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Context – During the development of complex software systems, programmers look for external resources to 

understand better how to use specific APIs and to get advice related to their current tasks. Stack Overflow pro- 

vides developers with a broader insight into API usage as well as useful code examples. Given the circumstances, 

tools and techniques for mining Stack Overflow are highly desirable. Objective – In this paper, we introduce 

PostFinder, an approach that analyzes the project under development to extract suitable context, and allows 

developers to retrieve messages from Stack Overflow being relevant to the API function calls that have already 

been invoked. Method – PostFinder augments posts with additional data to make them more exposed to queries. 

On the client side, it boosts the context code with various factors to construct a query containing information 

needed for matching against the stored indexes. Multiple facets of the data available are used to optimize the 

search process, with the ultimate aim of recommending highly relevant SO posts. Results – The approach has 

been validated utilizing a user study involving a group of 12 developers to evaluate 500 posts for 50 contexts. 

Experimental results indicate the suitability of PostFinder to recommend relevant Stack Overflow posts and con- 

currently show that the tool outperforms a well-established baseline. Conclusions – We conclude that PostFinder 

can be deployed to assist developers in selecting relevant Stack Overflow posts while they are programming as 

well as to replace the module for searching posts in a code-to-code search engine. 
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. Introduction 

Developing complex software systems requires mastering several
anguages and technologies [1] . Thus, software developers need to de-
ote effort to continuously understand how to use new third-party li-
raries even by consulting existing source code or heterogeneous sources
f information. The time spent on discovering useful resources can have
 dramatic productivity impact [2] . 

Over the last few years, many studies have been conducted to de-
elop methods and tools being able to provide automated assistance to
evelopers. The introduction of recommender systems to the domain
f software development has brought substantial benefits. Among oth-
rs, recommender systems assist the developer in navigating large in-
ormation spaces and getting instant recommendations that might be
elpful to solve the particular development problem at hand [3,4] . A
ecommender system in software engineering is defined as “... a soft-

are application that provides information items estimated to be valuable

or a software engineering task in a given context ” [1] . In general, devel-
pers have to master a vast number of information sources [5] , often at
 short time. In such a context, the problem is not the lack of informa-
ion but instead an information overload coming from heterogeneous
nd rapidly evolving sources. Thus, recommender systems aim at giv-
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ng developers recommendations, which may consist of different items,
ncluding code examples, issue reports, reusable source code, possible
hird-party components, and documentation. 

Stack Overflow (SO) [6] is the most popular question-and-answer
ebsite [7] , which is a good source of support for developers who seek

or probable solutions from the Web [8,9] . SO discussion posts provide
evelopers with a broader insight into API usage, and in some cases, with
ound code examples. Moreover, in a recent development, Stack Over-
ow has been exploited by a code-to-code search engine to enrich code
ueries, with the ultimate aim of getting relevant source code. In par-
icular, FaCoY [10] has been developed to recommend relevant GitHub
ode snippets to a project being developed. First, the system retrieves re-
ated SO posts to get more relevant source code. Afterwards, it exploits
he newly obtained source code to expand the query and search from
itHub for more snippets, which are eventually introduced to develop-
rs. The module to retrieve posts plays a decisive role: it is a blocking
ssue in FaCoY’s performance, if the module cannot retrieve any relevant
osts, the system is unable to generate recommendations. 

In this sense, we see the importance of getting related SO posts, given
 code snippet as context. As the information space is huge, it is neces-
ary to have tools that help narrow down the search scope as well as
nd the most relevant documentations [1] . However, how to construct
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Listing 1. Explanatory input context code. 
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1 https://tinyurl.com/yydp8lwd 
 query that best describes the developer’s context and how to properly
repare SO data to be queried are still challenging tasks [4] . In partic-
lar, there is a need to enhance the quality of retrieved posts as well as
o refine the input context to generate decent queries. 

In this work, we propose PostFinder, a Stack Overflow posts recom-
ender system, which is based on a two-phase approach to retrieve posts

rom Stack Overflow by taking various measures on both the data col-
ection and query phases. To improve efficiency, we make use of Apache
ucene [11] to index the textual content and code coming from Stack
verflow. During the first phase, posts are retrieved and augmented
ith additional data to make them more exposed to queries. Afterwards,
e boost the context code with different factors to construct a query that

ontains information needed for matching against the stored indexes. In
 nutshell, we make use of multiple facets of the data available at hand
o optimize the search process, with the ultimate aim of recommend-
ng highly relevant SO posts. Our work is twofold: (i) by providing SO
osts, PostFinder can be used to replace FaCoY’s SO module; more im-
ortantly, (ii) PostFinder can work as a standalone tool: given a snippet
s context, the tool can provide highly relevant posts to the developer.
hrough a series of user studies, we demonstrate that our proposed ap-
roach considerably improves the recommendation performance, and
hus outperforming the considered baseline. In this sense, our paper
akes the following contributions: 

• Identification of augmentation measures to automatically refine the
considered input SO dump by considering various pieces of informa-
tion; 

• Characterizing the context code by automatically boosting the con-
stituent terms to improve their exposure to the indexed data, and
eventually build a proper query transparently for the developer; 

• Two empirical evaluations of the proposed approach to evaluate the
performance of PostFinder and to compare it with FaCoY; 

• An implementation of the tool, which was successfully integrated
into the Eclipse IDE, has been released together with the correspond-
ing metadata to facilitate future research [12] . 

The paper is structured as follows. Section 2 provides background
nd describes the motivations for our work. In Section 3 , we introduce
ostFinder, the proposed approach to recommending SO posts. The eval-
ation is presented in Section 4 . Section 5 analyzes the experimental re-
ults and discusses the threats to validity. In Section 6 we present related
ork and conclude the paper in Section 7 . 

. Background 

Over the last decade, several approaches have been conceived to
everage the use of crowdsourcing in software engineering [13] . Those
xploiting Stack Overflow as the main source of information (e.g.,
4,10,14–16] ) can be classified into two main categories: 

C1. approaches that focus on the automated creation of queries to be
executed by search engines, and on the visualization of the re-
trieved posts according to some ranking model (e.g., [4,14,15] ); 

C2. approaches that deal with query creation and advanced indexing
mechanisms specifically conceived for storing and retrieving SO
posts (e.g., [10,16] ). 

