
late the similarity between README . md files, on which REPOPAL relies. MUDABLUE
takes 380 min to complete the computation, even though most of the time (310 min) is
devoted to the creation of the internal matrices needed to perform the similarity calcula-
tion. Meanwhile, CLAN needs only 22 min to do the complete computation. Also in this
case the creation of the internal structures is the most computational demanding phase, it
takes 21 min. Such execution times make evident the distinction between high-level and
low-level similarity approaches. In particular, MUDABLUE takes into consideration all
source code artifacts for computation, such as variable names, method names, the matrix
used to represent the input may become huge. CLAN considers only API calls for com-
putation. This is the reason why the computation times for MUDABLUE and CLAN are
much higher than those of REPOPAL and CROSSSIM that instead consider just project
metadata.

CROSSSIM is the most efficient tool as it generates the similarity matrix in a short time
as shown in Table 8.

5.2 Discussions

To aim for a reliable evaluation, the experiments in this paper have been performed in line
with existing studies (McMillan et al. 2012; Zhang et al. 2017). As can be seen, CROSS-
SIM has a better performance than that of MUDABLUE, CLAN, and REPOPAL with respect
to different quality indicators. The gain in CROSSSIM’s performance demonstrates that the
consideration of different artifacts, e.g., projects, libraries in a mutual relationship, instead
of individual items brings a substantial benefit. Referring back to the REPOPAL paper
(Zhang et al. 2017), we see that the success rate of REPOPAL in our evaluation is con-
siderably higher than that in the original experiments. This can be explained as follows:

@ Springer

618 Software Quality Journal (2020) 28:595-631

According to our investigation on the dataset considered by REPOPAL,® the chosen projects
scatter in several categories and the number of projects belonging to certain categories is
rather low. That means, the similarities among the projects are low by their origin. How-
ever, in our dataset, projects have been deliberately selected so as to converge on some
specific categories, thus increasing their mutual similarities. This makes the possibility that
a query gets a relevant project which comes from the same category become superior to that
by the original REPOPAL dataset. As a result, the success rate in our experiments increases
considerably.

In our evaluation, compared with MUDABLUE, CLAN gains a better confidence: it
returns fewer false negatives and more true positives. This partly confirms the findings
by McMillan et al. in their work (2012). However, both MUDABLUE and CLAN obtain
comparable success rate and precision. This is not completely consistent with their claim
since they demonstrated that CLAN gained a better performance compared with that of
MUDABLUE. Our intuition is that the discrepancy between our work and that of McMillan
et al. (2012) may attribute to following reasons: (i) although we attempted to strictly follow
descriptions by the related papers to implement the tools, the final implementations might
not be exactly identical to the original ones. Particularly, the selection of various parameters
for the LSA implementation used in MUDABLUE and CLAN may considerably contribute
towards the difference; (ii) the dataset in our evaluation is different from the one used for
evaluating CLAN. Altogether, this should introduce some fluctuations in the performance
of both approaches.

Currently, CROSSSIM supports the incorporation of isUsedBy, develops, and stars to
compute similarities (Nguyen et al. 2018d), and thus being a high-level similarity metric.
However, it is feasible to consider also low-level features, such as package names, class
names, or API function calls as partly shown in Fig. 1. In a recent work Nguyen et al.
(2019a) and Nguyen et al. (2019b), we exploited CROSSSIM to compute similarities by con-
sidering low-level information, i.e., API function calls as features. In this way, CROSSSIM
becomes a hybrid similarity metric as it deals with both metadata (high-level) and source
code (low-level). Furthermore, since CROSSSIM allows for the integration of various graph
algorithms for calculating similarity, the deployment of different techniques rather than
SimRank might possibly improve the overall recommendation performance, depending on
the set of features. To this end, the selection of a proper similarity technique for each type
of graphs can be considered as an open research topic.

We assume that the graph structure may have a dramatic influence on its performance.
Thus, finding a suitable graph that facilitates the computation is an interesting research topic
and needs further investigations. Moreover, since very frequent nodes are not useful for
similarity computation, it is necessary to define a threshold at which a node is considered to
be frequent.

5.3 Threats to validity

In this section, we investigate the threats that may affect the validity of the experiments as
well as how we have tried to minimize them. In particular, we focus on the following threats
to validity as discussed below.

Internal validity concerns any confounding factor that could influence our results. We
attempted to avoid any bias in the evaluation and assessment phases: (i) by involving

8https://github.com/yunzhang28/RepoPal/blob/master/1000repo.xlsx

@ Springer

https://github.com/yunzhang28/RepoPal/blob/master/1000repo.xlsx

Software Quality Journal (2020) 28:595-631 619

15 developers with decent programming experience in the user evaluation. (ii) by com-
pletely automating the evaluation of the defined metrics without any manual intervention.
Indeed, the implemented tools could be defective. To contrast and mitigate this threat, we
strictly followed the descriptions in the original papers to re-implement the tools. Fur-
thermore, we have run several manual assessments and counter-checks to validate the
evaluation outcomes.

