Check for
Updates

An Empirical Study on Code Coverage of Performance Testing

Muhammad Imran Vittorio Cortellessa Davide Di Ruscio
University of L’Aquila University of L’Aquila University of L’Aquila
L’Aquila, Italy L’Aquila, Italy L’Aquila, Italy
muhammad.imran@graduate.univaq.it vittorio.cortellessa@univagq.it davide.diruscio@univagq.it
Riccardo Rubei Luca Traini

University of L’Aquila
L’Aquila, Italy
riccardo.rubei@univaq.it

ABSTRACT

Performance testing aims to ensure the operational efficiency of
software systems. However, many factors influencing the efficacy
and adoption of performance tests in practice are not yet fully un-
derstood. For instance, while code coverage is widely regarded as
a key quality metric for evaluating the efficacy of functional test-
ing suites, there is limited knowledge about the types and levels
of coverage that performance tests specifically achieve. Another
important factor, often perceived as a barrier to the broader adop-
tion of performance tests yet remaining relatively unexplored, is
their extended execution time. In this paper, we analyze the per-
formance testing suites of 28 open-source systems to study (i) the
magnitude of their code coverage, and (ii) their execution time. Our
analysis shows that performance tests achieve significantly lower
code coverage than functional tests, as expected, and it highlights
a significant trade-off between coverage and execution time. Our
results also suggest, in perspective, that automated test generation
methods might not ensure affordable performance testing due to
the associated time cost. This finding poses new challenges in the
field of performance test generation.

CCS CONCEPTS

« Software and its engineering — Empirical software valida-
tion; Software testing and debugging; Software performance.

KEYWORDS

Performance Testing, Code Coverage, JMH, Microbenchmarking

ACM Reference Format:

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei,
and Luca Traini. 2024. An Empirical Study on Code Coverage of Performance
Testing. In 28th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2024), June 18-21, 2024, Salerno, Italy. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3661167.3661196

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE 2024, June 18-21, 2024, Salerno, Italy

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661196

48

University of L’Aquila
L’Aquila, Italy
luca.traini@univaq.it

1 INTRODUCTION

Software performance is a critical non-functional aspect of soft-
ware systems. Deterioration in performance can present significant
business challenges, including user dissatisfaction [6] and finan-
cial losses [26]. To address these concerns, organizations typically
employ performance testing [34], a technique designed to evalu-
ate the software system’s performance before its deployment in a
production environment. However, the practical implementation
of performance testing faces challenges.

One of such challenges is associated with the development and
maintainability of performance testing suites. Creating these tests
often requires specific technical expertise that may not be readily
available to the average developer [5, 30]. Additionally, software
development processes tend to prioritize functional development
activities, which can lead to limited resource allocation for quality
assurance tasks [2, 5], such as the creation and maintenance of
performance tests [30]. These factors collectively contribute to the
oversight of performance assurance activities, leading to potential
implications on the quality of performance testing suites.

The traditional way of assessing the quality of a testing suite in-
volves using code coverage. This metric gauges the extent to which
the testing suite executes the software source code, serving as a
simple yet effective indicator of the testing suite quality. Although
the validity of code coverage as a measure of test quality is still
a matter of debate [11, 14], it remains the de-facto standard for
evaluating testing suites in practical scenarios. Code coverage has
traditionally been used and studied in the context of functional
testing [11, 14, 15, 27] (e.g., unit tests); however, there are increas-
ing indications that its relevance extends to software performance
testing as well. For instance, researchers have shown that code
coverage significantly impacts the test capability of triggering per-
formance bugs [10], and that extending coverage in performance
testing suites can enhance their effectiveness in discovering perfor-
mance issues [16].

Despite these indications, there is still limited knowledge about
the code coverage achieved by performance tests. To address this
gap, this paper presents the first empirical study to investigate the
coverage of performance testing suites. Our methodology involved
selecting 28 Java software systems on GitHub that featured JMH
benchmarks, a widely used form of performance tests in Java soft-
ware. We then conducted a comprehensive repository analysis to
extract all Java methods within these software systems. Finally, we
executed 2,190 JMH benchmarks on these Java software systems

https://doi.org/10.1145/3661167.3661196
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3661167.3661196
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661167.3661196&domain=pdf&date_stamp=2024-06-18

EASE 2024, June 18-21, 2024, Salerno, Italy

to determine the methods covered by performance testing. Our
findings revealed that JMH benchmarks achieve a limited code cov-
erage of about 8.8% on average, and have coverage that is 4 times
less than that of JUnit tests.

Another important factor typically at odds with code cover-
age is the time cost of test execution [35]. Indeed, testing suites
that achieve higher code coverage generally require more time-
consuming tests and/or a larger number of tests and, therefore, a
higher execution time. This can be particularly problematic for per-
formance tests, which are widely known for their time-consuming
nature [17], as they often necessitate a certain degree of repetition
to deal with the inherent variability of performance measurements
[19, 24, 31]. Given the significance of the time cost in performance
testing and its inherent relation to code coverage, we conducted an
additional analysis to investigate this aspect. Our results indicate
that JMH suites are significantly more time-consuming than JUnit
suites, with an average execution time of 62 times higher.

The main contributions of this paper are:

o A first comprehensive empirical investigation on perfor-
mance test coverage, in particular we rely on method-level
coverage to evaluate the coverage of testing suites.

o A first evaluation of the execution time cost of performance
testing suites across multiple software systems.

e An empirical comparison between performance and func-
tional testing, regarding code coverage and execution time
cost.

o A replication package [13] containing the dataset we mined
in the study, the scripts we used to perform the data analysis,
and the detailed results of our analysis.

2 STUDY DESIGN

This study investigates the code coverage achieved by performance
tests and their time cost, given the relevance of this aspect for the
practical usage of performance tests. To aid the interpretation of
our results, we also conduct a comparative analysis with functional
tests to assess the differences both in terms of code coverage and
time cost.

We focus on JMH microbenchmarks and JUnit tests due to their
extensive use within the Java ecosystem. JMH is the de-facto stan-
dard for developing and running microbenchmarks, a widely known
form of performance tests in Java software [23] while JUnit stands
as one of the most popular libraries for implementing and executing
Java functional tests. In this study, we aim to address the following
research questions (RQs):

> RQ1: To what extent do performance tests cover the source code
of software systems? Our objective is to evaluate the extent of code
coverage achieved by performance testing suites in various soft-
ware systems. We will assess coverage from multiple perspectives,
including overall and direct coverage. Additionally, we intend to
examine the level of overlap among different tests in their coverage
of identical sections of the source code.

> RQy: How does the code coverage achieved by performance testing
compare to that of functional testing? We aim to gain insights into
the differences between performance test coverage and functional

49

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and Luca Traini

test coverage. Our analysis will encompass suite-level and test-level
coverage and the extent of coverage overlap within testing suites.

> RQs3: What is the time cost of performance testing? We assess the
time cost incurred during the execution of performance tests. We
will measure the overall time consumed at suite-level and test-level,
thus providing insights on the temporal impact of performance
testing at different granularity.

> RQy4: How does the time cost of performance testing compare
to that of functional testing? We aim to explore the differences in
execution time between performance testing suites and functional
testing suites. This investigation aims at comparing the time re-
sources required by these two types of testing within the software
development context.