PROMPTER [4] is among the most recent approaches falling in the
rst category above. It is an automatic tool, which is used to recommend
O posts given an input context built from source code. PROMPTER per-
orms various processing steps to produce a query. First, it splits iden-
ifiers and removes stop words. Then, it ranks the terms according to
heir frequency by also considering the entropy in the entire SO dump.
nce the query is built, the tool exploits a web service to perform the
uery via the Google and Bing search engines. Finally, a ranking model
s employed to sort the results according to different metrics such as API
imilarity, tags analysis, and SO answers and questions. 
FaCoY [10] is a recent code-to-code search engine that relies on
pache Lucene and provides developers with relevant GitHub code snip-
ets. Two main phases are conducted to produce recommendations as
ollows. The first one is performed on the context code to get related
O posts from a local indexed dump. To this end, the system parses the
ontext code and builds an initial query q c to look for posts from Stack
verflow. From the set of retrieved posts, it parses natural language de-

criptive terms from questions to match against the question index of
&A that has been built ex-ante to get more posts that contain rele-
ant source code. Afterwards, a new query 𝑞 ′

𝑐 
is formed from the newly

btained source code. The second phase is done on 𝑞 ′
𝑐 

to search from
itHub for more snippets, which are finally introduced to developers.
y focusing on the first phase, i.e., searching for SO posts by exploiting
he input context code, FaCoY can be considered in category C2 above.
his module works like a bridge between the initial query q c and the
nal results. In this sense, it has an important role to play since its per-

ormance considerably affects the final recommendation outcomes. The
xperimental results [10] demonstrate that FaCoY obtains a superior
erformance with regards to several baselines [17,18] 

In the scope of this paper, we pay our attention to the FaCoY’s mod-
le for searching SO posts. By a careful observation on the system, we
ound out that it suffers a setback for incomplete data as well as a brief
nput query. As we can see later in the paper, for many queries the sys-
em is unable to retrieve any SO posts, or for some contexts, it suggests
rrelevant ones, i.e., false positives. To this end, we believe there is a
eed to overcome the limitations so as to enhance the overall perfor-
ance of FaCoY. 

As an example, we consider the explanatory code snippet shown in
isting 1 . The code declares a CamelContext variable, and invokes
unctions addRoutes() and configure() . This illustrates the situ-
tion when a developer invokes Camel and searches for posts discussing
ow to use XML. The input code is pretty simple, and the developer
ould benefit from being suggested with SO posts that provide discus-

ions related to the input source code. 
In other words, it is expected that a search engine can recommend

iscussions that are relevant to the developer context, for instance the
ost 1 shown in Fig. 1 . For the sake of clarity, we only capture the
ey information from the post, i.e., title, question, answer, code and
isplay it in the figure. The post contains two answers and both of
hem are useful for the context. For instance, the depicted snippet con-
ains class CurrencyRoute where addRoutes() is informative
nd the function configure() is completely defined. More impor-
antly, this code shows that some additional packages are required,

https://tinyurl.com/yydp8lwd
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Fig. 1. A Stack Overflow post relevant to Listing 1 . 
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.g., ActiveMQConnectionFactory or JmsComponent . In this
ense, the accompanying snippet is handy for supporting the develop-
ent of the context code in Listing 1 since it provides a better insight

nto how to use the related APIs. 
When the context code shown in Listing 1 is fed to FaCoY, the system

ails to return any results. We anticipate that this is due to the lack of
nput data, i.e., the query code is very brief, and to the indexing process
f FaCoY, which ignores some crucial components in source code when
reparing the indexed data. Thus, we believe that there is still room
or improvement. In this respect, Lucene offers a well-defined platform
or managing and indexing data. However, it is incumbent upon the
ucene user to decide which data to index and which data to use as
 query. To this end, we propose an approach to improve the module
or searching SO posts of FaCoY. We also attempt to perform various
efinement steps on the input SO dump as well as to polish the query
ode. By doing this, we are able to enrich the initial query with multiple
ieces of information. Furthermore, we also increase the exposure of
he background data collected from Stack Overflow by means of the
oosting mechanism provided by Lucene. In fact, the post in Fig. 1 is
ecommended by PostFinder when we feed it with the query in Listing 1 .
his indicates that for the motivating example, our tool is more effective
ompared to FaCoY. In the next section, we are going to explain in detail
he proposed approach. 

. Proposed approach 

Given a user context consisting of the source code under develop-
ent, we aim at searching for posts that contain highly relevant an-

wers from Stack Overflow. We attempt to overcome the limitations
f the existing approaches by properly indexing SO data and by pro-
essing the query by developers’ side, exploiting various refinement
echniques. In particular, we come up with a comprehensive approach
amed PostFinder, which takes into consideration three consecutive
hases, i.e., Index Creation, Query Creation , and Query Execution . By In-

ex Creation , we parse and organize an SO dump into a queryable format
o facilitate future search operations. Query Creation is done at the de-
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Fig. 2. PostFinder at work. 
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Table 1 

The used facets. 

Token Description 

Text Title The title of the post 

Answer All answers contained in the post 

Question The question 

Code 

ImportDeclaration 
The directives used to invoke 

libraries 

MethodDeclaration 
Method declarations with 

parameters 

MethodInvocation API function calls 

VariableType Types of all declared variables 

VariableDec All declared variables 

ClassInstance Class declarations 

3
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2 We are aware that there are SO posts that do not always use the code tag 

to include inline source code. Thus, relying only on such a tag might discard 

messages that instead should be kept. Natural Language Processing techniques 

can be exploited to make the employed cleaning and filtering phase less strict 

even though we defer this as future work. 
eloper’s side to transform the current context into an informative query
hat can be used to search against the indexed data. Concerning Query

xecution , the actual searching is performed employing Apache Lucene.
The index creation, query creation, and query execution phases are

ompletely transparent to the user, who can ask for SO posts directly
rom the implemented Eclipse IDE plugin as shown in Fig. 2 . In partic-
lar, the user selects the source code that she wants to include in the
uery 1 ○, asks for the recommendation and gets a list of retrieved SO
osts 2 ○. 

An overview of the PostFinder building components is depicted in
ig. 3 . The three constituent phases, i.e., Index Creation, Query Creation ,
nd Query Execution are described in the following subsections. 

.1. Index creation 

Starting from an SO dump, the original data is loaded into MongoDB
or further processing. Then, the data is parsed and transformed into
 format that can be queried later on. At this point, it is necessary to
se indexed data for future look up. We opt for Apache Lucene as it is
 powerful IR tool widely used to manage and query vector data. For
ach SO post, the following components are excerpted: Title , Body
nd Code . Concerning the textual part, we extract questions, answers,
nd titles and index them using the Indexer . Meanwhile, code con-
ents are parsed to extract useful artifacts before being fed to Lucene. In
articular, the JDT parser is used to obtain six tokens as shown in the
ode part of Table 1 . However, code snippets in Stack Overflow posts
ay neither be complete nor compilable [19] , and thus they cannot

e found if being queried in their original format. Thus, to make them
ompilable, we propose two refinement steps, namely Post cleaning and

ltering and Code wrapping as explained below. 
.1.1. Post cleaning and filtering 

In SO messages, a question is typically followed by answers and com-
ents. However, many posts do not have any answers at all, and they

re considered to be not useful for recommendation tasks. Thus, we fil-
er out irrelevant posts as well as remove the low quality ones first by
onsidering only those that have accepted answers. Then, only posts that
ontain the code tag 2 to include in their bodies Java source code are
ccepted for further processing. 
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Fig. 3. The PostFinder architecture. 