External validity refers to the generalizability of obtained results and findings. Concern-
ing the generalizability of our approach, we were able to consider a dataset of 580
projects, due to the fact that the number of projects that meet the requirements of all
the tools is low and thus required a prolonged scraping. During the data collection, we
crawled both projects in some specific categories as well as random projects. The random
projects served as a means to test the generalizability of our algorithm. If the algorithm
works well, it will not perceive newly added random projects as similar to projects of the
specific categories.

Construct validity is related to the experimental settings used to evaluate the similar-
ity approaches. We addressed the issue seriously and attempted to simulate a real
deployment scenario where the tools are used to search for similar GitHub repositories.
In this way, we were able to investigate if the tools are really applicable to authentic
usage.

Conclusion validity is whether the exploited experiment methodology is intrinsically
related to the obtained outcome, or there are also other factors that have an impact on it.
The evaluation metrics, i.e., Success rate, Confidence, Precision, Ranking, and Execu-
tion time might cause a threat to conclusion validity. To confront the issue, we employed
the same metrics for evaluating all the similarity approaches.

6 Related work

In this section, we review some of the most notable approaches that have been developed to
measure the similarity between software systems or OSS projects. These approaches deal
with the detection of: (i) similar open source applications, (ii) similar mobile applications,
(iii) software plagiarisms and clones, and (iv) relevant third-party libraries.

To detect clone among Android apps, Wang et al. propose WuKong (2015a) which
employs a two-phase process as follows. The first phase exploits the frequency of Android
API calls to filter out external libraries. Afterwards, a fine-grained phase is performed to
compare more features on the set of apps coming from the first phase. For each variable,
its feature vector is formed by counting the number of occurrences of variables in different
contexts (Counting Environments - CE). An m-dimensional Characteristic Vector (CV) is
generated using m CEs, where the ith dimension of the CV is the number of occurrences of
the variable in the ith CE. For each code segment, CVs for all variables are computed. A
code segment is represented by an n x m Characteristic Matrix (CM). For each app, all code
segments are modeled using CM, yielding a series of CMs and they are considered as the
features for the app. The similarity between two apps is computed as the proportion of simi-
lar code segments. The similarity between two variables v; and vy is computed using cosine
similarity (Turney and Pantel 2010; Tversky 1977) between their feature vectors. Evalua-
tions on more than 100,000 Android apps collected from 5 Chinese app markets show that
the approach can effectively detect cloned apps (Wang et al. 2015a). CROSSSIM is also able
to deal with low-level features as by WuKong if such features are integrated into the graph
presented in Section 3.

@ Springer

620 Software Quality Journal (2020) 28:595-631

Lo et al. develop TagSim,? a tool that leverages tags to characterize applications and then
to compute similarity between them (Lo et al. 2012). Tags are terms that are used to high-
light the most important characteristics of software systems (Xia et al. 2013) and therefore,
they help users narrow down the search scope. TagSim can be used to detect similar appli-
cations written in different languages. Based on the assumption that tags capture better the
intrinsic features of applications compared with textual descriptions, TagSim extracts tags
attached to an application and computes their weights. This information forms the features
of a given software system and can be used to distinguish it from others. The technique
also differentiates between important tags and unimportant ones based on their frequency
of appearance in the analyzed software systems. The more popular a tag across the appli-
cations is, the less important it is and vice versa. Each application is characterized by a
feature vector, and each entry corresponds to the weight of a tag the application has. Even-
tually, the similarity between two applications is computed as the cosine similarity (Turney
and Pantel 2010; Tversky 1977) between the two vectors. To evaluate TagSim, more than a
hundred thousands of projects have been collected and analyzed (Lo et al. 2012). A total of
20 queries were used to study the performance of the algorithm in comparison with CLAN.
The experimental results show that TagSim helps achieve better performance in comparison
with CLAN.

Being inspired by CLAN, Linares-Vasquez et al. develop CLANdroid for detecting simi-
lar Android applications with the assumption that similar apps share some semantic anchors
(Linares-Vasquez et al. 2016). Nevertheless, in contrast to CLAN, CLANdroid works also
when source code is not available as it exploits other high-level information. By extend-
ing the scope of semantic anchors for Android apps, starting from APK (Android Package)
CLAN(droid extracts quintuple features, i.e., identifiers, intents from source code, API calls
and sensors from JAR files, and user permissions from the AndroidManifest.xml'® specifi-
cation. This file is a mandatory component for any Android app and it contains important
information about it. For each feature, a feature-application matrix is built, resulting in
five different matrices. Latent Semantic Indexing is applied to all the matrices to reduce
the dimensionality. Afterwards, similarity between a pair of applications is computed as
the cosine similarity between their corresponding feature vectors from the matrix. Users
can query for similar apps with a given app by specifying which feature is taken into con-
sideration. Evaluations have been performed to study which semantic anchors are more
effective (Linares-Vasquez et al. 2016). The authors also analyze the impact of third-party
libraries and obfuscated code when detecting similar apps, since these two factors have been
shown to have significant impact on reuse in Android apps and experiments using APKs.
The evaluation on a dataset shows that computing similarity based on API helps produce
higher recall. According to the experimental results, the feature sensor is ineffective in com-
puting similarity. By comparing with a ground-truth dataset collecting from Google Play,
the study gives some hints on the mechanism behind the way Google Play recommends sim-
ilar apps. CROSSSIM is relevant to CLANdroid since it can work with low-level features by
representing function calls, API calls in the graph as we already demonstrated in our recent
work (Nguyen et al. 2019a, b).

