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ABSTRACT
Producing accurate software models is crucial in model-driven soft-

ware engineering (MDE). However, modeling complex systems is an

error-prone task that requires deep application domain knowledge.

In the past decade, several automated techniques have been pro-

posed to support academic and industrial practitioners by provid-

ing relevant modeling operations. Nevertheless, those techniques

require a huge amount of training data that cannot be available

due to several factors, e.g., privacy issues. The advent of large lan-

guage models (LLMs) can support the generation of synthetic data

although state-of-the-art approaches are not yet supporting the

generation of modeling operations. To fill the gap, we propose a con-

ceptual framework that combines modeling event logs, intelligent

modeling assistants, and the generation of modeling operations

using LLMs. In particular, the architecture comprises modeling

components that help the designer specify the system, record its

operation within a graphical modeling environment, and automati-

cally recommend relevant operations. In addition, we generate a

completely new dataset of modeling events by telling on the most

prominent LLMs currently available. As a proof of concept, we in-

stantiate the proposed framework using a set of existing modeling

tools employed in industrial use cases within different European

projects. To assess the proposed methodology, we first evaluate

the capability of the examined LLMs to generate realistic modeling

operations by relying on well-founded distance metrics. Then, we

evaluate the recommended operations by considering real-world

industrial modeling artifacts. Our findings demonstrate that LLMs

can generate modeling events even though the overall accuracy is

higher when considering human-based operations. In this respect,

we see generative AI tools as an alternative when the modeling

operations are not available to train traditional IMAs specifically

conceived to support industrial practitioners.
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1 INTRODUCTION
Model-driven engineering (MDE) encompasses creating conceptual

models that aim to represent complex software systems [10, 64].

However, such activity is error-prone since it relies on the modeler’s

expertise. In addition, modeling real-world industrial scenarios

requires a deep knowledge of the application domain, thus requiring

time to produce a suitable abstraction of the target system. In this

respect, several automated approaches, i.e., intelligent modeling

assistants (IMAs) [49, 51], have been proposed to automate MDE-

related activities. Although they represent a valuable solution to

assist non-expert users, they need a large amount of training data

to produce accurate recommendations [22, 51].

In this paper, we use the term modeling operations to refer to

activities performed by users on graphical model editors to create

model(s) compliant with a given metamodel. Modeling operations

generate events captured by a notification mechanism and suit-

ably saved as traces. In this respect, logging modeling events in

traces can be beneficial [19]. Real traces are a collection of mod-

eling events generated by users while editing models in suitably

extended (graphical) editors, thus representing a source of realis-

tic information for the IMAs. Nevertheless, collecting many real

traces is challenging. To obtain enough training data for IMAs, a

reasonably large user base should be capable of using a modeling

language and its supporting editor. The latter must be equipped

with modeling event recording capabilities. The need for domain-

specific languages [46], the heterogeneous technical landscape of

language engineering platforms both in commercial solutions and

academic modeling solutions [37], as well as intellectual property

and privacy concerns on collecting and sharing traces, hinders the

use of IMAs in industrial contexts.

Advanced generative AI models like large language models

(LLMs) can produce data closely resembling human style. How-

ever, it is crucial to check the produced data to mitigate the creation
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of fictional details or incorrect assertions, also known as halluci-

nation phenomena [38]. While LLMs have been used to generate

generic textual data in software engineering context [27], no ap-

proaches are available to generate modeling operations to our best

knowledge.

In this work, we present a conceptual MDE framework that aims

to assess the capabilities of LLMs to generate modeling operations,

collect them as traces, and feed IMAs. In particular, we adopt the in-

context learning approach [25] using few-shots prompting to gener-

ate modeling operations given a graphical model editor capable of

collecting modeling event traces. To validate our conceptual frame-

work, we rely on state-of-the-art modeling components developed

during cooperation among research and industrial partners within

different European projects Concerning the generation of synthetic

modeling operations, we experiment with the four most popular

models, i.e., GPT3.5 and 4 [57], LLama3 70B[48], and Gemini [29].

We then rely on the Eclipse Modeling Framework (EMF) [70] and

research solutions for modeling event recording [19] and modeling
assistance [22] purposes.

In particular, we aim to answer the following research questions:

➤ RQ1: How similar are the traces generated by LLMs to those gen-
erated by humans? To answer this question, we assess the quality

of the generated traces by applying well-founded similarity dis-

tance metrics. In addition, we assess the degree of hallucination by

defining a novel metric tailored to the context of MDE systems.