Listing 2. Original code snippet. 
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Listing 3. Augmented code snippet. 
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.1.2. Code wrapping 

To deal with incomplete and uncompilable snippets, e.g., those that
ave neither class structure nor import directives, we use the parsing
ption to yield more tokens. For code snippets without any imports, we
rap up with relevant classes to make them more informative. We ex-
loit an archive made available by Benelallam et al. [20] to find the
ight library that an invocation belongs to, and thus, the correspond-
ng import directives. The dataset contains more than 2.8M artifacts
ogether with their dependencies as well as other relationships, e.g.,
ersions. We count the frequency that each artifact is invoked, and sort
nto a ranked list in descending order. Then only top N class canonical
ames, i.e., the ones appear in an import statement, are selected. By
arsing all API calls within a method declaration, we trace back to their
riginal packages from the top N names. Nevertheless, given that a class
nstance is invoked without any declaration, more than one canonical
ame could be found there. In this case, we compute the Levenshtein
istance from each name to the title and body text of the post and use it
s a heuristic to extract the best matched one. Finally, the corresponding
mport directives are placed at the beginning of the code. It is important
o remark that the choices related to the different design alternatives,
hreshold values, augmentation mechanisms, etc. have been performed
teratively and empirically to maximize the accuracy of the overall ap-
roach. 

We consider an example as follows: Listing 2 depicts a code snippet
xtracted from SO. The code contains just function calls, and it is incom-
lete since there is neither class declaration nor import. If we use this
ode without any refinement to index Lucene, it might not be unearthed
y the search engine due to the lack of data. 
By adding class fix and import, we obtain a new code snippet as
hown in Listing 3 . The snippet resembles a real hand-written code,
hich probably facilitates the matching process later on. 

Once the refinement steps have been done, all terms corresponding
o the tokens specified in the Code part of Table 1 are indexed and
tored into Lucene for further look up. 

.2. Query creation 

This phase is conducted on the client side, and the method declara-
ion being developed is used as input context. A query can be formed
y considering all terms extracted from the context code. It is evident
hat each term in posts has a different level of importance. Thus, the
econd phase is to equip a query with more information that better de-
cribes the current context, taking into account the terms’ importance
evel. Fortunately, Lucene supports boosting , a scoring mechanism to as-
ign a weight to each indexed token. Based on scoring, we perform two
ugmentation steps, i.e., Boosting , and Tokenizing as follows. 
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Listing 4. Sample query produced after the Boosting and Tokenizing phases. 
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3 Through private communications, the authors of PROMPTER informed us 

that the tool had not been maintained for a long time, and they also had diffi- 

culties in making it run again. 
4 We gratefully acknowledge the data provided by Prof. Dr. Michele Lanza 

and Dr. Luca Ponzanelli. 
5 https://tinyurl.com/ybmny6p8 
6 https://tinyurl.com/y8zarqsb 
.2.1. Boosting 

The original code is parsed to obtain the six tokens listed in the last
alf of Table 1 . Each term in the code is assigned a concrete weight
o boost the level of importance. Entropy [21] is exploited to compute
he quantity of information of a document using the following formula:
 = − 

∑
𝑝 ( 𝑥 ) log 𝑝 ( 𝑥 ) , where p ( x ) is the probability of term x . An entropy

alue ranges from 0 to log ( n ), where n is the number of terms within
he document. We compute entropy for all terms in the original source
ode and rank them in a list of descending order. Then the first quarter
f the list is assigned a boost value of 4. Similarly, the next 2 nd , 3 rd , and
 th quarters get the boost value of 3, 2, and 1, respectively. Finally, all
he code terms are attached to their corresponding tokens to form the
uery. 

.2.2. Tokenizing 

By the Index Creation phase in Section 3.1 , nine different tokens have
een populated (see Table 1 ). Among them, there are three textual to-
ens, i.e., Title , Answer , and Question . However, by the devel-
per’s side, the input context contains just code and there are no textual
arts that can be used to match against the three tokens. Thus, given
he input code, we attempt to generate textual tokens by exploiting the
mport directives embedded at the beginning of each source file. Start-
ng from an import directive, we break it into smaller pieces and attach
hem to all the textual tokens. A previous work [22] shows that in an
O post, the title is more important than the description. In particu-
ar, the importance ratio between description and title of a given post
s 1/3 [22] . Accordingly, we set a boost value of 4 to the title and 1.4
o both the answer and question. Empirical evaluations conducted on
he dataset demonstrate that the boost value has a smaller impact than
hat of the ratio between the title and the body of the post. Thus, we
ntegrate it into the best query configuration. 

By considering the code in Listing 1 , the query ready to be exe-
uted that PostFinder creates after the boosting and tokenizing phases
s shown in Listing 4 . 

.3. Query execution 

Queries that are created as described in the previous section, are ex-
cuted by means of Apache Lucene. Moreover, we exploit the Lucene
uilt-in BM25 to rank indexed posts. In particular, BM25 is a bag-
f-words retrieval function that ranks a set of documents based on
he query terms appearing in each document, regardless of the inter-
elationship between the query terms within a document, e.g., their rel-
tive proximity. The index is computed as given below. 

 ( 𝑞, 𝑑) = 

∑

𝑡 ∈𝑞 

𝑓 𝑑 
𝑡 

𝑘 1 ((1 − 𝑏 ) + 𝑏 
𝑙 𝑑 

𝑎𝑣𝑔𝑙 
+ 𝑓 𝑑 

𝑡 

(1)
𝑑 
here 𝑓 𝑑 
𝑡 

is the frequency of term t in document d; l d is the length of the
ocument d; avgl d is the document average length along the collection;
 is a free parameter usually set to 2 and b ∈ [0, 1]. When 𝑏 = 0 , the
ormalization process is not considered and thus the document length
oes not affect the final score. In constrast, when 𝑏 = 1 , the full-length
ormalization is performed. In practice, b is normally set to 0.75. It
as been shown that for ranking documents, BM25 works better than
he standard TF-IDF one [23] . By considering the query in Listing 4 as
nput, the post shown in Fig. 1 is among the resulting ones. 

In the following section we introduce two evaluations to examine if
ur proposed solution is beneficial to the matching of relevant SO posts.