With the aim of finding apps with similar semantic requirements, SimApp has been
developed to exploit high-level metadata collected from apps markets (Chen et al. 2015).
If two apps implement related semantic requirements then they are seen as similar. Each

9For the sake of clarity, in this paper, we give a name for the algorithms that have not been originally named
10https://developer.android.com/guide/topics/manifest/manifest-intro.html

@ Springer

https://developer.android.com/guide/topics/manifest/manifest-intro.html

Software Quality Journal (2020) 28:595-631 621

mobile application is modeled by a set of features, so-called modalities. The following
features are incorporated into similarity computation: Name, Category, Developer, Descrip-
tion, Update, Permissions, Images, Content rating, Size, and Reviews. For each of these
features, a function is derived for each of the features to calculate the similarity between
applications. The final similarity score for a pair of apps is a linear combination of the mul-
tiple kernels with weights. Through the use of a set of training data, the optimal weights are
determined by means of online learning techniques.

AnDarwin is an approach that applies Program Dependence Graphs to represent apps
(Crussell et al. 2013), and feature vectors are then clustered to find similar apps. Locality
Sensitive Hashing (Baltes et al. 2018) is used to find approximate near-neighbors from a
large number of vectors. AnDarwin works according to the following stages: (i) It represents
each app as a set of vectors computed over the app’s Program Dependence Graphs; (ii)
Similar code segments are found by clustering all the vectors of all apps; (iii) It eliminates
library code based on the frequency of the clusters; (iv) Finally, it detects apps that are
similar, considering both full and partial app similarity. AnDarwin has been applied to find
similar apps by different developers (cloned apps) and groups of apps by the same developer
with high code reuse (rebranded apps). An evaluation using more than 200,000 apps from
different Android markets demonstrated that the system can effectively detect cloned apps.
LibRec is a tool that assists developers in leveraging existing libraries (Thung et al. 2013). It
suggests the inclusion of libraries that may be useful for a given project using a combination
of rule mining and collaborative filtering techniques. Association rule mining is applied to
find similar libraries that co-exist in many projects to extract libraries that are commonly
used together. The component then rates each of the libraries based on their likelihood
to appear together with the currently used libraries. A collaborative filtering technique is
applied to search for top most similar projects and recommends libraries used by these
projects. The libraries included by these projects are used as recommendations based on a
score computed according to their popularity.

Considering a set of projects and a set of libraries, each project is characterized by a
feature vector using the set of libraries it includes. The similarity between two projects is the
cosine similarity between their feature vectors. In a previous work Nguyen et al. (2018b),
we introduced CrossRec, a recommender system for providing software developers with
third-party libraries. In this setting, CROSSSIM performs its computation using third-party
libraries as the input features. By considering LibRec as baseline, we demonstrated that
CrossRec obtains a superior performance with respect to various quality metrics.

A summary of all the similarity metrics introduced in Sections 2 and 6 is depicted in
Table 9. Most low-level similarity algorithms attempt to represent source code (and API
calls) in a term-document matrix and then apply SVD to reduce dimensionality. The sim-
ilarity is then computed as the cosine similarity between feature vectors. Among others,
MUDABLUE, CLAN, and CLANdroid belong to this category.

In contrast, high-level similarity techniques do not consider source code for similarity
computation. They characterize software by exploiting available features such as descrip-
tions, user reviews, and README.MD file. The similarity is computed as the cosine
similarity of the corresponding feature vectors. For computing similarity between mobile
applications, other specific features such as images and permissions are also incorporated.
A current trend in these techniques is to exploit textual content to compute similarity, e.g.,
in AppRec (Bhandari et al. 2013), SimApp (Chen et al. 2015), and TagSim (Lo et al. 2012).