➤ RQ2: To what extent LLM-based traces can be used to train an
IMA? After selecting the best LLM, we trained an existing IMA, i.e.,

MORGAN, [22] with human-generated traces, synthetic ones, and

a mix of both. In particular, the goal is to investigate to what extent

synthetic traces can be used to replace human-generated ones in

real-world scenarios

➤ RQ3: Can the proposed approach be useful for modeling assistance
in real-world use cases exploited in EU projects? To answer this ques-
tion, we elicit the best configuration to employ MORGAN as IMA

on a real-world industrial validation set, aiming at understanding

to what extent synthetic traces can be used in a real context.

Our findings show that GPT-4 produces the most accurate re-

sults by minimizing the hallucination even though the produced

traces lower the MORGAN’s overall accuracy. Nonetheless, mixing

humans and generated traces can represent an adequate compro-

mise when training models are not available at all, e.g., when those

artifacts are protected by intellectual property. In addition, LLMs,

including open-source ones, can generate valuable events in a few

minutes, representing a faster way to support the training phase of

IMAs based on automated techniques.

Contributions. The main contributions of the paper are the

following: (i) a conceptual framework to integrate modeling opera-

tions, generated events, and traces and IMA tools to recommend

relevant modeling operations in the context of MDE systems, (ii) an
evaluation of synthetic datasets constructed with prominent LLMs

using well-founded distance metrics, (iii) a real-world evaluation

by considering software models employed in the context of EU

projects, and (iv) a replication package to foster further research in

this domain [54].

2 BACKGROUND AND RELATEDWORK
We overviewed the state-of-the-art to enlist the closest approaches

to our work. To the best of our knowledge, there is no similar ap-

proach that employs LLM to generate synthetic traces in the context

of an MDE environment. Nevertheless, we describe the state-of-

the-art of the works that are related to our internal components.

Modeling Trace Recording. In [19], Dehghani et al. presented

a tool that captures user interaction events through the EMF no-

tification API [70], namely Modeling Event Recorder (MER). Our

approach leverages the MER component to collect traces. In [31],

Herrmannsdoerfer et al. discuss a generic operation recorder for

model evolution based on an operation metamodel. As MER, it

reuses EMF Notifications but neglects compatibility with standards

like XES. In [11], the authors exploited the concept of operation

recording to perform model versioning. In particular, they relied

on the tool Operation Recorder [31] previously introduced.

Synthetic Data Generation Leveraging LLMs. The recent

advancement of LLMs has motivated the exploration of this tech-

nology to generate synthetic datasets. In [24], Fan et al. survey the

use of LLMs (e.g., GPT, Llama, AlphaCode) in software engineering,

discussing their potential, challenges (e.g., hallucinations) and the

importance of hybrid approaches combining software engineering

methods with LLMs. The survey covers mostly code generation,

software testing, maintenance, evolution, and deployment tasks.

Our work contributes to the hybridization effort, i.e., towards the

effective integration of LLMs as part of an overall SE process. As

such, we did not find evidence of using LLMs for trace generation

to train IMAs.

Synthetic Data Generation inMDE context.Data scarcity is a
well-known problem in the Model-Driven community. In the years,

different approaches have been developed to ease this daunting

issue [60]. MDE researchers have tried to mitigate this challenge by

presenting model generation techniques and tools. These studies

mainly utilized three approaches: clustering, grammar graph, and

random. The clustering approach usually classifies variable values

and relationships between components. Then, an instance model

is produced from each category to represent that category [59].

To generate the model based on graph grammars, the graph rules

are extracted from the metamodel, and then models are generated

according to these rules [68]. In the random approach, random

procedures are used to generate new models [50]. Machine learn-

ing techniques are also adopted for model generation. In [45], the

authors have presented a deep learning-based framework for gen-

erating structurally realistic models. In [63], Rahimi et al. used

generative adversarial networks for generating new structurally

realistic EMF models. Notable tools for model generations in MDE

relying on EMF [70] are Wodel [28] and Viatra [67]. Wodel is con-

ceived to generate seed model mutants. In particular, taking as

input a seed model and a defined set of mutation rules, the tool

can generate n mutants. Viatra translates an EMF metamodel into

a logic problem, which is solved by an underlying first-order logic

solver to create valid graph models. Cuadrado [17] conceived a tool

to assist developers in creating test cases. In particular, the tool

analyses the current version of the ATL transformation and derives

a possible set of missing elements.
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Existing IMAs in MDE context. Several approaches have been
developed to assist modelers in their daily tasks, e.g., model trans-

formations [18], model repair [36], and model search [44]. Above

all, model completion is the most supported task, leveraging on

NLP techniques [14, 33], similarity-based algorithms [7, 20] and

pre-trained models [16, 74] to recommend missing modeling ele-

ments given an incomplete model. However, none of the mentioned

tools supports the recommendations of modeling operation apart

from NEMO [21], an IMA that forecasts the next modeling opera-

tions leveraging the LSTM network by relying on a curated dataset

of BPMN models. However, we cannot reuse NEMO in a direct

comparison since it is tailored for BPMN models. In this paper, we

opt for MORGAN [22], an IMA that relies on graph-kernel and

NLP since (i) it has already been used to assist the completion of

industrial context [15] and (ii) the replication package is publicly

available [47].