. Evaluation methods and materials 

As mentioned above, PostFinder is a multi-purpose tool: On one side,
t can work as an independent engine to search for suitable Stack Over-
ow posts to directly support developers while they are programming.
n the other side, it can be used to replace the first module of FaCoY. 

For the former, the most relevant system with PostFinder is
ROMPTER [4] whose original implementation is, unfortunately, no
onger functioning. 3 Considering the fact that the re-implementation of
he tool is not straightforward and time consuming, we decided to inves-
igate what queries would be potentially hard for PROMPTER to answer
ut for PostFinder would be easy, and vice versa by exploiting some use
ase studies from the original PROMPTER paper and apply PostFinder
n them. 

By the latter, since the source code of FaCoY is available, in this work
e concentrate on comparing PostFinder with FaCoY by means of an

valuation on a common dataset. For the sake of representation, from
ow on the baseline is addressed as FaCoY (unless otherwise stated),
espite the fact that it is the first module, albeit the most decisive one,
f the whole FaCoY system [10] . 

The following subsections describe the performed evaluations in de-
ail. In particular, we present a discussion about the high-level differ-
nces between PostFinder and PROMPTER in Section 4.1 . The experi-
ental configurations for supporting the comparison of PostFinder and

aCoY are explained in Section 4.2 . Section 4.3 presents the dataset
sed in the evaluation. Section 4.4 explains the evaluation methodol-
gy, and Section 4.5 introduces the evaluation metrics. The research
uestions are introduced in Section 4.6 . 

.1. Differences between PostFinder and PROMPTER 

We investigate the differences between the first ranked recom-
ended post of the two approaches by relying on a set of queries and the

orresponding results obtained by PROMPTER, provided by its authors. 4 

o make the comparison fair as much as possible, we filter PostFinder’s
osts by selecting only those that date back to the year 2014, i.e., the
ate of the dump used by PROMPTER [4] . As the first example, de-
icted in Listing 5 , we present a particular developer’s context in which
ROMPTER performs better than PostFinder with respect to the re-
rieved first top rank posts. As we can see, the post 5 recommended by
ROMPTER shown in Fig. 4 is more relevant given the context rather
han the one 6 retrieved by PostFinder shown in Fig. 5 . The rationale
ehind this fact can be found in the query’s lines of code. In particular,
ostFinder misses some valuable results when it is fed with a very small
ontext, as there are few import statements in such cases. 

https://tinyurl.com/ybmny6p8
https://tinyurl.com/y8zarqsb
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Fig. 4. A post related to Listing 5 retrieved by PROMPTER. 

Listing 5. Comparing PostFinder with PROMPTER: First use case. 
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In contrast, the example shown in Listing 6 demonstrates that
ostFinder is capable of providing a more relevant post. Given a more
etailed context, PROMPTER’s post 7 reported in Fig. 6 misses some ad-
itional information that PostFinder can deliver 8 as shown in Fig. 7 .
oreover, more results could be retrieved by PostFinder using the wrap-

ing technique described in Section 3.1.2 . We cannot directly verify this
laim as the PROMPTER’s queries included in the provided set do not
all into this category, i.e., they contain compilable snippets of code. 

According to the performed light-weight comparison, we noticed
hat PostFinder performs better than PROMPTER if the input query
ontains more import statements, even when the code is not compil-
ble. However, to deliver a fair and a thorough comparison of both ap-
roaches, it is necessary to re-implement the PROMPTER tool by strictly
ollowing the descriptions in the original paper [4] , and we consider this
s a possible future work. 
7 https://tinyurl.com/ybe37xch 
8 https://tinyurl.com/y9o38kq6 

Listing 6. Comparing PostFinder with PROMPTER: Second use case. 

https://tinyurl.com/ybe37xch
https://tinyurl.com/y9o38kq6
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Fig. 5. A post related to Listing 5 retrieved by PostFinder. 

Table 2 

Experimental configurations. 

Configuration Wrapping Boosting Tokenizing Ranking # queries Description 

A ✗ ✗ ✗ ✗ 10 Flat queries, without considering any proposed augmentations 

B 
√

✗ ✗ ✗ 10 Wrapping is introduced to queries in Configuration A 

C 
√

✗ ✗ 
√

10 BM25 is used to rank the retrieved posts 

D 

√ √
✗ ✗ 10 Entropy is used to boost the queries in Conf. B 

E 
√

✗ 
√

✗ 10 Transforming import directives to textual tokens for queries in Conf. B 

F 
√ √ √ √

10 Imposing all proposed augmentations 

G 
√ √ √ √

50 Imposing all proposed augmentations to compare PostFinder and FaCoY 
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9 
.2. Configurations 

To study PostFinder’s performance, we perform two main evalua-
ions by means of user studies. The first one is done to evaluate the role
f each augmentation proposed in Section 3 . To this end, we consider
ix experimental configurations, i.e., A , B , C , D , E , F with ten queries for
ach (see Table 2 ). The second evaluation compares PostFinder with
aCoY, and this corresponds to the last configuration G . To thoroughly
xamine the difference in their performance, we consider 50 queries in
 . The queries contain code snippets that invoke ten of the most pop-
lar Java libraries, i.e., Jackson, SWT, MongoDB driver, Javax Servlet,
DBC API, JDT core, Apache Camel, Apache Wicket, Twitter4j, Apache
OI. The rationale behind the selection of such libraries is that through
 careful observation, we realized that generally, feeding FaCoY with
ueries coming from random libraries might not yield any results, i.e.,
he anwer is blank, and such an outcome is not useful for any compar-
son. Thus, we have to select queries that return some posts which can
ventually be used to evaluate both FaCoY and PostFinder. 

The test configurations are explained in Table 2 , whose the 2 nd to 5 th
olumns specify the presence of the techniques mentioned in Section 3 ,
ith the corresponding section being shown in parentheses. For exam-
le, the 2 nd column Wrapping is a combination of class fixing and li-
rary import deduction (cf. Section 3.1 ). The column Boosting indicates
he usage of the entropy for the calculation of the boosting values (cf.
ection 3.2.1 ), Tokenizing refers to the usage of a Maven dataset in or-
er to augment the imports (cf. Section 3.2.2 ). Finally column Ranking

ictates the use of the BM-25 weighting scheme (cf. Section 3.3 ). To fa-
ilitate future research, we made available the PostFinder tool together
ith the related data in GitHub [12] . 