A main drawback with this approach is that, same words can be used to explain different
requirements or the other way around, the same requirements can be described using differ-
ent words (Garg et al. 2004). So it might be the case that two textual contents with different

@ Springer

Software Quality Journal (2020) 28:595-631

622

SoNI[EUOTOUN] SIT [BIAST
Kew dde a[1qow & Jo aweN
sowreu

a3eyoed pue ‘sowreu uonouny
‘SouIeU Q[QBLIBA SE oNS ‘9pod
90INOS 0} paje[aI sJoeJuIe [y

SIUQWISIL]S APOI JOINOS

K10y150da1 e sIBIS 198N
® udym owm jo jutod ayf,

syoofoxd

PIZATRUE OB J0J PALINOJ0
SIUGAD IBIS QNHID JYJ,
9p0oo 201N0s S 309[01d

B Ul pauljop suonoung

suoneordde Suowre sonLe|
-TWITS 912[NO[Ed 0} UAY} PUE S
-11Jeul JUSWNOOP-ULId) p[Ing 0}
pasn are AayJ, ‘s109foxd pazA|
-BUE 9U) JO 9POD 0INOS A} UI
1eadde jey) sqreo uonouny [Jv
sopnpout Jo9foxd e jey)
sarre1qr Ayred-paryy Jo 198

suonduosaq

- wreu ddy

S sIRYnUap
2 SIudWaIRIS

— sdwejsowy,

- s1e1S

2 suonoun,{

» S[ed IdV

sarouapuadag

SQINJEJ PAIAPISUO))

(L10T 212
Sueyz)
redodoy

(€10T e 10
Suny)
2YqQIT

(T10T

‘T8 19 07])

wigsey,

(€10T Te 10
[[essni))
umequy

(s10C
Te 30 uayD)
ddyurg

(es10T
‘Te 10 Suep)

uosinp

(910C T8 1
zanbsep -sareur)

PIOIPNVID

(T10T TR 10
UB[[IAPIA)
NVTID

(v00T
‘[e 12 S1eD)

ANGVANIN

BlepeN

9pod 20IN0g

SQIN)E9J I19Y) pue swyjIoS[e AJue[ruis ay) jo Arewwing 6 a|qel

pringer

NS

623

Software Quality Journal (2020) 28:595-631

dde ue Sunuasaxdar

armoid ® s13] *sdde o[iqowt
Aq 9[qE[TRAR ST 2INEIJ STy,
Quoydirews e ur ejep 9[puey
0} dde ue jo uorssturad
) sayyroads 1 “sdde oiqow
Aq 9[qe[TeA® ST 2INjeJ SIY
suonesdrdde paropisuods ayy
01 9pewW Sa3ULYD JSIMAU Y],

109fo1d §SO ue 97119}

-oeIRyd puE AJISSE[O 0] 9310,]
-921n0§ ‘39 ‘suoperd SSO
Kq paesn are jey) s3ey Ayl
300foxd

Qomos uaedo ue jo senieuUOn
-ounj oy} 9qLIOSIP 0] Pasn ‘SI[1J
aWaWavay 1o suonduosaq
dde ue/orem

-j0s e jo juowdo[oAdp Y} 0}
nqImuod oym siodofaaap [y
dde

ue Jo 1xd) uonduosap ayJ,

2

— S)OySudIOS

— SUOISSTULId]

- sarepdn

- s3e],

- Qupeay

s1adofeas(

suondirosoq

(L10T Te 10
Sueyyz)
regodoy

(€107 e 10
Sunyg)
oNYqQr]

(T10¢
‘e 19 07])
wisse],

(€107 1819
[[essnI))
umIequy

(102
Te 32 uayD)
ddyurg

(es102
‘Te 10 Suepy)

Suosinp

(9107 B
zanbse -sareur])

PIOIPNVID

(T10T B 10
UR[[IAOIN)
NVTO

(vo0T
‘Te 10 S1eD)

NgvANN

BIRPRIIA

9p0d 221N0S

(ponunuoo) 6 ajqel

pringer

a's

Software Quality Journal (2020) 28:595-631

624

dde ue ozLdoRIRYD

0) SIOSUQS WOIj J[Ing 9q
ued SOINIeaJ JO 198 Y Juall
-UONIAUD Y} ur soSueyd
10 ‘Sumuonisod 10 juowr
-QAOW ATAJP (J-€ Jojruow
0) ejep mel opiroid uedo
SIOSUQS ‘SOOTAJP A[IqOW U]
pawojrad oq o3 uone
-1odo ue 103 uonduosap st
judyur ue ‘dde opiqowr ® 104

U
-NJ0p B Ul Paulquiod dIe
dde ue 10J SMI1AQI 1SN [

IR[IWIS 9q JOUURD JUIJIP
K[qeIopISuOd ST 9ZIS as0YM
sdde om) jey ownsse
soow AJIIB[IWIS OWOS

ssoudjeridoidde oFe pue
JUSUOD SII AQLIdSAP 0} Jur
-je1 Juauod sey dde yoeg

2

SIOSUS

sjuajuy

SMITAY

az1g

SjuAUO)

(L10T 1810
Sueyyz)
redodoy

(€10T Te 3
Suny)
REN i

(1oc
e o)
wigSey,

(€10T 'Te 10
[[essnI))
umIequy

(s10T

T2 39 uayD)

ddyung

(ec10¢
‘Te 30 Suepy)
Suoynp

(910T 1810
zanbsep -sareur)

PIOIPNVID

(Y00t
‘Te 39 S1eD)