2.1

As shown in Fig.1, the executed process consists of three main steps:
(i) preliminary selection of the software systems to analyze, (ii) raw
data collection, and (iii) data wrangling phase, as described in the
following subsections.

Main steps of the performed study

Preliminary Selection (I): We selected an initial pool of 40 Java
software projects hosted on GitHub. This selection was guided
by four key considerations: (i) these systems are well-established
Java libraries that cover a broad spectrum of domains, (ii) each
of these projects includes JMH benchmarks and JUnit tests, (iii)
we are familiar with the commands necessary to execute the JMH
microbenchmarks for these systems, and (iv) they have been used
in prior work [20-22, 31, 32], thus supporting their appropriateness
in this context.

Raw Data Collection (2): Our data collection combines both static
code analysis and dynamic analysis of test executions. In particular,
we collected three distinct types of raw data from each Java system,
i.e., sreML XML files, MH/JUnit callstacks, and JMH/JUnit reports.

> srceML XML files: We transformed each Java source file into a
structured XML format using srcML toolkit [9]. This transformation
facilitates a structured and reliable static analysis of the source code,
enabling a straightforward extraction of relevant code information,
such as the list of Java method signatures that appear in the project.
In this process, we encountered a specific issue with two projects,
namely apache hive and eclipse jersey, where the srcML toolkit
generated incomplete XML files that omitted the representation of
specific Java source files. Thus, we decided to exclude these two
projects from our analysis. As a result, we successfully parsed the
source code of 38 of our initially selected projects.

> JMH/JUnit callstacks: We rely on dynamic analysis to iden-
tify the code components covered (or not covered) by JMH/JUnit
tests. We prefer dynamic analysis over static analysis due to several
limitations of the latter [33], such as its inability to reliably de-
rive method invocations. Specifically, we employed async-profiler!
to profile the execution of JMH benchmarks and JUnit tests, cap-
turing their respective call stacks. The profiler is configured to
record call stacks with a 1-nanosecond sampling interval. A call
stack reports the currently active methods in the CPU and the se-
quence of their invocations. For illustration, consider Fig. 2, which
presents a call stack from the execution of a JMH benchmark
named skinnyEncodeIntoCompressedByteBuffer. Through this call

!https://github.com/async-profiler/async-profiler

https://github.com/async-profiler/async-profiler

An Empirical Study on Code Coverage of Performance Testing

EASE 2024, June 18-21, 2024, Salerno, Italy

- Raw Data Collection @ Data Wrangling @
= Applying static & dynamic analysis to generate raw artifacts Processing raw artifacts to extract the information required to study coverage
-
o B fmmm——————— S___-;_I_f __________ - e e E e m e mmm——— - A
40 Java Projects from Previous Studies oo _[a_"(i _n_a ZSI_S __________ o 1
(include JMH Dependency) :' ': : :
[ava) Drop 5 Drop 7\ Methods from
! Q—Parse*@_mﬁ"d xmL, | I oo sm;[‘),'"e:s‘ —.D—unparsed-b. || 28 Projects !
1 XML 1 | XML projects | 17 (187,319 methods) !
140 Java Projects- Parse using 38 valid XML files | 1 sicMLParser "+ J 1
1 Extracted srcML (81,589 Units) 1 1 1
Preliminary 1 91,371 Java files Java File->Unit | 1 1
q ~J| [* U
Selection ==
1

Inspection of the projects

&)

Y/

Check for Executable
JUnit Tests, and
JMH Benchmarks

1

1

1

1

1

| c

1 2,190

J JMH Benchmarks
I 1

1

1

1

]

1

1

1

Execute

Source code profiling
using async-profiler

s O

Execute
L 256,233
Clone repositories T @
locally

JMH Reports

JMH call stacks
(12.06 million)

JUnit call

(8.79 million)

Y Methods executed !
{ by IMH benchmarks !

JMH
call stacks |
Junit
call stacks | Q

r it
|

o feay 4
=

R e;::‘hi; -J Reports Parser

Figure 1: Main steps of the performed study.

stack, we can deduce the sequence of executed methods within
the benchmark. From Fig. 2, we can observe that the benchmark
first calls encodeIntoCompressedByteBuffer, which subsequently in-

vokes encodeIntoByteBuffer, and this is followed by writeCountsDiffs,

and so forth.

After executing each testing suite, we produced a distinct file
that catalogs all unique call stacks observed during the execution.
However, during this procedure, we faced issues attaching the
profiler to the JMH benchmarks of 7 projects. Consequently, we
excluded these projects from our analysis. We faced similar issues
for JUnit testing in 9 projects. As a result, we collected 12.06 million
unique call stacks for JMH benchmarks from 31 systems, and 8.79
million unique call stacks for JUnit tests from 19 projects.

> JMH/JUnit reports: We collected JMH and JUnit reports to ob-
tain two primary information: (i) the list of JMH and JUnit tests

public class HdrHistogramEncodingBench { O
@Benchmark Benchmark
public void{skinnyEncodeIntoCompressedByteBuffer()]|{

uffer.clear(); directly Benchmarked project method

|skinnyHistngram.encudEIntuCnmpressedByteBuffer-(buffer) ;|
T

.lang.Thread.run; O\
.util.concurrent.ThreadPoolExecutor.Worker.run; C)

java.util.concurrent.ThreadPoolExecutor.runWorker;

java.util.concurrent.FutureTask.run;

java.util.concurrent.Executors$RunnableAdapter.call;

© java.util.concurrent.FutureTask.run;

/ java.lang.reflect.Method.invoke;

3 sun.reflect.DelegatingMethodAccessorImpl.invoke;

9 sun.reflect.NativeMethodAccessorImpl.invoke;

0 _sun.reflect.NativeMethodAccessorImpl.invoke0;

1 _bench HdrHistogramEncodingBench. skinnvEncodeIntoCompressedByteBuffef:
1 Histogram 4

nnyHistogram

or_g._Harﬁi_st_og_ra_m._SELEnE/H_iS_to_gr_aﬁ.v_Jr_lt_eC_ou_nt_slsiff_s;_ X

5 org.HdrHistogram.SkinnyHistogram.putInt;

6 java.nio.HeapByteBuffer.put;]Non-project

/ java.nio.Buffer.nextPutIndex calls

W N R

Non-project
methods
calls

public class SkinnyHistogram extends Histogram {

synchronized public int
encodeIntoCompressedByteBuffer(final ByteBuffer targetBuffer) {
int uncompressedLength =

this.encodeIntoByteBuffer(intermediateUncompressedByteBuffer);
..... benchmarked project method

Figure 2: (a) Example invocation of a method from a bench-
mark. (b) Benchmarked method definition and indirect call
to another project method. (c¢) Example of a collected call
stack.

and (ii) their corresponding execution times. A naive approach to
obtaining the execution time of JMH benchmarks would involve
their actual execution. However, this methodology would be ex-
tremely time-consuming and, therefore, impractical for our study.
Instead, we take advantage of the time-based nature of the JMH test
to bypass the need for actual execution. In particular, JMH allows
developers to configure the number of repetitions for each JMH test,
which eventually defines its final execution time. To obtain the JMH
configurations for each JMH test, we applied an approach similar to
a prior work [31], exploiting a JMH feature that allows us to over-
write configurations on the fly via CLI arguments. We executed
each JMH test while reducing the execution time through JMH
CLI arguments?, and we store the associated JMH reports, which
include the JMH configurations set by developers. To gather execu-
tion times of JUnit tests, we utilized the Maven Surefire plugin.
This plugin, an established instrument within the Java ecosystem, is
tailored explicitly for running JUnit tests through Maven. Executing
the tests, it produces XML reports that break down the execution
time for each JUnit test.