.3. Dataset 

To provide input for the evaluation, we exploited a Stack Overflow
ump 9 of June 2017, which is an XML file of around 70GB in size, and
ontains more than 18 millions of posts. By filtering with tags, we ob-
ained 757,439 posts containing Java source code. The resulting set has
ore than 1.2 millions of answers with 49.20% of them being already

ccepted, i.e., 552,458 answers. In such posts there were 32,578 snip-
ets that have no imports. We fixed them as presented in Section 3.1.2 .
ventually, we indexed and parsed all the posts following the paradigm
escribed in Section 3.1 . More details of the dataset used in our evalu-
tion are shown in Table 3 . 
https://archive.org/details/stackexchange 

https://archive.org/details/stackexchange
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Fig. 6. A post related to Listing 6 retrieved by PROMPTER. 

Table 3 

A summary of the SO dump used in the evaluation. 

Name Value Name Value 

Size 70GB # of answers 1,122,789 

# of posts 18,300,672 # of acc. answers 552,458 

# of Java posts 757,439 # of posts fixed 32,578 
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.4. User study 

We resort to user studies as this is the only way to investigate
hether the recommendation outcomes are really helpful to solve a spe-
ific task [4,24,25] . The input is expressed as a snippet of code together
ith a set of recommended posts, and the task is to judge how rele-
ant the retrieved posts are, with respect to the input code. A group of
1 developers was asked to participate in the user studies. Six partic-
pants were master students attending a Software Engineering course.
hree of them were 1 st year PhD students, and the other two were post-
oc researchers. Through a survey sent to each participant, we found
ut that more than a half of them had at least seven years of program-
ing experience. Among these people, three participants have worked
ith programming for 15 years. All of them are capable of Java and at

east another programming language, e.g., Python or C++. The eval-
ators use code search engines like GitHub, Stack Overflow, or Maven
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Fig. 7. A post related to Listing 6 retrieved by PostFinder. 
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n a daily basis. Furthermore, they frequently re-use code fragments
ollected from these external sources. This is advantageous for the man-
al evaluation, since in the scope of this paper we consider only source
ode written in Java, and we assume that skilful Java developers shall
ave a better judgment about the relevance among the code being de-
eloped and the recommended posts. The knowledge of different pro-
ramming languages, e.g., Perl, Python, is also a plus for the evaluation
rocess. 

Given a query, each system, i.e., FaCoY or PostFinder produces as
utcome a ranked list of posts, considered to be relevant. To aim for a
air comparison, we mixed the top-5 results generated by each system in
 single Google form and presented them to the evaluators together with
he corresponding context code. This simulates a taste test [26] where
sers are asked to give feedback for a product, e.g., food or drink, with-
ut having a priori knowledge about what is being addressed. This aims
o eliminate any possible bias or prejudice against a specific system.
ach pair of code and post, i.e., < query, retrieved post > is examined
nd evaluated by at least two participants. Each evaluator first inspects
he input code snippet, then reads the post including text and source
ode to comprehend its purpose, and finally judges the relevance using
he criteria listed in Table 4 . 

Apart from 11 developers mentioned before, we also involved one
ore researcher in validating the evaluation outcome by playing the

ole of a mediator . In case there is a substantial disagreement between
ny two participants, e.g., the first person assigned the score of 2 and
he other one gave 4 to a same pair (cf. Table 4 ), the mediator examines
he pair again to eventually reach a consensus. It is worth noting that to
void bias, also in this phase the mediator did not know ex-ante where
ach pair comes from, i.e., FaCoY or PostFinder. In most cases, the eval-
ators agreed on the scores. The disagreement happened mainly within
losely relevant scores: 1 with 2, or 3 with 4. Only when there were pairs
ith very different scores, e.g., 1 with 3, or 2 with 4, the mediator was
sked to re-evaluate and judge. The ratio of such a disagreement was
5%. Moreover, an inter-rater agreement analysis using Cohen’s Kappa
est [27] revealed that the mediator substantially agreed with both eval-
ators, 𝜅( 𝑒𝑣𝑎𝑙 1 , 𝑚𝑒𝑑 𝑖𝑎𝑡𝑜𝑟 ) = 0 . 677 and 𝜅( 𝑒𝑣𝑎𝑙 2 , 𝑚𝑒𝑑 𝑖𝑎𝑡𝑜𝑟 ) = 0 . 761 . 
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Table 4 

Relevance Scores. 

Score Description 

0 No results at all are returned 

1 The post is totally irrelevant 

2 The post contains some hints but it is still out of context 

3 There are relevant suggestions but the key features are missing 

4 The post provides proper recommendations and the related code snippets are useful considering the development’s context 
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Fig. 8. Relevance scores for PostFinder. 

Table 5 

PostFinder success rate and precision. 

Metric Configuration 

A B C D E F 

Success rate 0.90 0.90 0.90 0.90 1.00 1.00 

Precision 0.60 0.66 0.68 0.74 0.78 0.82 
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.5. Evaluation metrics 

As typically done in related work, the following metrics have been
onsidered to evaluate the recommendation outcomes [24,25] : 

• Relevance : it is the score given to a pair of < query, retrieved

post > following Table 4 ; 
• Success rate : if at least one of the top-5 retrieved posts receives 3 or

4 as score, the query is considered to be relevant. Success rate is the
ratio of relevant queries to the total number of queries; 

• Precision : it is computed as the ratio of pairs in the top-5 list that
have a score of 3 or 4 to the total number of pairs, i.e., 5. 

.6. Research questions 

The evaluations are conducted to answer the following research
uestions: 

• RQ 1 : Which experimental configuration brings the best PostFinder per-

formance? We compare the flat configuration with the augmented
ones to see which setting fosters the best recommendation outcome
for PostFinder. 

• RQ 2 : How does PostFinder compare with FaCoY? Compared to FaCoY,
our tool is equipped with various refinement techniques. By answer-
ing this question, we ascertain whether our proposed augmentations
are useful for searching posts in comparison to the original approach
FaCoY. 

• RQ 3 : What are the reasons for the performance difference? We are in-
terested in understanding the factors that add up to the performance
difference between the two systems. 

The following section analyzes the systems’ performance by address-
ng these research questions. 

. Experimental results 

This section presents the results obtained from the experiments
s well as related discussions. In Section 5.1 , we analyze the out-
omes obtained by performing PostFinder with six configurations
cf. Table 2 ), to answer RQ 1 . Afterwards, we compare PostFinder
ith FaCoY by answering RQ 2 . We attempt to reason what consti-

utes the performance differences between the two systems in RQ 3 .
hreats to validity of the performed experiments are discussed in
ection 5.2 . 

.1. Result analysis 

RQ 1 : Which experimental configuration brings the best PostFinder per-

ormance? 