MFVANIN

(z10T 1810
UB[[HAIN)
NVIO

BIEPRIOIN

9p0d 2210S

(ponunuoo) 6 3|qe]

pringer

NS

625

Software Quality Journal (2020) 28:595-631

Nuelie)el
JO s19s 0m) UoIMIdq AJLre[l
-wis Sunndwod 10 pasn st
(2161 pIedde[) xapul preddef
$10J09A Suowe sanI

-reqiuurs Sunndwod 103 swyiL
-03[e [BIOASS Ul pasn A[opim
ST(LLOT AISIOAL, 0T0T [k
pue Aouing,) AJLIe[IwIs aurso))
WY} USIMIOq SONLIB[TWIS

) 9ndwod 0) pue SWISAS
QIEM1JOS PUB SIAIIUIPI/S[[Ed
IdV ueamlaq sdrysuonerar
9y} [opowl 0} UOHRUIqUOD
ur pasn A[[erouasd are (8661
‘e 19 Ienepue) YSTT pue
(110T e 39 190[[0D) INALL

- SOf

% SOD

/ VSTPUue AL
sonbruyoe) pasn

(910T 1810 (T10T T8
‘Te1o Suepy) zonbsep-soreur]) UB[[IAPIN)

(L10T 839 (10T T8 1

(Y00t
‘Te 30 S1en)

NgVANIN

9p0d 2010

(ponunuoo) 6 3|qe]

pringer

N

626 Software Quality Journal (2020) 28:595-631

vocabularies still have a similar description or two files with similar vocabularies contain
different descriptions. The matching of words in the descriptions as well as source code to
compute similarity is considered to be ineffective as already stated in McMillan et al. (2012).
To overcome this problem, the application of a synonym dictionary like WordNet (Miller
1995) is beneficial. Nevertheless, there is an issue with the approaches like REPOPAL where
readme files are used for similarity computation. Since in general the descriptions for soft-
ware projects are written in different languages, the comparison of readme files in different
languages should yield dissimilarity, even though two projects may be similar. SimApp
(Chen et al. 2015) is the only technique that attempts to combine several high-level infor-
mation into similarity computation. It eventually applies a machine learning algorithm to
learn optimal weights. The approach is promising; nevertheless, it is only applicable in the
presence of a decent training dataset, which is hard to come by in practice.

7 Conclusions

In this paper, we presented CROSSSIM, a framework for computing similarities among OSS
projects. Through a review on some of the most notable methods for detecting similarity
in software applications and open source projects, we came to the conclusion that a rep-
resentation model that flexibly incorporates various features and semantic relationships is
highly beneficial to similarity computation in the context of an OSS ecosystem. We con-
sidered the community of developers together with OSS projects, libraries, and various
artifacts and their mutual interactions as whole by using the graph representation. In the
graph, either humans or non-human factors have mutual dependency and implication on
the others. By means of a graph, we are able to transform the relationships among various
artifacts, e.g., developers, API utilizations, source code, interactions, into a mathematically
computable format. The implementation of CROSSSIM exploits SimRank to compute simi-
larity in graphs and it can handle the following relationships: isUsedBy, develops, and stars.
CROSSSIM is a versatile similarity tool as it can accept various input features regardless of
their format.

We conducted an evaluation of computing similarities among OSS projects on a dataset
of 580 GitHub Java projects. Using MUDABLUE, CLAN, REPOPAL as baselines, we stud-
ied the performance of our approach. The obtained results are promising, among the test
configurations, CROSSSIM3 has the best performance, where dependencies and star events
are considered as features for the similarity computation. It is our belief that CROSSSIM
is a good candidate for computing similarities among OSS projects. In order to enable the
reproducibility of the performed experiments, we made available the source code imple-
mentation of MUDABIlue, CLAN, REPOPAL, and CROSSSIM as also the dataset exploited
and the corresponding user evaluation in our GitHub repository (Nguyen et al. 2018d). For
future work, we are going to investigate in more detail the influence of graph structure on
similarity computation. In addition, we plan to incorporate also low-level similarity features
such as API function calls, and package names into the graph to see if the recommenda-
tion performance can be improved. Last but not least, we are going to exploit CROSSSIM to
automatically cluster OSS projects.

Acknowledgements The research described in this paper has been carried out as part of the CROSS-
MINER Project, EU Horizon 2020 Research and Innovation Programme, grant agreement No. 732223. We
thank our project partners for the help with the user evaluation presented in this paper. Furthermore, we thank
the anonymous reviewers for their valuable comments and suggestions that help us improve our paper.

@ Springer

Software Quality Journal (2020) 28:595-631 627

Appendix
Questionnaire
This is the questionnaire sent to the developers who took part in our user evaluation. We

adopted most of the content proposed by CLAN evaluation dataset (2018) and McMillan
et al. (2012)

—_

How many years of programming experience do you have?

2. Which programming languages are you capable of? And how many years have
you worked with them?

Language Number of years

Java

Python

Perl

C++/C#

Others

3. How often do you use code search engines?

What code search engines have you used and for how long?

5. How often do you reuse source code snippets collected from the search engines
in your work?

6. According to your experience, what is the main obstacle to using code search

engines?