We conducted all tests on a dedicated machine equipped with
Linux Ubuntu 18.04.2 LTS, powered by a dual Intel Xeon CPU E5-
2650 v3 at 2.30 GHz, boasting 40 cores and 80 GB of RAM.

Data Wrangling (3): To address our research questions, we focus
on three key pieces of information for each Java system: (i) the
entire set M of Java methods appearing in source code, (ii) the
set My of methods covered by each (JMH/JUnit) test ¢, and (iii) the
execution time e; of each (JMH/JUnit) test t. In the following, we
describe the process used to derive this information starting from
the raw data.

> Java methods: To extract the fully qualified names of all meth-
ods within each project, we parsed the sreml XML files using the
Ixml library and employed XPath queries. While executing XPath
queries on XML files, facilitated by Ixml*, we encountered a lim-
itation regarding the size capacity. Specifically, there was a size
threshold (i.e., 6,800 srcML units) surpassing which Ixml could not
evaluate the given XPath expressions. This constraint necessitated
the exclusion of three projects from our analysis. Ultimately, this

2We refer the reader to [31] for a detailed explanation of this process.
3https://maven.apache.org/surefire/maven- surefire-plugin/
“https://lxml.de/

https://maven.apache.org/surefire/maven-surefire-plugin/
https://lxml.de/

EASE 2024, June 18-21, 2024, Salerno, Italy

Resezfrch Employed metrics
questions
M,) Y
Coverage Cr= ‘Um‘ dol e, |u,m‘n,,\
RQ1,RQ: :
Overlap Rati ORy = (Ui jerizs (Mi 0 M)
verlap Ratio = T
Y [Urer Mil
M,
RQ: | st 5y Teer M
7|
Total Execution Time TETr = ;(lr
c
RQ;3, RQ4 = -
Average Execution Time AETy = "%fl t

Table 1: Employed metrics

process resulted in extracting a set M of Java methods for each
Java system. In total, we extracted 187,319 methods from 28 distinct
systems as reported in Table 2, where detailed information about
the amount of Methods, Benchmarks and Unit Tests per project is
provided.

> Test coverage: We leveraged the JMH and JUnit call stacks
to identify the Java methods covered by each JMH benchmark
or JUnit test. For each test t, we extracted the set M; of project
methods executed within . To achieve this, we iterated over all
the project methods in M and checked if each method appeared
after t in at least one call stack. A method m is considered cov-
ered by test t if it is invoked either directly or indirectly by ¢
(i.e, m € M;). Additionally, for each test t, we created a sep-
arate set M; that only contains the methods directly called by
t. In other words, for each test t, we select the methods in M
that appear immediately after ¢ in the call stacks. For instance,
in the example shown in Fig. 2, the method directly invoked by
the benchmark skinnyEncodeIntoCompressedByteBuffer would be
encodeIntoCompressedByteBuffer, but not encodeIntoByteBuffer.

At the end of this process, for each JMH benchmark or JUnit
test ¢, we obtain two sets: M; representing methods covered either
directly or indirectly by t, and M; representing methods directly
covered by ¢.

> Test execution time: The JMH configuration set by developers
determines the execution time for a JMH benchmark. This config-
uration defines the levels of repetitions (i.e., forks, iterations, and
invocations) used during benchmarking to address the inherent
variability of performance measurements [19]. Invocations are re-
peated benchmark executions within a time-bound iteration, while
a series of iterations forms a fork. Each fork usually comprises two
distinct types of iterations: warmup and measurement iterations.
Warmup iterations are intended to bring the fork into a steady
state of performance [19, 31], while measurement iterations are
the ones that are actually used for performance assessment. For
each benchmark ¢, we first extract the JMH configuration from
the JMH reports, i.e., the warmup iteration time w, the measure-
ment iteration time r, the number of warmup iterations wi, the
number of measurement iterations i, and the number of forks f.
Then, we compute the associated execution time e; accordingly:
er=(w-wi+r-i)f.

For JUnit tests, we instead directly extracted the execution time
e; for each test t from the Surefire XML reports.

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and Luca Traini

51

2.2 Employed metrics

Our investigation utilized various metrics, each pertinent to spe-
cific research questions as shown in Table 1, and detailed below.
By answering RQ; and RQj, we want to analyze and compare
the coverage of performance tests and functional tests. To guide
this analysis, we have introduced three key metrics, i.e., Coverage,
Overlap Ratio, and Scope as defined below.

Coverage: We rely on method-level coverage to assess the cover-
age of performance/functional testing suites. We chose this coarse-
grained metric rather than a fine-grained one, due to the compat-
ibility issues between JMH and traditional statement-level code
coverage tools (see Section 5 for details). A method is considered
as covered by a testing suite if it is executed by at least one test, i.e.,
if there exists at least one test t such that m € M;. In Table 1, we
formally define the coverage metric Ct, where T represents a test-
ing suite, M; the set of methods covered by a test ¢ € T and M the
entire set of methods of the project. Cr represents the proportion
of project methods covered by at least one test. This coverage defi-
nition includes methods that might be either directly or indirectly
called within a test execution, thus, we also introduce a notion of
direct coverage. A method m is defined as directly covered by a suite
T, if there exists at least one test t € T such that m is directly in-
voked by t,i.e., m €]\;It. We denote direct coverage as éT, as defined
in Table 1. To answer RQ1, we evaluate performance testing suites
considering both coverage (Cr) and direct coverage (Cr). For RQ2,
we apply the same metrics to assess the coverage of JUnit testing
suites.

Overlap Ratio (ORt): This metric measures the degree of redun-
dancy within a JMH/JUnit testing suite. In particular, ORr quantifies
the extent of coverage overlap across different tests, thus provid-
ing a measure of redundancy in the testing suite. Table 1 provides
a formal definition of this metric, where T represents a (JMH or
JUnit) testing suite, i and j denote two distinct tests that belong
to T, M; represents the set of methods covered by test i, and M;
represents the set of methods covered by test j. The numerator in
ORt denotes the methods covered in more than one test, while the
denominator denotes all methods covered by the testing suite. ORt
values range from 0 to 1, where 0 indicates no overlap, i.e., each
test cover distinct methods, and 1 indicates high test redundancy,
i.e., all the methods are covered more than one test.

Scope (St): This metric evaluates the coverage of performance
and functional tests on an individual test basis. As detailed in Table
1, measures the average number of methods that an individual test
covers within a testing suite. We use this metric because previous
work has demonstrated that high coverage of tests (i.e., scope)
tends to have a positive impact on the capabilities of uncovering
performance issues [10].

By answering RQ3 and RQ4, we analyze the time needed to per-
form tests belonging to a given project and compare the execution
time of JMH benchmarks and JUnit tests. To this end, we defined
the metrics Total Execution Time and Average Execution Time as
discussed below.