Every configuration is evaluated using ten queries, and each of them
orresponds to five posts, resulting in 50 pairs of < query, retrieved

ost > . We gather the relevance scores for the configurations and rep-
esent them in a Likert bar chart shown in Fig. 8 . It is evident that per-
orming PostFinder with flat queries, i.e., configuration A , yields the
orst performance: 30% of the posts are either totally irrelevant, or ir-

elevant, and 70% of them are relevant or highly relevant. This suggests
hat feeding queries without incorporating any proposed augmentations
rings least relevant posts. Meanwhile, the system obtains a better per-
ormance for configurations B (flat query plus wrapping) and C (flat
uery plus wrapping and ranking) with respect to A . Moreover, the two
onfigurations B, C contribute to a comparable performance as their
orresponding bars have a similar shape. Among others, the best rele-
ance is seen when running PostFinder with F , i.e., all proposed aug-
entations are incorporated. In particular, no query pair gets 1 as the

elevance score and 82% of them are considered as relevant or strongly
elevant. This necessarily means that augmenting queries with all the
roposed measures helps retrieve highly relevant posts. 

Success rate is a superficial metric and it does not reflect well the
utcome’s traits. For instance, given a query, a system that gets one
atched result has a success rate of 100%, which is exactly the same as

hat of another system which gets all five matched posts for the same
uery, however, the two systems are not equal in quality. Thus, fur-
her than Success rate we also measured Precision as shown in Table 5 .
oncerning Precision , we see that using flat query obtains the lowest pre-
ision, i.e., 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0 . 6 and this is consistent with Relevance in Fig. 8 .
gain, the best Precision , i.e., 0.82 is obtained when all augmentations
re imposed on the queries. Running PostFinder on the dataset always
ets a minimum success rate of 0.90, regardless of the configuration. 

According to the performed experiments, Configuration F seems to
erform better than E . However, we anticipate that to assess to what
xtent Tokenizing (see Section 3.2.2 ) contributes to better results in a
tatistically significant manner, a larger dataset would be needed. In
act, tests that can be used for measuring the significance of the results,
.g., Wilcoxon rank sum test, do not work well for small samples [28] .
hus, according to the performed experiments, tokenizing contributes
uch to the matching of relevant posts. Understanding if this is statisti-
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Fig. 9. Relevance for Configuration G . 
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ally significant needs a bigger dataset, and this is deferred as a future
ork. 

Answer to RQ 1 . In summary, running PostFinder by deploying 
all proposed augmentations provides the best performance with 
respect to relevance, success rate, and precision. 

RQ 2 : How does PostFinder compare with FaCoY? 

Considering the set of 50 queries, PostFinder returns 250 pairs of
uery-post. Each pair gets a score ranging from 1 to 4. However, FaCoY
oes not find any results for ten among the queries, i.e., the correspond-
ng scores are 0 (see Table 4 ). We depict the relevance scores of both
ystems using violin boxplots in Fig. 9 . A violin boxplot is a combination
f boxplot and density traces which gives a more informative indication
f the distribution’s shape, or the magnitude of the density [29] . The
oxplots demonstrate that PostFinder gains a considerably better rele-
ance than that of FaCoY. In particular, PostFinder has more scores of
 and 4, whereas FaCoY has more scores of 1 and 2. By inspecting the
en queries that yield no results, we found out that their input context
ode is considerably short. This supports our hypothesis in Section 2 that
aCoY is less effective given that input data is incomplete or missing. 

To aim for a more reliable comparison, we remove the ten queries
rom the results of both systems and sketch the relevance scores in
ig. 9 b. For this set of queries, the FaCoY’s violin fluctuates starting
rom 3 down to 1. In contrast, the majority of the violin representing
ostFinder lies on the upper part of the figure, starting from 3 in the
Table 6 

Statistical analysis for the used metrics. 

Success rate Precisi

PostFinder FaCoY PostFin

Mean 0.95 0.77 0.66 

std 0.22 0.42 0.30 

1 st 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1.0 1.0 0.40 

2 nd 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1.0 1.0 0.60 

3 rd 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1.0 1.0 1.0 

p-value 2.00e-02 8
ertical axis. We conclude that PostFinder obtains a better relevance
ompared to that of FaCoY. 

We further investigate the systems by considering Fig. 5.1 where the
recision scores for 40 queries are depicted. By this metric, the perfor-
ance difference between the two systems becomes more noticeable.
o be more concrete, a larger part of the FaCoY’s boxplot resides un-
er the median horizontal line, implying that most of the queries get a
recision lower than 0.5. In the opposite side, PostFinder gains better
recisions that are larger than 0.5, and agglomerate to the upper bound,
.e., 1.0. The metric shows that, given a same query PostFinder returns
ore relevant posts than the baseline does. 

The obtained success rates for both systems are shown in Fig. 5.1 .
mong 40 queries fed to FaCoY, 78% of them are successful, i.e., at

east one pair of a query gets a value of 3 or 4. Meanwhile, PostFinder
chieves a better percentage of success, 38 among 40 queries are suc-
essful, yielding a success rate of 95%. 

It is important to understand if the performance difference is statis-
ically significant. Thus, we performed a statistical analysis and the ob-
ained results are shown in Table 6 . We compute Wilcoxon rank sum test
30] on the scores obtained by the systems and get the following results:
-value for Success rate is 2.00e-02 ; p-value for Precision is 8.90e-06 ; p-
alue for Relevance is 1.08e-10 . The null hypothesis is that there are no
ifferences between the performance of FaCoY and that of PostFinder.
sing 95% as the significance level, or p-value < 0.05 we see that by
ll quality indicators the p -values are always lower than 5e-02 . Thus, we
eject the null hypothesis and conclude that the performance improve-
ent obtained by PostFinder is statistically significant. Considering all

he metrics, we see that the improvement gained by PostFinder is sig-
ificant and meaningful. 
on Relevance 

der FaCoY PostFinder FaCoY 

0.33 2.78 2.09 

0.26 1.01 1.01 

0.20 2.0 1.0 

0.40 3.0 2.0 

0.45 4.0 3.0 

.90e-06 1.08e-10 
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Fig. 10. Precision and success rate for Config- 

uration G . 

Table 7 

Comparsion between FaCoY and 

PostFinder. 

Technique FaCoY PostFinder 

Code analysis 
√ √

Class fixing 
√ √

Import mining ✗ 
√

Entropy ✗ 
√

BM25 ✗ 
√

Tokenizing ✗ 
√
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Answer to RQ 2 . PostFinder outperforms FaCoY in terms of rele- 
vance, success rate, and precision. Furthermore, the performance 
difference between the two systems is statistically significant. 

RQ 3 : What are the reasons for the performance difference? 