&

Materials

We uploaded the materials created from the user evaluation in GitHub for future reference.!!

References

Bagnato, A., Barmpis, K., Bessis, N., Cabrera-Diego, L.A., Di Rocco, J., Di Ruscio, D., Gergely, T., Hansen,
S., Kolovos, D., Krief, P., Korkontzelos, I., Lauriere, S., Lopez de la Fuente, J.M., Mald, P., Paige,
R.F, Spinellis, D., Thomas, C., Vinju, J. (2018). Developer-centric knowledge mining from large open-
source software repositories (crossminer). In Seidl, M., & Zschaler, S. (Eds.) Software technologies:
applications and foundations (pp. 375-384). Cham: Springer International Publishing.

Baltes, S., Dumani, L., Treude, C., Diehl, S. (2018). SOTorrent: reconstructing and analyzing the evolution
of stack overflow posts. In: MSR.

Behnamghader, P., Alfayez, R., Srisopha, K., Boehm, B. (2017). Towards better understanding of software
quality evolution through commit-impact analysis. In 2017 IEEE International conference on software
quality, reliability and security (QRS) (pp. 251-262).

Bhandari, U., Sugiyama, K., Datta, A., Jindal, R. (2013). Serendipitous recommendation for mobile apps
using item-item similarity graph. In Banchs, R.E., Silvestri, F., Liu, T.-Y., Zhang, M., Gao, S., Lang,
J. (Eds.) AIRS, volume 8281 of lecture notes in computer science (pp. 440-451): Springer.

Bizer, C., Heath, T., Berners-Lee, T. (2009). Linked data - the story so far. International Journal on Semantic
Web and Information Systems, 5(3), 1-22.

https://github.com/crossminer/CrossSim/blob/master/user-study/

@ Springer

https://github.com/crossminer/CrossSim/blob/master/user-study/

628 Software Quality Journal (2020) 28:595-631

Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Dooren, P.V. (2004). A measure of similarity between
graph vertices: applications to synonym extraction and web searching. SIAM Review, 46(4), 647-666.

Borges, H., Hora, A., Valente, M.T. (2016). Understanding the factors that impact the popularity of github
repositories. In 2016 IEEE International conference on software maintenance and evolution (ICSME)
(pp. 334-344).

Chen, N., Hoi, S.C., Li, S., Xiao, X. (2015). SimApp: a framework for detecting similar mobile applications
by online kernel learning. In Proceedings of the eighth ACM international conference on web search and
data mining, WSDM 15 (pp. 305-314). New York: ACM.

CLAN evaluation dataset (2018). http://www.cs.wm.edu/semeru/clan/CaseStudyMaterials.zip. Last access
16.10.2018.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493-2537.

Coutinho, A.E.V.B., Cartaxo, E.G., de Lima Machado, P.D. (2014). Analysis of distance functions for
similarity-based test suite reduction in the context of model-based testing. Software Quality Journal, 24,
407-445.

Crussell, J., Gibler, C., Chen, H. (2013). AnDarwin: scalable detection of semantically similar android appli-
cations. In Computer security - ESORICS 2013 - 18th European symposium on research in computer
security, Egham, UK, September 9-13, 2013. Proceedings (pp. 182-199).

Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M. (2012). Linked open data to support content-
based recommender systems. In Proceedings of the Sth international conference on semantic systems,
I-SEMANTICS ’12 (pp. 1-8). New York: ACM.

Evans, W.S., Fraser, C.W., Ma, F. (2009). Clone detection via structural abstraction. Software Quality
Journal, 17(4), 309-330.

Garg, PK., Kawaguchi, S., Matsushita, M., Inoue, K. (2004). MUDABIue: an automatic categorization sys-
tem for open source repositories. In 2013 20th Asia-Pacific software engineering conference (APSEC)
(pp- 184-193).

Ghose, S., & Lowengart, O. (2001). Taste tests: impacts of consumer perceptions and preferences on brand
positioning strategies. Journal of Targeting, Measurement and Analysis for Marketing, 10(1), 26-41.

Gitchell, D., & Tran, N. (1999). Sim: a utility for detecting similarity in computer programs. In The pro-
ceedings of the thirtieth SIGCSE technical symposium on computer science education, SIGCSE 99
(pp. 266-270). New York: ACM.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37-50.

Jeh, G., & Widom, J. (2002). Simrank: a measure of structural-context similarity. In Proceedings of the eighth
ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02 (pp. 538—
543). New York: ACM.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L. (2017). Why and how developers fork what from
whom in github. Empirical Software Engineering, 22(1), 547-578.

Kendall, M.G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

Khan, S.U.R., Lee, S.P.,, Ahmad, R.W., Akhunzada, A., Chang, V. (2016). A survey on test suite reduction
frameworks and tools. International Journal of Information Management, 36(6), 963-975.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., Lee, R. (2009).
Media meets semantic web — how the bbc uses dbpedia and linked data to make connections. In Aroyo,
L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvonen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (Eds.) The semantic web: research and applications (pp. 723—737). Berlin: Springer.