Total Execution Time (TETr): It quantifies the total time cost of
a (JMH or JUnit) testing suite T. It is derived by accumulating the
execution times e; for all tests ¢t € T (see Table 1).

An Empirical Study on Code Coverage of Performance Testing

Average Execution Time (AETr): This metric provides insights
about the average execution time of tests within a suite. Its defini-
tion is outlined in Table 1, where |T| represents the number of tests
in the suite T.

3 RESULTS DISCUSSION

In this section, we present and discuss the results of our analysis. As
illustrated in Table 2, we analysed 2,190 JMH benchmarks from 28
software projects, and 256,233 JUnit tests from 19 software projects.
For RQ1 and RQ3, which focus solely on performance testing, we
consider all the 28 projects. For RQ2 and RQ4, which compare
performance and functional testing suites, we excluded 9 projects
due to technical issues encountered during the JUnit data collection
(see Section 2.1 for details).

3.1 RQ;: To what extent do performance tests
cover the source code of software systems?

To answer RQq, we centered our analysis of JMH benchmark cov-
erage around two key metrics: (i) Benchmark Coverage, which
measures the extent of method coverage by JMH benchmarks (Cr),
also including direct coverage (Cr); (i) Overlap Ratio (ORT), which
assesses the degree of redundancy in method coverage across dif-
ferent benchmarks.

Benchmark Coverage: Our analysis showed that the extent of
coverage by JMH benchmarks in software projects is relatively low
compared to the total number of methods. Indeed, Cr averaged 8.8%
with 2.1% of methods directly covered (Cr) across all 28 projects.

Figure 3 shows the distribution of benchmark coverage (Ct)
across the 28 projects we examined. The y-axis represents the per-
centage of methods benchmarked in each project, while the x-axis
enumerates the projects. The project with the highest coverage is
panda, where 48.82% of project methods are covered. On the other

Table 2: Java systems overview

GitHub Methods Benchmarks Unit Tests

Proj Domain
oject Stars (Total) (Total) (Total) oma

arrow 12600 3789 34 869 Analytics Tools
byte-buddy 5800 5046 39 6357 Code Generation
cantaloupe 259 3475 103 3063 Computer Graphics
client_java 2100 386 33 217 JVM Tools
commons-bcel 223 3132 3 137 JVM Tools
crate 3800 24155 39 - Database Systems
eclipse-collections 2300 15219 515 - Programming Utility
fastjson 25500 17524 4 4979 Parsing Library
feign 9100 979 8 913 Web Development
HdrHistogram 2100 780 12 147 Analytics Tools
imglib2 278 3432 25 635 Computer Graphics
iri 1200 1554 3 398 Data Structures
jdbi 1800 2379 76 1428 Database Systems
jetty.project 3700 18060 48 - Web Development
jgrapht 2400 3782 51 2416 Programming Utility
jooby 1600 3331 3 485 Web Development
kafka 26000 16157 27 - Data Streaming
logbook 1600 811 20 564 Web Development
netty 31900 16615 221 - Network Applications
objenesis 568 207 13 45 Programming Utility
panda 247 1479 4 61 Analytics Tools
protostuff 2000 3312 16 - Programming Utility
r2dbc-h2 191 291 8 259 Database Systems
rdf4j 331 14041 14 - Database Systems
RxJava 47300 8282 217 - Programming Utility
SquidLib 439 5663 236 73 Computer Graphics
tinkerpop 1800 7753 57 - Database Systems
vert.x 13800 5685 41 4095 JVM Tools

EASE 2024, June 18-21, 2024, Salerno, Italy
50

20

Benchmark Coverage (%
N w N
o o o o
7o,
e I
(Y |
gry |
1
v 1
O I
7 I

| | . - | |
N PCIZESES LA XA 2,08 > Q QA
Sy ST TETEEETEF TS NEITE
FFTIT SESESE “OLELF LS TITEE
LG " SF € 9 P LRFF T8¢
SOOI 5@ > ¥ & &9 @:§
SESE &K Xy
s & T
(«}&
1]

Figure 3: Coverage (Ct) of benchmarks across projects.

hand, the jooby project has the lowest coverage (0.27%). The anal-
ysis indicates diverse levels of coverage among the systems with
a standard deviation of 9.2%. By excluding the panda project, con-
sidered as an outlier, from our analysis, the benchmark coverage’s
standard deviation was 4.9%. This variation can be attributed to
differences in the size of the projects (in terms of their number
of methods, benchmarks and unit tests), to the particular develop-
ment and testing practices adopted, and to the specific performance
requirements and constraints.

A detailed look at direct benchmark coverage, depicted in Fig-
ure 4, reveals a similar trend of varied coverage. The figure shows
a sensibly lower variation in the direct coverage compared to the
overall coverage. However, the average direct benchmark coverage
across many projects is around 2%, substantially lower than the
overall benchmark coverage. This indicates that methods directly
called by benchmarks often result in a large number of indirect
invocations. The standard deviation for direct benchmark coverage
is 1.7%, which also indicates a lower spread than the one in overall
benchmark coverage. The observed difference between direct and
indirect coverage may be explained by developers’ tendencies to tar-
get high-level methods during performance testing. Such high-level
methods often result in a higher number of indirect invocations,
which might broaden the overall benchmark coverage.

Benchmark Coverage (%)
o N N w » o o

Oy, I

o,

o I

~ |
gy |

7
Scy I

% I

- [
S TP LLES ST TIDIFDLILEIPO9 KN
OFRESITSELIS RERSESTELEST TS
TS LG OFEVEE LECEF F IS R e
IS I@ FS S O L Y T 8§
SO S 5 3 & QX DS
SFSE § < 3
§ g S <
S & T
N
O
(2]

Figure 4: Direct coverage (Cr) of benchmarks across projects.

EASE 2024, June 18-21, 2024, Salerno, Italy

°
o

0.2

Overlap Ratio
I o
= o
v I

0.0

NPT LLSS LOILAP XD 2,08V » Q
SEL ST G TS TEEEINTTSS
NI Q NN S SOT v OLOIYIRKRD
TILG OF VS CESES P8 ¥ST
TISES J& FS &% O X RIY T oy
LSLO § & S $ & 9§
SRS < o R
et &R €

s & T

S

IS

Figure 5: Overlap Ratio (ORr) of benchmarks.

Overlap Ratio: Figure 5 illustrates the degree of overlap in method
coverage, which represents the redundancy in method coverage
across different benchmarks in the project. The overlap ratio for
studied projects ranges from a minimum of 0.09 in commons-bcel to
a maximum of 1 in byte-buddy. In general we can observe relatively
high overlaps, with an average of 74% methods covered by more
than one benchmark. While this average suggests a high degree of
redundancy within performance testing suites, this may also reflect
the attempts of developers to test a method under various workloads
[28]. Nonetheless, our analysis suggests room for improving the
efficiency of performance testing by reducing unnecessary overlap.

3.2 RQ,: How does the code coverage achieved by
performance testing compare to that of
functional testing?

In order to address RQ2, we analyzed the coverage of JUnit tests and
subsequently compared it with the coverage of JMH benchmarks
within our dataset of software projects.