We refer back to the example introduced in Section 2 . Actually, the
ost in Fig. 1 is recommended by PostFinder when the code in Listing 1 is
sed as query. Compared to the baseline, PostFinder works better since
t is capable of recommending a very relevant and helpful discussion,
hile it is not the case with FaCoY. By carefully investigating the query
enerated by PostFinder, we see that the transformation of import di-
ectives to produce textual tokens as shown in Listing 4 is beneficial
o the search process: it equips the query with important terms which
hen match with the post’s title. Table 7 distinguishes between the two
ystems by listing the facets exploited by each of them. 

FaCoY exploits the Porter stemming algorithm and the English an-
lyzing utilities provided by Lucene to perform a query. It parses the
eveloper’s source code as well as comments and uses extracted in-
exes described in Section 2 to search. As shown in RQ 1 and RQ 2 , a
at query containing only full-text is not sufficient to retrieve useful re-
ults. Though FaCoY employs Lucene as its indexer, it does not exhaus-
ively exploit boosting which is considered to be the heart of Lucene. To
his end, PostFinder attempts to improve the baseline by imposing vari-
us boosting measures. By the Index Creation phase, PostFinder enriches
ncomplete code snippets with class and import directives and then to-
enizes them. By the Query Creation and Execution phases, PostFinder
xploits import directives from source code to build indexes to match
gainst indexed textual data. In other words, we make source code com-
ilable, which was originally uncompilable, though the augmented code
s inauthentic. This is important since a lot of code in Stack Overflow is
ncompilable and cannot be indexed to Lucene. Since FaCoY does not
erform these phases, it is unable to match source code with textual con-
ext in post. Furthermore, FaCoY cannot match input code with snippets
tored in database but without import directives. 

Answer to RQ 3 . Altogether, the query boosting scheme and the 
considered facets for the creation of indexes are attributed to the 
performance difference between the two systems. 

.2. Threats to validity 

We investigate the threats that may affect the validity of the experi-
ents as well as the efforts made to minimize them. 

Internal validity. It concerns any confounding factors that may have
n influence on our results. We attempted to avoid any bias in the user
tudies by: (i) involving 11 developers with different levels of program-
ing experience; ( ii) simulating a taste test where users are not aware of
hat they are evaluating. Furthermore, the labeling results by two eval-
ators were then double-checked by an additional researcher to aim for
oundness of the outcomes. 

External validity. This refers to the generalizability of the obtained
esults and findings. To contrast and mitigate this threat, we enforced
he following measures. The sets of code snippets that have been se-
ected as queries invoke various Java libraries. Furthermore, the num-
er of code lines of the queries ranges from 22 to 608, attempting to
over a wide range of possibilities in practice. Our approach is also
pplicable to other programming languages, however in the scope of
his paper we restricted ourselves to perform evaluations on posts con-
aining Java source code. The generalizability might be negatively af-
ected by the conducted user study. In particular, the 11 selected partic-
pants have the same academic background, though their programming
kills are of different levels. On one hand, generalizing the obtained
esults to a larger population that includes different backgrounds can
ontribute to enriching the results in terms of coverage. On the other
and, gathering people with a wide range of programming experiences
s a real challenge. Thus, we limit ourselves to the mentioned study
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Table 8 

Summary of SO mining approaches. 

Tool/Engine Code search Mining SO Availability 

MFISSO [33] 
√ √

✗ 

PROMPTER [4] 
√ √

✗ 

AnswerBot [31] ✗ 
√

✗ 

Google/SO search ✗ 
√ √

Searchcode [17] ✗ ✗ 
√

Krugle [18] ✗ ✗ 
√

PublicWWW [34] ✗ 
√ √

ProgramCreek [35] ✗ ✗ 
√

FaCoY [10] 
√ √ √
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o obtain a stable evaluation. Moreover, we mitigate this threat by in-
olving one additional researcher who plays the role of mediator in the
valuation. 

. Related work 

In this section, we summarize related work and associate our con-
ributions to the literature in the following domains: (i) mining and us-
ge of Stack Overflow; (ii) code recommender systems and search en-
ines; and (iii) code wrapping technique. 

.1. Mining Stack Overflow to support software development 

As discussed in the previous sections, SO can be exploited to support
oding activities by providing developers with messages and code snip-
ets therein that are relevant to the query explicitly or implicitly defined
y the user. We review various studies that share some commonalities
ith PostFinder as follows. 

Zagalsky et al. [16] introduce Example overflow , which allows de-
elopers to search for code snippets starting from provided keywords,
hich in turn are used by the system for retrieving code snippets from a

ocal SO dump. Similarly to our approach, the search function is based
n Apache Lucene even though the outcome of Example overflow consists
f embeddable code, whereas PostFinder is able to retrieve full posts that
re related to the user context. 

Seahawk [15] has been developed to retrieve SO discussions, which
re linked to the source code being developed. The search mechanism
xploits code similarity techniques essentially based on TF-IDF. The
ostFinder search mechanisms are instead based on different boosting
eatures that are considered when creating queries and when execut-
ng them atop of Apache Lucene. de Souza et al. [14] present a tool
eing able to recommend a ranked list of pairs of SO questions and
nswers based on the user query, which consists of a list of terms. Fur-
hermore, the approach also allows one to classify SO posts according
o defined labels like how-to, debug corrective , etc. The main difference
ith PostFinder relies on the way queries are defined. In particular, in
ostFinder queries consist of the whole developer context, instead of
nly lists of terms explicitly defined by the user. 

AnswerBot [31] is an automatic approach aiming to summarize an-
wers coming from Stack Overflow, given a specific question. The re-
rieval of relevant question is performed by exploiting word embeddings
echniques combined with classical IDF metrics. To reduce information
verloading, AnswerBot filters the answers by following different cri-
eria, i.e., query related features, paragraph content features, and user
elated features. 

Rigby and Robilliard [32] propose ACE, a tool that mines an input
O dump in order to find relevant elements in the code. ACE relies on
 fully text-based analysis mechanism to identify and create indexes of
he so-called salient element in the code. Different from PostFinder, ACE
ses island parsers based on a set of regular expressions to approximate
ava qualified statements (i.e., package definitions, class names, and so
n). 

MFISSO [33] is a system that exploits natural language processing
nd clustering techniques to obtain facets from the user’s query, i.e.,
oncepts expressed by the query. There are SO features with 8 facets,
nd seven of these are static and determined by NLP techniques and us-
ng Apache Lucene indexes. Clustering is applied to retrieve the dynamic
acet by labeling titles, text, and tags of the SO posts. Once MFISSO re-
rieves the initial results, a final user can refine this search by interacting
ith the system, i.e., changing the facets to be considered. Reversely,
ostFinder extracts the facets directly from source code. 