Kollias, G., Sathe, M., Schenk, O., Grama, A. (2014). Fast parallel algorithms for graph similarity and
matching. Journal of Parallel and Distributed Computing, 74(5), 2400-2410.

Landauer, T.K. (2006). Latent semantic analysis. Wiley Online Library.

Landauer, T., Foltz, P., Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes,
25,259-284.

Leitao, A.M. (2004). Detection of redundant code using r2d2. Software Quality Journal, 12(4), 361-382.

Linares-Vasquez, M., Holtzhauer, A., Poshyvanyk, D. (2016). On automatically detecting similar android
apps. 2016 IEEE 24th International Conference on Program Comprehension (ICPC), 00, 1-10.

Liu, C., Chen, C., Han, J., Yu, P.S. (2006). GPLAG: detection of software plagiarism by program depen-
dence graph analysis. In Proceedings of the 12th ACM SIGKDD international conference on knowledge
discovery and data mining, KDD "06 (pp. 872-881). New York: ACM.

Lo, D, Jiang, L., Thung, F. (2012). Detecting similar applications with collaborative tagging. In Proceedings
of the 2012 IEEE international conference on software maintenance (ICSM), ICSM 12 (pp. 600-603).
Washington, DC: IEEE Computer Society.

Maarek, Y.S., Berry, D.M., Kaiser, G.E. (1991). An information retrieval approach for automatically
constructing software libraries. [EEE Transactions on Software Engineering, 17(8), 800-813.

@ Springer

http://www.cs.wm.edu/semeru/clan/CaseStudyMaterials.zip

Software Quality Journal (2020) 28:595-631 629

McMillan, C., Grechanik, M., Poshyvanyk, D. (2012). Detecting similar software applications. In Proceed-
ings of the 34th international conference on software engineering, ICSE "12 (pp. 364-374). Piscataway:
IEEE Press.

Miller, G.A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11), 39-41.

Nassar, H., Veldt, N., Mohammadi, S., Grama, A., Gleich, D.F. (2018). Low rank spectral network alignment.
In Proceedings of the 2018 World Wide Web conference, WWW ’18 (pp. 619-628). Republic and Canton
of Geneva: International World Wide Web Conferences Steering Committee.

Nguyen, P.T., Tomeo, P, Di Noia, T., Di Sciascio, E. (2015). An evaluation of SimRank and per-
sonalized PageRank to build a recommender system for the web of data. In Proceedings of the
24th international conference on World Wide Web, WWW 15 Companion (pp. 1477-1482). New York:
ACM.

Nguyen, PT., Di Rocco, J., Di Ruscio, D. (2018a). Knowledge-aware recommender system for soft-
ware development. In Proceedings of the 1st Workshop on Knowledge-aware and Conversational
Recommender System, KaRS, Vol. 2018. New York: ACM.

Nguyen, P.T., Di Rocco, J., Di Ruscio, D. (2018b). Mining software repositories to support OSS developers:
a recommender systems approach. In Proceedings of the 9th Italian information retrieval workshop,
Rome, Italy, May, 28-30, 2018.

Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D. (2018c). CrossSim: exploiting mutual relationships to
detect similar OSS projects. In 2018 44th Euromicro conference on software engineering and advanced
applications (SEAA) (pp. 388-395).

Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D. (2018d). CrossSim tool and evaluation data. https://
github.com/crossminer/CrossSim.

Nguyen, P.T., Di Rocco, J., Di Ruscio, D. (2019a). Enabling heterogeneous recommendations in OSS
development: what’s done and what’s next in CROSSMINER. In Proceedings of the evaluation and
assessment on software engineering, EASE "19 (pp. 326-331). New York: ACM.

Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule, T., Di Penta, M. (2019b). FOCUS: a recom-
mender system for mining API function calls and usage patterns. In Proceedings of the 41st international
conference on software engineering, ICSE "19 (pp. 1050-1060). Piscataway: IEEE Press.

Pettigrew, S., & Charters, S. (2008). Tasting as a projective technique. Qualitative Market Research: An
International Journal, 11(3), 331-343.

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M. (2014). Mining StackOverflow to turn the
IDE into a self-confident programming prompter. In Proceedings of MSR 2014 (pp. 102-111): ACM.

Ragkhitwetsagul, C., Krinke, J., Clark, D. (2018a). A comparison of code similarity analysers. Empirical
Software Engineering, 23(4), 2464-2519.

Ragkhitwetsagul, C., Krinke, J., Marnette, B. (2018b). A picture is worth a thousand words: code clone
detection based on image similarity. In 2018 IEEE 12th International workshop on software clones
(IWSC) (pp. 44-50).

Rattan, D., Bhatia, R., Singh, M. (2013). Software clone detection: a systematic review. Information and
Software Technology, 55(7), 1165-1199.

Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S. (2007). The adaptive web. Chapter collaborative filtering
recommender systems, (pp. 291-324). Berlin: Springer.