3 MOTIVATING EXAMPLE
To model high-performance embedded systems, dedicated tools

belonging to Electronic Design Automation (EDA) [32]. With ad-

vancements in EDA, new methods and tools have emerged, en-

abling higher abstraction models through MDE approaches. HEPSY-

CODE (HW/SW CO-DEsign of HEterogeneous Parallel dedicated
SYstems) [53] is a prototype EDA methodology and tool designed

to reduce the design time of embedded applications. It uses Eclipse

MDE technologies to model the behavior of embedded applications

with a custom modeling workbench compliant with the HEPSY-

CODE metamodel. The HEPSYCODE language allows modeling the

system as a network of processes communicating through channels.

Figure 1 (a) shows the HEPSYCODE graphical modeling workbench

and the model of an embedded application called Digital Camera

(DC). The main functionalities of the application, representing a

camera that captures photographs in digital memory [71], include

acquiring a 64×64-pixel image (i.e., ccdpp process), performing a

zero-bias adjustment (i.e., cntrl process), compressing the image

(i.e., codec process), and transmitting it to an external device (i.e.,

uat process). Data are exchanged through internal channels, while

testbench and output feedback use additional external channels

and ports. The metamodel defines various classes and entities used

to model embedded applications as networks of processes, with

data exchanged through channels and messages.

To assist designers, the modeling environment can collect their

modeling operations as traces, as shown in Figure 1 (b). These

traces can help IMAs suggest possible modeling operations at any

given step, supporting designers as the complexity of the model

increases. Although IMAs can help modelers, several issues need to

be carefully handled. Among the others, we elicited the following

challenges:

➤ CH1: Collecting traces is time-consuming: As shown in

this section, collecting modeling operations is time-consuming

if the system exploits a traditional event recorder. Moreover, the

time needed to produce valuable traces depends strongly on the

modeler’s level of expertise, given the application domain.

➤ CH2: Using external training data may lead to inaccurate
results : Alternatively, curated modeling datasets [9, 43] can be

used to synthesize traces to feed IMA as done in [21]. Nonetheless,

Figure 1: HEPSYCODE Graphical Modeling Workbench (a)
and trace file generated through MER tool (b). The applica-
tion considered in this scenario is called Digital Camera [52].

the existing datasets comprise models (and metamodels) specifi-

cally created for ML tasks without representing realistic modelers’

behavior.

➤ CH3: Accessing data is often difficult due to security issues
and industry restrictions. Industries and research institutions

can handle data differently, according to internal or external regu-

lations [26]. This may impact modeling artifacts available to enable

automated approaches, resulting in a scarcity of training data. In

particular, privacy agreements can negatively affect data disclos-

ing [23], thus preventing researchers from developing accurate

automated approaches to support industrial practitioners.

4 PROPOSED APPROACH
This section introduces our approach. The core concept involves

integrating modeling event recording capability within a modeling

system environment. The goal is capturing events generated by

users’ modeling operations and generating traces. Such traces are

then injected into recommender systems, enabling the generation

of personalized suggestions for modeling actions most relevant to

each designer. Components, connectors, and input/output artifacts

flows are depicted in Figure 2.

4.1 Framework components
This section details the framework’s components as reported in

Figure 2, referenced in the text using an id , and their capabilities.

It explains how they are integrated and used to support domain

experts by suggesting modeling operations using IMAs trained

with traces as LLM synthetic data. Section 5 introduces a concrete

implementation of such components.

Modeling System Environment (MSE). The MSE is a graphical

model editor. MDE leverages models as core software artifacts. The

Meta Object Facility (MOF) [56] by the Object Management Group

(OMG) organizes modeling artifacts into three metalayers. Models

(𝑀1
) conform to a metamodel (𝑀2

), which defines the modeling
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Figure 2: The proposed approach.

concepts and relationships of domain-specific languages 1 . Analo-
gously, each metamodel conforms to meta-metamodel (𝑀3

), which

defines the concepts to define metamodels. MOF defines four model

levels, with each level describing the one below. Building upon

MOF, a modeling framework provides the necessary characteristics

for working with these modeling artifacts EMF [30] is a standard

de-facto implementation of the MOF architecture. Its metamodeling

language, Ecore, represents the𝑀3
layer. Using Ecore, developers

define custom metamodels (𝑀2
).