PostFinder distinguishes itself from current approaches that deal
ith the mining of Stack Overflow as it addresses different phases of

he whole searching process, i.e., Index Creation, Query Creation and
uery Execution. To this end, PostFinder attempts to effectively ex-
loit the well-defined indexing and searching mechanisms provided by
ucene to increase the exposure of queries to the indexed data. Never-
heless, we still believe that more investigations are needed to further
mprove PostFinder’s performance, e.g., by better employing the boost-
ng scheme. This is considered as an open research issue. 

Table 8 summarizes the functionalities as well as the availability of
he related Stack Overflow search engines. The table also reveals the
ationale behind the selection of FaCoY as baseline. The Availability col-
mn reports if the considered tool is available for download, including
eplication packages, and the legacy support provided by the authors.
s PostFinder performs search on source code, Code search identifies

ools that allow directly the usage of source code in the query. Further-
ore, since some of the examined approaches do not search over Stack
verflow expressed by Mining SO , a comparison with them is not fair.
verall, the table suggests that only the comparison with FaCoY is fea-

ible at the moment. 

.2. Code recommender systems and search engines 

Moreno et al. introduce MUSE, a practical tool to recommend code
xamples related to a specific function [36] . MUSE parses source code
o extract method usage, it simplifies examples and detects clones to
roup similar code snippets. Furthermore, it is able to rank recommen-
ation outcomes according to various characteristics, i.e., reusability,
nderstandability, and popularity. 

Strathcona [37] is a recommendation tool, which analyzes develop-
rs context from the structural point of view and suggests a possible
mplementation related to the task that they are developing. Strathcona
ses six heuristics based on inheritance hierarchy, field types method
alls, and object usage in order to build the query. The built query is
hen executed on a repository containing all possible usage of the APIs
nd it is built automatically from the context. Finally, Strathcona re-
rieves code examples, which can be navigated by the developer both
raphically and in a textual way. 

Aroma [38] is a code recommendation tool which analyzes the code
eing developed, and proposes a set of strictly related snippets as sugges-
ions. The first phase is a light-weight search which matches the featur-
zed query and stored methods. The resulting snippets are then ranked
nd pruned to achieve the maximum similarity, which is computed us-
ng the Jaccard index. The snippets are eventually clustered and inter-
ected to maximize the correlation with the original query as well as to
et a succinct snippet representation. This aims at reducing irrelevant
tatements as much as possible. 

In a recent work [39] , we present CrossRec, a recommender system
o assist open source software developers in selecting suitable third-
arty libraries. The system exploits a collaborative filtering technique
o recommend libraries to developers by relying on the set of dependen-
ies, which are currently included in the project being developed. Fol-
owing the same line of reasoning, we developed FOCUS [3] to provide
PI function calls and code snippets. CrossRec uses a 2D ratings matrix

o perform recommendation, while FOCUS exploits a 3D context-aware
atings matrix. We suppose that more dimensions can be added to the
ating matrix, in order to incorporate more input data. 
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Sourcerer [40] is a code search tool mainly based on Lucene. Source
ode is indexed according to the included keywords and by considering
ngerprints, which summarize code snippets in vectors. Then, Sourcerer
aps the developers of each snippet in a matrix consisting of developer-
ocument entries. Moreover, the tool can categorize developers with
est skills according to their contributions. 

CodeHow [41] is a code search engine specifically conceived to parse
PIs online documentation by analyzing the user’s query. The tool re-

rieves and parses information coming from the documentation by ap-
lying the standard NLP techniques, i.e., text normalization, stop words
emoval and stemming. Then, CodeHow finds similarities between the
ser’s query and the related APIs by employing adoption of an infor-
ation retrieval technique, called the Extended Boolean Model (EBM),

nd ElasticSearch was exploited as the main indexing and searching plat-
orm. 

PostFinder can be combined with the previous tools and approaches
ith the aim of providing developers with recommendations consisting
f both source code and related discussions retrieved from Stack Over-
ow. 

.3. Code wrapping technique 

The code wrapping technique has been used in some other
ork to make source code more comprehensive. Subramanian and

olmes [42] developed an approach that can parse short code snippets
o effectively identify API usage. The goal is to perform snippet analysis
o extract structural information from short plain-text snippets that are
ften found in Stack Overflow. An opportune code wrap of methods and
lass is made to let the parser work properly. 

Similarly, an iterative and deductive method of linking source code
xamples to API documentation has been proposed [43] . Starting from
 Stack Overflow post, the tool is able to find the links among API
sages and API documentation. Source code is properly wrapped us-
ng class and method declarations. To resolve the vocabulary mismatch
roblem when dealing with free-form code search queries, Sirres et al.
19] present an approach that leverages common developer questions
nd the associated expert answers to augment user queries with the rele-
ant, but missing, structural code entities. This aims to improve the per-
ormance of matching relevant code examples within large code repos-
tories. The tool removes ellipses and wraps code snippets by using a
ustom dummy class and method templates to make it able to parse by
tandard Java parsers. 

PostFinder takes one step further to make code compilable by tracing
ack to the original libraries and augmenting the code with relevant
mports. In this way, we are able to considerably expand the search
cope. This explains why for many cases, PostFinder is able to provide
elevant code while FaCoY cannot retrieve any results. 

. Conclusions 

We introduced the PostFinder approach to provide highly relevant
O posts, given an input code snippet as the context. PostFinder ad-
resses both the problem of adequately indexing SO posts, and that of
utomatically creating queries in a transparent manner for the devel-
per. In particular, PostFinder performs different augmentations of SO
osts for indexing them, and of input contexts for creating correspond-
ng queries. 

To study the performance of PostFinder, we performed two different
ser studies. The first study has been done in order to understand which
ombination of the conceived augmentations is the best one in terms of
ostFinder performance. While the second one, which is a larger user
tudy has been done to compare PostFinder with FaCoY. The experimen-
al results show that PostFinder outperforms the corresponding module
f FaCoY, which is devoted to searching SO posts that are relevant with
nput developer contexts. 
The implementation of PostFinder is twofold. First, we already in-
egrated it into the Eclipse IDE to directly support developers in real-
orld settings. Second, the tool can be used to substitute the module for

earching Stack Overflow posts by FaCoY, and we are now working on
he replacement, aiming to boost up the system’s overall performance. 

To showcase our contribution, we evaluated PostFinder using dif-
erent metrics and assessed the relevance of the retrieved posts com-
ared to those obtained by the baseline. The results confirm that the
mprovement of our tool is significant and meaningful. Our future re-
earch agenda focuses on performing further evaluations, especially to
ompare PostFinder with those approaches that rely on general-purpose
earch engines and that focus only on the query creation phase (e.g.,
ROMPTER [4] ). Last but not least, though our proposed approach
orks well given the context, we still believe that its performance can
e further improved, e.g., by better exploiting the boosting scheme. We
onsider this as future work. 
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