Spearman, C. (1904). The proof and measurement of association between two things. The American Journal
of Psychology, 15(1), 72-101.

Spinellis, D., & Szyperski, C. (2004). How is open source affecting software development? IEEE Software,
21(1),28-33.

Stadler, C., Lehmann, J., Hoffner, K., Auer, S. (2012). LinkedGeoData: a core for a web of spatial open data.
Semantic Web, 3, 333-354.

Thung, F,, Lo, D., Lawall, J. (2013). Automated library recommendation. In 2013 20th Working conference
on reverse engineering (WCRE) (pp. 182-191).

Tiarks, R., Koschke, R., Falke, R. (2011). An extended assessment of type-3 clones as detected by state-of-
the-art tools. Software Quality Journal, 19(2), 295-331.

Turney, P.D., & Pantel, P. (2010). From frequency to meaning: vector space models of semantics. Journal of
Artificial Intelligence Research, 37(1), 141-188.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327-352.

Ugurel, S., Krovetz, R., Giles, C.L. (2002). What’s the code?: automatic classification of source code
archives. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery
and data mining, KDD '02 (pp. 632-638). New York: ACM.

Walenstein, A., El-Ramly, M., Cordy, J.R., Evans, W.S., Mahdavi, K., Pizka, M., Ramalingam, G., von
Gudenberg, J.W. (2006). Similarity in programs. In Duplication, redundancy, and similarity in software,
23.07. - 26.07.2006.

@ Springer

https://github.com/crossminer/CrossSim
https://github.com/crossminer/CrossSim

630 Software Quality Journal (2020) 28:595-631

Wang, H., Guo, Y., Ma, Z., Chen, X. (2015a). WuKong: a scalable and accurate two-phase approach to
android App clone detection. In Proceedings of the 2015 international symposium on software testing
and analysis, ISSTA 2015 (pp. 71-82). New York: ACM.

Wang, M., Wang, C., Yu, J.X., Zhang, J. (2015b). Community detection in social networks: an in-depth
benchmarking study with a procedure-oriented framework. Proceedings of the VLDB Endowment, 8(10),
998-1009.

Xia, X., Lo, D., Wang, X., Zhou, B. (2013). Tag recommendation in software information sites. In Pro-
ceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13 (pp. 287-296).
Piscataway: IEEE Press.

Zhang, Y., Lo, D., Kochhar, P.S., Xia, X., Li, Q., Sun, J. (2017). Detecting similar repositories on GitHub.
2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER),
00, 13-23.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Phuong T. Nguyen is a postdoctoral researcher at the University of
L’ Aquila, Italy. He obtained a PhD in Computer Science from the
University of Jena, Germany. Since the graduation, he has worked as
a university teaching and research assistant in Vietnam and Italy. His
research interests include Computer Networks, Semantic Web, and
Recommender Systems. Recently, he has been working to develop
recommender systems in Software Engineering for mining open
source code repositories.

Juri Di Rocco is a postdoctoral researcher at the University of
L’Aquila, Italy. He obtained a PhD in Computer Science from the
University of L’ Aquila. He is interested in several aspects of soft-
ware language engineering and Model Driven Engineering (MDE)
including domain specific modeling languages, model transforma-
tion, model differencing, modeling repositories, and mining tech-
niques. More information is available at http://www.di.univaq.it/juri.
dirocco

@ Springer

http://www.di.univaq.it/juri.dirocco
http://www.di.univaq.it/juri.dirocco

Software Quality Journal (2020) 28:595-631 631

Riccardo Rubei is PhD student at the Unversity of L’ Aquila, Italy.
He is working on mining techniques to analyze open source soft-
ware with the aim of providing developers with useful real-time
recommendations.

Davide Di Ruscio is an Associate Professor at the University of
L’ Aquila. His main research interests include software engineering,
and several aspects of Model Driven Engineering including domain-
specific languages, model transformations, and model evolution. He
has published more than 130 papers in various journals, conferences,
and workshops on such topics. Over the last decade, he has worked
on several European projects by contributing the application of MDE
in different application domains like service-based software sys-
tems, autonomous systems, and open source software (OSS). More
information is available at http://www.di.univaq.it/diruscio.

@ Springer

http://www.di.univaq.it/diruscio

	An automated approach to assess the similarity of GitHub repositories
	Abstract
	Introduction
	Mining OSS repositories
	Software similarity
	Goal of the paper
	Structure of the paper

	Background
	MUDABlue
	CLAN
	RepoPal
	Readme-based similarity
	Stargazer-based similarity
	Time-based similarity

	CrossSim: a novel approach for computing similarities among GitHub repositories
	A knowledge graph for the OSS ecosystem
	SimRank: computing graph similarity

	Evaluation
	Dataset
	Similarity computation
	Query definition
	Retrieval of similarity scores

	User evaluation
	Evaluation metrics
	Research questions

	Experimental results
	Data analysis
	Discussions
	Threats to validity

	Related work
	Conclusions
	Appendix:
	Questionnaire
	Materials
	References