Comparison of JMH Benchmarks and JUnit Tests Coverage: Fig-
ure 6 illustrates a comparison between the coverage achieved by
performance testing and that of the functional testing. Clearly, the
percentage of methods covered by JUnit tests tends to be higher
compared to the ones of JMH benchmarks, thus indicating a broader
coverage for functional testing in the projects under study. On av-
erage the coverage achieved by a performance testing suite is 4
times less than that of a functional testing suite (10.4% versus 41.3%).
The JUnit tests coverage is significantly higher in many projects
(like arrow, cantaloupe, fastjson, iri, jooby, jgrapht, and vert.x) as
compared to those covered by JMH benchmarks. However, it is also
interesting to note an exception, i.e., the SquidLib project, where
not only the JUnit Test coverage is relatively low, but also the JMH
benchmark coverage exceeds the JUnit tests coverage. Upon closer
examination of the project’s code, we attributed this anomaly to the
performance-driven focus of the project. Specifically, SquidLib is a
Java library crafted to serve as a comprehensive toolkit for the de-
velopment of various gaming applications. This orientation likely
leads to a greater priority being placed on performance testing
over unit testing, thereby resulting in a more extensive benchmark
coverage.

Similarly, Figure 7 provides a comparison of direct coverage
between JMH benchmarks and JUnit tests across the same set of

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and Luca Traini

53

70 mmm JMH Benchmarks B JUnit Tests

60

50
S
g40
g
[}
>
830
20
) I II I I
R TR
o O <L L I 9 O Q
ST SSLETETEFESTETIS&F
FSSI3FTFTS S FEg LSS
R SN & 9 L P LS
9 & o 9 @ N8 U2
SEEE S
S T

Figure 6: Comparison of coverage (Cr) of JMH Benchmarks
and JUnit Tests across projects.

projects. The trend is similar to the previous one. Few exceptions
appear also here, such as (again) SquidLib, where direct benchmark
coverage exceeds the direct coverage by unit tests. We also note
substantial differences across projects in terms of the direct cov-
erage of methods by both JMH benchmarks and JUnit tests. For
instance, in the r2dbc-h2 project, the direct coverage of JUnit tests
reaches 30%, whereas the one of JMH benchmarks is nearly 5%. This
observation emphasizes the idea that, while functional tests might
aim for broad coverage to ensure overall correctness, performance
benchmarks often target specific, performance-sensitive parts of
the code.

Overlap Ratio Comparison: Our analysis reveals that JMH bench-
marks exhibit a more significant overlap in coverage compared to
that of the JUnit tests. In particular, we found that JMH suites have
higher overlap in coverage compared to that of the JUnit suites in
68% of the projects. We do not report the complete results in the
paper due to space concerns, however we make them available in
our replication package [13].

Scope Comparison of JMH Benchmarks and JUnit Tests: Figure
8 compares side by side, the scope (St) of JMH benchmarks and
that of the JUnit tests. While the coverage of performance testing
suites is generally lower than that of functional testing suites, the
average coverage (i.e., scope) of individual benchmarks is notably

mmm JMH Benchmarks s JUnit Tests

Coverage (%)
N N N N

o (] o (9] o (&
|
|
1
|
|
.|
||
|
(|

2 O & < v LSS X 2 0 v QN
TIEFISTSSITELSTFIANI &
N L@@ &S S @0 .8 g £ ¢ ¥ o
TS 3 Y §S$SSF eSS
Y SO SR PSRN - (SR SIS
(%] . < N2 Y [\2
SIS & S ¥ 9
S o5 £ <
DS §
8§ T

Figure 7: Comparison of direct coverage (Cr) of JMH Bench-
marks and JUnit Tests across projects.

An Empirical Study on Code Coverage of Performance Testing

300

mmm JMH Benchmarks s JUnit Tests

250

Scope
@
o

50 I
0 II_II - II. II | T I
s 3 R
R

S SIS RS & 3 v QN
STLTLSLES TEFESELSFSTE
F LT TFPAPHELS S N A N R
< ~/ % 9 o .& S S O .9 Q N
L Q@ & S S &
g XS & S S ~ 9S> o
¢ §@ 9 RS S [\
> & 5§ R

§ S
& T

/% I—

77, I

Time in hours
3 8 B

v,

o), I—
e I
|
o/ M

o I
(P

1y Sy I

/6>
c I
4

6, I

O I

S/ I

"0,

G- I
o
o I—

S IZESES LTI XFD.2.0 w2 L
O Le S &S0 S0 & Q& 'Y 9
LTS ROECIRSIN LSO 5.0 90 SR
SIS CE TS oL LG TLEES TILEE
FOSES G FS SR O L RET S
9See § 5@ ~ N Sy o §
SISE & < & o =
O OS o O @
@ kS ~
& & <
&

[
Figure 9: JMH total execution time.

larger. Specifically, JMH benchmarks have, on average, approxi-
mately three times larger scope than their JUnit counterparts. This
significant difference in the scope is more evident in projects like
panda and commons-bcel. These results, once again, suggest that
JMH benchmarks tend to target high-level methods, which leads to
a larger number of method invocations, whereas JUnit tests tend to
target lower-level methods. This finding is in line with our previ-
ous observation about the difference between direct and indirect
coverage (RQ1).

3.3 RQs: What is the time cost of performance
testing?

In this subsection, we present our findings concerning the execution

time of JMH benchmarks.

Total Execution Time: Figure 9 displays the time cost of perfor-
mance testing suites. On the y-axis, we report the total execution
time (TETr) in hours, using a logarithmic scale. The blue dashed
line depicts the overall average time which is about 29.3 hours.
The TETr distribution varies significantly from one project to an-
other, with some testing suites completing in just a few minutes,
while others require over 100 hours for execution. The less time-
consuming suite is the one of commons-bcel, which required only
90 seconds to run the benchmarks. Along with commons-bcel, only
other two projects kept the TETr under 6 minutes (i.e., 10”1 hours)

54

EASE 2024, June 18-21, 2024, Salerno, Italy

(namely, panda with 160 seconds and r2dbc-h2 with 280 seconds).
About the most time-consuming performance testing suites, few
ones exceeded 10 hours. Interestingly, two projects (squidLib and
rxJava) exceeded 10 hours but did not overcome the threshold
of 100 hours, which was required by three projects. In particular,
eclipse-collection required 401 hours, thus representing the most
time-intensive project for performance testing.

Average Execution Time: In Figure 10, the bar chart depicts the
average execution time of benchmarks (AETt) for each perfor-
mance testing suite. The dashed line shows the average AETT across
projects, which is 1391.12 seconds (about 23 minutes). A close exam-
ination of this chart confirms the diversity across projects observed
for TETT also holds for AETy. In particular, commons-bcel, which
was the least time consuming in terms of TETT, resulted in a rela-
tively low AETT of 30 seconds. Similarly, we can see that panda and
r2dbc-h2 maintained a low average execution time. Contrariwise,
eclipse-collections (515 benchmarks and an AETT of 2,805 sec-
onds) and netty (221 benchmarks and an AETy of 2,149 seconds) are
very time-consuming projects, equipped with a quite high amount
of benchmarks.

The most time-consuming performance testing suite is the one
of kafka, with an AETr of 26,503 seconds (about 7 hours per bench-
mark), followed by eclipse-collections. Interestingly, the perfor-
mance testing suite of kafka consists of a limited number of bench-
marks (i.e., 27), each of which is notably time-consuming. We inves-
tigated the JMH reports to understand the reasons behind these high
AETr values, and discovered that the likely reason is the extensive
parameterization [28] of kafka benchmarks.

3.4 RQ,: How does the time cost of performance
testing compare to that of functional testing?

This subsection compares the execution times of performance and
functional testing.

Total Execution Time Comparison: In Figure 11, we compare the
TETr of JMH and JUnit testing suites. As expected, the analysis
revealed that, in general, performance testing is significantly more
time-consuming than functional testing. For instance, by examining
SquidLib, the most time-consuming project for performance testing,
we observe that the TETr for the JMH suite is exponentially greater
than that of the JUnit suite (37,735 seconds versus 18.5 seconds). In-
terestingly, the least time-consuming project in terms of functional

Time in seconds
3. 3 3,

‘o, I
O,

e

> I

oy I

S I

Oy, I

Sy I

/6>

o I

%y .

6, I

Oy I

s
"0,

- I

“ho I

|

[
Figure 10: JMH average execution time.

EASE 2024, June 18-21, 2024, Salerno, Italy

testing is vert.x which requires 821 seconds, whereas the TETr for
the JMH suite is 1,640 seconds, i.e., more than twice the JUnit test
suite execution. We can notice comparable results if we analyze
less time-consuming projects. For instance, commons-bcel requires
90 seconds for the executing the whole JMH suite and reports a
TETr of 15.27 seconds for the JUnit suite. Another interesting case
is objenesis, which required half a second for executing the JUnit
testing suite, and 390 seconds for executing the JMH suite. Perfor-
mance testing suites have on average a time cost 62 times higher
than that of functional testing suites.

mmm JMH Benchmarks s JUnit Tests

Time in Seconds

N .S 3 OO
& CTLEES SSLSFS S
TS ® g S NS . LS
R S S L Q ¢ Yy &
g & & & S = S %
€ & ¢ 9 & I\
> P s € < o
e ers $
8 <

Figure 11: Total execution time comparison.

Average Execution Time Comparison: There is a significant dif-
ference in test-level execution time between JMH and JUnit tests
across all projects. We found that JMH benchmarks exhibit an av-
erage AETr of approximately 245.9 seconds. On the other side, the
average AETr of JUnit tests does not exceed 0.098 seconds. On aver-
age, an individual JMH benchmark demands about 2,507 times the
execution time required for executing one JUnit test. We report the
complete results related to AETT of JUnit tests in our replication
package [13].

4 IMPLICATIONS

This section discusses some implications of this study along with
some directions for future work.

For practitioners. This study gives clear evidence that a sig-
nificant portion of the codebase of many software systems lacks
performance assessment. As software evolves, these code areas may
become vulnerable to performance bugs that remain undetected
until released. One potential reason for this oversight could be the
limited availability of tools for performance test coverage. Indeed,
we are unaware of any tools that measure performance test cov-
erage as seamlessly as tools like JaCoCo do for functional testing.
We believe that introducing such tools could allow developers to
more regularly assess the coverage of their performance testing
suites, thus increasing their awareness of the code area that remains
unmonitored for performance.

Our results also reveal that distinct performance tests often cover
the same code components (i.e., high overlap), even though a sig-
nificant portion of the codebase remains uncovered by any perfor-
mance test. Although developers might deliberately target the same

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and Luca Traini

55

code components with multiple performance tests to assess their
behaviour under varying workloads, this highlights an opportunity
to broaden test coverage without incurring additional time costs.
We hypothesize that, by raising awareness about performance test
coverage, developers might be more inclined to prioritize creating
tests that target code components currently unassessed for perfor-
mance. We encourage future work to make it easier for practitioners
to measure the coverage of performance testing suites.

For researchers. Prior work suggests that the high costs of
test development and maintainability often hamper the adoption
of performance testing in practice [16, 23, 30]. In response to this
issue, researchers have introduced techniques capable of automati-
cally transforming functional testing suites into performance tests
[16]. In light of our results, we can formulate educated guesses
regarding the potential benefits of these techniques, as well as the
challenges that might originate from their adoption. For instance,
our results suggest that, by utilizing automated performance test
generation, there could be a significant improvement in terms of
performance test coverage. Indeed, functional testing suites exhibit
significantly higher coverage than that of performance tests (10.4%
vs 41.3% on average), and generated performance tests would in-
herit such high coverage. However, these benefits might come at a
cost, particularly regarding execution time. The high coverage of
functional test suites is typically a consequence of their extensive
sizes, which may not be feasible for a performance testing suite.
In fact, performance tests are typically more time-consuming than
functional counterparts (on average 2,507 times more). For instance,
by using the configuration defined by Jangali et al. [16] and a typ-
ical number of five forks [22, 31], the time cost of an individual
generated performance test would amount to about 400 seconds.
For a medium-sized testing suite like logbook, which comprises 564
JUnit tests, this translates to a total time cost of roughly two and
a half days. This is approximately 141 times longer than the ac-
tual logbook performance testing suite. Even when considering the
smallest functional testing suite in our study, namely objenesis, this
results in a 5-hour execution time, i.e., 55 times the one of the actual
performance testing suite. These findings highlight that automated
generation alone might not be sufficient to produce performance
test suites that are practically usable, given that developers might be
deterred by such a time-consuming test process. This underscores
a significant challenge for the research community, i.e., automated
performance test generation should take into consideration the
associated time cost of the generated testing suite.

A potential research avenue is the adoption of “smart” test se-
lection strategies that aim to maximize coverage while mitigating
time costs. For instance, one could exploit data on the functional
test coverage to reduce the number of redundant performance tests
targeting the same code component. Future work should be directed
to address this challenge.

5 THREATS TO VALIDITY

Construct validity. We focused solely on Java software sys-
tems. Our results may not generalize to systems developed in other
programming languages. Nevertheless, Java is still among the most
used programming languages®. We restricted the coverage analysis

3Stack Overflow Developer Survey, https://survey.stackoverflow.co/2023.

https://survey.stackoverflow.co/2023

An Empirical Study on Code Coverage of Performance Testing

to JMH microbenchmarks and JUnit tests since they are mature
and widely adopted frameworks for developing performance and
functional testing, respectively. Moreover, both these frameworks
operate at the fine-grained level, as they are both used to test indi-
vidual methods within a codebase. This commonality provides a
fair basis for comparing their test coverage.

Using method-level coverage may have limitations, since this
metric does not account for cases where performance/functional
tests only partially cover the method statements. Our study results
may change when employing a statement-level coverage metric.
The decision to use method-level coverage stems from the signifi-
cant technical challenges encountered in integrating JMH with tra-
ditional statement-level coverage tools, such as JaCoCo and Cober-
tura. To obtain statement-level coverage information, these tools
modify the Java bytecode, which we observed could interfere with
the execution of JMH microbenchmarks. Given these challenges,
method-level coverage was deemed a reasonable compromise be-
tween the practicality of the study and the representativeness of the
results. Furthermore, method-level coverage has been extensively
employed in software performance research [7, 8, 32].

External validity. The presented analysis is limited to 28 open-
source software systems. The findings may not be broadly general-
izable; nonetheless, the selected systems are all well-known Java
systems encompassing different domains (e.g., database systems,
logging frameworks, and web servers). This limited number of sub-
ject systems is also motivated by an effort-intensive data collection,
which required months of work (in multiple iterations) to get reli-
able results. This is a known issue in performance engineering that
typically restricts the number of subject systems in empirical stud-
ies. Nevertheless, the number of subject systems used in our study
is larger than most of the recent empirical studies on performance
(e.g., see [8, 10, 16, 21, 22]).

Internal validity. We used a sampling-based CPU profiler to
identify the methods covered by tests. These profilers operate by
periodically capturing a program’s call stack during its execution.
A limitation of this approach is the potential omission of call stack
information. Since sampling is done at discrete intervals, short-lived
function calls or those that fall between sampling points might
not be captured. To mitigate this threat, we used async-profiler,
which (to our knowledge) provides the lowest sampling rate (i.e., 1
nanosecond) for profiling Java software.

6 RELATED WORK

Performance Testing. The study most closely related to our
work is that of Laaber and Leitner [21], which proposes a perfor-
mance test quality metric inspired by mutation testing score, namely
API benchmarking score (ABS). ABS is related to the concept of
test coverage, as it represents the capability of the performance
testing suite to find slowdowns. While Laaber and Leitner focus on
defining a novel metric for test quality, our research evaluates the
quality of existing performance testing suites using traditional code
coverage metrics. Traini et al. [32] show that code components cov-
ered by performance tests tend to be less susceptible to refactoring.
The time cost of performance testing is also related to this work.
Researchers proposed approaches to reduce the time cost of perfor-
mance testing without sacrificing results quality [1, 12, 19, 22].

56

EASE 2024, June 18-21, 2024, Salerno, Italy

Test Coverage. In [15], the authors describe Google’s code cov-
erage infrastructure and how the computed code coverage informa-
tion is visualized and used. The study demonstrates that most of
the projects contain few unit tests, despite the opposite perception
of the developers. The authors in [37] analyzed test coverage data
on several widely used Python projects. The main finding is that
the coverage strongly depends on the control flow structure. More-
over, the authors found that error-handling code is also neglected.
In [11], the authors examine the question of coverage criteria as
suite quality predictors from the perspective of the non-researcher
audience. Alves et al. [3] conceived an approach for estimating code
coverage through static analysis, particularly slicing of call graphs.

Performance Bugs. Jin et al. [18] empirically studied 110 real-
world performance bugs collected from 5 open-source software
repositories. A more extensive study was recently conducted by
Zhao et al. [38], which investigated 570 performance issues from
13 open-source projects. Other empirical studies have focused on
more specific domains, such as internet browsers [36], mobile appli-
cations [25], and JavaScript applications [29]. While our empirical
findings may not directly correlate with the ability to uncover per-
formance issues, there are strong indications of the relevance of
code coverage for the efficacy of performance testing. Batch et al.
[4] found that source code covered by functional/performance tests
is less prone to bugs. Ding et al. [10] showed that the code cov-
erage of tests (i.e., scope) influences their capability to uncover
performance bugs. The study of Jangali et al. [16] suggests that the
extension of code coverage in performance testing improves the
capability of detecting performance issues. These works indicate
that incorporating code coverage analysis into performance testing
can be beneficial for software performance assurance.

7 CONCLUSION AND FUTURE WORK

This paper presented a comprehensive empirical study focused on
performance testing coverage. Our findings revealed the limited
coverage of current performance testing suites and the significant
time cost associated with them. The results of this work suggest
opportunities to enhance the coverage of performance testing suites,
by emphasizing the necessity to enlighten practitioners about these
prevalent limitations.

We have intentionally considered in this paper the concept of
code coverage that usually relates to functional testing. Additional
metrics should be considered for a sharper concept of performance
test coverage, like workload and operational profile. However, these
metrics are quite difficult to collect and may sensibly vary for the
same application in different contexts. Therefore, we have intended
to explore the extent at which performance testing can be solely
based on code coverage.

As suggested by our findings, the real-world adoption of perfor-
mance testing techniques might be hampered by their substantial
time costs. The evidence provided in this paper sustains the idea
that the limited coverage of performance tests (as compared to
functional ones) only stems from technical issues (e.g., time limits,
problems to collect dynamic metrics). Indeed, a wider coverage is
desirable as it would allow to identify performance issues in code
sections that, for the above reasons, are usually not considered.

EASE 2024, June 18-21, 2024, Salerno, Italy

Therefore, we encourage further research to address this chal-
lenge, possibly leveraging the automated generation of performance
tests. One potential direction, indeed, could be the development of
“smart” test selection strategies that can reduce the execution time of
a performance testing suite without compromising its effectiveness,
thus facilitating a smooth transition of automated performance test
generation to practice.

ACKNOWLEDGMENTS

This work is partially supported by Italian Government (Ministero
dell’Universita e della Ricerca, PRIN 2022 PNRR): “RECHARGE:
monitoRing, tEsting, and CHaracterization of performAnce Re-
gressions” (cod.P2022SELA7), and by “ICSC - Centro Nazionale di
Ricerca in High Performance Computing, Big Data and Quantum
Computing”, funded by European Union — NextGenerationEU.

REFERENCES

(1]

&

[6

(71

(8]

[9

[10

(11

[12]

[13]

[14]

[15]

Hammam M. Alghmadi, Mark D. Syer, Weiyi Shang, and Ahmed E. Hassan. 2016.
An Automated Approach for Recommending When to Stop Performance Tests.
In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 279-289. https://doi.org/10.1109/ICSME.2016.46

Wasim Alsagaf, Maya Daneva, and Roel Wieringa. 2019. Quality requirements
challenges in the context of large-scale distributed agile: An empirical study.
Information and Software Technology 110 (2019), 39 - 55.

Tiago L Alves and Joost Visser. 2009. Static estimation of test coverage. In
2009 Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation. IEEE, 55-64.

Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. 2017. The
impact of coverage on bug density in a large industrial software project. In
2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 307-313.

Woubshet Behutiye, Pertti Karhapaa, Lidia Lopez, Xavier Burgués, Silverio
Martinez-Fernandez, Anna Maria Vollmer, Pilar Rodriguez, Xavier Franch, and
Markku Oivo. 2020. Management of quality requirements in agile and rapid
software development: A systematic mapping study. Information and Software
Technology 123 (2020), 106225.

Jake Brutlag. 2009. Google Al Blog: Speed matters. https://ai.googleblog.com/
2009/06/speed-matters.html

Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram
Adams, and Weiyi Shang. 2023. IoPV: On Inconsistent Option Performance
Variations. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2023). ACM, 845-857. https://doi.org/10.1145/3611643.3616319

Jinfu Chen, Weiyi Shang, and Emad Shihab. 2022. Perf]IT: Test-Level Just-in-Time
Prediction for Performance Regression Introducing Commits. IEEE Transactions
on Software Engineering 48, 5 (2022), 1529-1544.

Michael L. Collard, Michael J. Decker, and Jonathan I. Maletic. 2011. Lightweight
Transformation and Fact Extraction with the srcML Toolkit. In 2011 IEEE 11th
International Working Conference on Source Code Analysis and Manipulation. 173
184. https://doi.org/10.1109/SCAM.2011.19

Zishuo Ding, Jinfu Chen, and Weiyi Shang. 2020. Towards the use of the readily
available tests from the release pipeline as performance tests: are we there yet?.
In ICSE °20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
1435-1446. https://doi.org/10.1145/3377811.3380351

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite
Evaluation by Developers. In Proceedings of the 36th International Conference on
Software Engineering (ICSE 2014). ACM, 72-82.

Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou
Soffa. 2019. A Statistics-Based Performance Testing Methodology for Cloud
Applications. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 188-199.

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and
Luca Traini. 2023. An Empirical Study on Performance Test Coverage-Replication
Package. https://github.com/SpencerLabAQ/replication-package_performance-
test-coverage

Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference

on Software Engineering (ICSE 2014). ACM, 435-445.
Marko Ivankovié¢, Goran Petrovi¢, René Just, and Gordon Fraser. 2019. Code

Coverage at Google. In Proceedings of the 2019 27th ACM Joint Meeting on European

57

[16

[17

[18

[19

[20

[21

[22

~
=

[24

[25

[26

~
=

[28

[29

(30]

[32

[33

[38

Muhammad Imran, Vittorio Cortellessa, Davide Di Ruscio, Riccardo Rubei, and Luca Traini

Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 955-963.

Mostafa Jangali, Yiming Tang, Niclas Alexandersson, Philipp Leitner, Jingiu Yang,
and Weiyi Shang. 2023. Automated Generation and Evaluation of JMH Mi-
crobenchmark Suites From Unit Tests. IEEE Transactions on Software Engineering
49, 4 (2023), 1704-1725. https://doi.org/10.1109/TSE.2022.3188005

Zhen Ming Jiang and Ahmed E. Hassan. 2015. A Survey on Load Testing of
Large-Scale Software Systems. IEEE Transactions on Software Engineering 41, 11
(2015), 1091-1118. https://doi.org/10.1109/TSE.2015.2445340

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and Detecting Real-World Performance Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’12). ACM, 77-88. https://doi.org/10.1145/2254064.2254075

Tomas Kalibera and Richard Jones. 2013. Rigorous Benchmarking in Reasonable
Time. In Proceedings of the 2013 International Symposium on Memory Management
(ISMM ’13). ACM, 63-74. https://doi.org/10.1145/2491894.2464160

Christoph Laaber, Harald C. Gall, and Philipp Leitner. 2021. Applying test case
prioritization to software microbenchmarks. Empirical Software Engineering 26,
6(2021), 133. https://doi.org/10.1007/s10664-021-10037-x

Christoph Laaber and Philipp Leitner. 2018. An Evaluation of Open-Source Soft-
ware Microbenchmark Suites for Continuous Performance Assessment. ACM.
Christoph Laaber, Stefan Wiirsten, Harald C. Gall, and Philipp Leitner. 2020.
Dynamically Reconfiguring Software Microbenchmarks: Reducing Execution
Time without Sacrificing Result Quality. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020). ACM, 989-1001.

Philipp Leitner and Cor-Paul Bezemer. 2017. An Exploratory Study of the State of
Practice of Performance Testing in Java-Based Open Source Projects. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance Engineering
(ICPE *17). ACM, 373-384. https://doi.org/10.1145/3030207.3030213
Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming Performance Variability. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 409-425.

Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vasquez, and Gabriele
Bavota. 2020. Investigating types and survivability of performance bugs in mobile
apps. Empirical Software Engineering 25 (2020), 1644-1686.

Steve Olenski. 2016. Why Brands Are Fighting Over Milliseconds.
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-
fighting-over-milliseconds/

Paul Piwowarski, Mitsuru Ohba, and Joe Caruso. 1993. Coverage Measurement
Experience during Function Test. In Proceedings of the 15th International Confer-
ence on Software Engineering (ICSE 93). IEEE Computer Society Press, 287-301.
Hazem Samoaa and Philipp Leitner. 2021. An Exploratory Study of the Impact
of Parameterization on JMH Measurement Results in Open-Source Projects. In
Proceedings of the ACM/SPEC International Conference on Performance Engineering
(ICPE °21). ACM, 213-224. https://doi.org/10.1145/3427921.3450243

Marija Selakovic and Michael Pradel. 2016. Performance issues and optimizations
in javascript: an empirical study. In Proceedings of the 38th International Conference
on Software Engineering. 61-72.

Luca Traini. 2022. Exploring Performance Assurance Practices and Challenges
in Agile Software Development: An Ethnographic Study. Empirical Software
Engineering 27, 3 (2022), 74. https://doi.org/10.1007/510664-021-10069-3

Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. 2022.
Towards effective assessment of steady state performance in Java software: are
we there yet? Empirical Software Engineering 28, 1 (2022), 13. https://doi.org/10.
1007/s10664-022-10247-x

Luca Traini, Daniele Di Pompeo, Michele Tucci, Bin Lin, Simone Scalabrino,
Gabriele Bavota, Michele Lanza, Rocco Oliveto, and Vittorio Cortellessa. 2021.
How Software Refactoring Impacts Execution Time. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 25 (dec 2021), 23 pages. https://doi.org/10.1145/3485136
Andrew Walker, Michael Coffey, Pavel Tisnovsky, and Tomas Cerny. 2020. On
Limitations of Modern Static Analysis Tools. In Information Science and Applica-
tions, Kuinam J. Kim and Hye-Young Kim (Eds.). Springer Singapore, 577-586.
Elaine J. Weyuker. 2000. Experience with performance testing of software systems:
issues, an approach, and case study. IEEE Transactions on Software Engineering
26, 12 (2000), 1147 - 1156. https://doi.org/10.1109/32.888628

S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (mar 2012), 67-120.
Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A Qualitative Study on
Performance Bugs. In Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories (MSR ’12). IEEE Press, 199-208.

Hongyu Zhai, Casey Casalnuovo, and Prem Devanbu. 2019. Test coverage in
python programs. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 116-120.

Yutong Zhao, Lu Xiao, Andre B. Bondi, Bihuan Chen, and Yang Liu. 2023. A
Large-Scale Empirical Study of Real-Life Performance Issues in Open Source
Projects. IEEE Transactions on Software Engineering 49, 2 (2023), 924-946.

https://doi.org/10.1109/ICSME.2016.46
https://ai.googleblog.com/2009/06/speed-matters.html
https://ai.googleblog.com/2009/06/speed-matters.html
https://doi.org/10.1145/3611643.3616319
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1145/3377811.3380351
https://github.com/SpencerLabAQ/replication-package_performance-test-coverage
https://github.com/SpencerLabAQ/replication-package_performance-test-coverage
https://doi.org/10.1109/TSE.2022.3188005
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1007/s10664-021-10037-x
https://doi.org/10.1145/3030207.3030213
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/
https://doi.org/10.1145/3427921.3450243
https://doi.org/10.1007/s10664-021-10069-3
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1145/3485136
https://doi.org/10.1109/32.888628

	Abstract
	1 Introduction
	2 Study Design
	2.1 Main steps of the performed study
	2.2 Employed metrics

	3 Results Discussion
	3.1 RQ1: To what extent do performance tests cover the source code of software systems?
	3.2 RQ2: How does the code coverage achieved by performance testing compare to that of functional testing?
	3.3 RQ3: What is the time cost of performance testing?
	3.4 RQ4: How does the time cost of performance testing compare to that of functional testing?

	4 Implications
	5 Threats to validity
	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