Formally, we define the set of L metamodels compliant with the

Ecore as follows:

𝑀2 = {𝑀2

1
, 𝑀2

2
, · · · , 𝑀2

𝑖 , · · · , 𝑀
2

𝐿} (1)

These metamodels then facilitate the automatic generation of graph-

ical editors 2 for creating𝑀1
artifacts as instances of the conform-

ing metamodel 𝑀2
. Formally, we also define the set of M models

conforming to Ecore-based metamodel𝑀2

𝑖
as follows:

𝑀1

𝑖 = {𝑀1

𝑖,1, 𝑀
1

𝑖,2, · · · , 𝑀
1

𝑖, 𝑗 , · · · , 𝑀
1

𝑖,𝑀 } (2)

Modeling Event Recorder (MER). Formally, modeling operations
are activities performed by users on the Graphical Modeling Work-

bench to create model𝑀1

𝑖, 𝑗
compliant with metamodel𝑀2

𝑖
. Model-

ing operations generate events captured by a notification mecha-

nism and suitably saved as traces by a Modeling Event Recorder 3 .
Moreover, Γ(𝑀1

𝑖
) is the set of traces obtained from modeling oper-

ations that realized the models𝑀1

𝑖
conforming to𝑀2

𝑖
, such as:

Γ(𝑀1

𝑖
) = {𝜏1 (𝑀1

𝑖,1
), 𝜏2 (𝑀1

𝑖,2
), · · · , 𝜏 𝑗 (𝑀1

𝑖, 𝑗
), · · · , 𝜏𝑚 (𝑀1

1,𝑀
)} (3)

To simplify matters, we will remove the internal model notation

𝜏 𝑗 (𝑀1

𝑖, 𝑗
) and only keep 𝜏 𝑗 as a generic trace and Γ𝑖 as the set of

traces. Each trace 𝜏 𝑗 can be split into N events (i.e., single designer

modeling operation), as follows:

𝜏 𝑗 := {𝑒 𝑗,1, 𝑒 𝑗,2, · · · , 𝑒 𝑗,𝑘 , · · · , 𝑒 𝑗,𝑁 } (4)

Each trace event has a fixed syntax, determined by the MER

component:

𝑒 𝑗,𝑘 := event < class > < featureName > < eventType > (5)

With the term modeling event recording, we refer to the col-

lection of modeling traces through modeling event notification

mechanisms.

In the scope of the paper, the traces contain the timestamp of each

operation. Thus, we consider this as a possible temporal relationship.

While we consider including this kind of temporal relationship in

our work, we notice that the recorded modeling operations are

sequential, i.e., the recommender system is aware of this kind of

sequence. In future works, we plan to investigate this interesting

topic in depth.

Intelligent Modeling Assistant (IMA). As defined in [51], the

development of an IMA encompasses the definition of several com-

ponents. First, a data acquisition layer must be defined to collect

the relevant knowledge from external sources. In addition, an IMA

operates in a context where modelers perform their activities, thus

producing contextual information that can be processed by the IMA.

The core component is represented by the assistant 9 , namely the

algorithm used to perform the actual automated activities, e.g., sug-

gesting missing elements, retrieving similar modeling artifacts, or

forecasting the next operations. An optional adaptation phase of the
IMA can be devised considering the modeler’s feedback once the

recommendations have been delivered. In the scope of the paper, we

focus on IMAs that can retrieve relevant modeling operations given

a graphical modeling environment. Formally, given the modeler’s

context (i.e., a model𝑀1

𝑖, 𝑗
), the knowledge acquired from external

sources or the modeling context (i.e., Γ(𝑀1

𝑖
) traces set), and 𝐴 the

assistant, the IMA is a function I defined as follows:

I(𝑀1

𝑖 , Γ(𝑀
1

𝑖 ), 𝐴) = {𝑂𝑝𝑖,1,𝑂𝑝𝑖,2, · · · ,𝑂𝑝𝑖,𝑁 } (6)

In the scope of the paper, we consider the past operations Γ𝑖 as the
unique source of knowledge for the IMA. Given the abovementioned

definition of an event, an explanatory list of recommendations 𝑅𝑒𝑐

for a given model (𝑀1

𝑖, 𝑗
) is represented below:

𝑅𝑒𝑐 (𝑀1

𝑖, 𝑗 ) = {𝑅(𝑒 𝑗,1), 𝑅(𝑒 𝑗,2), · · · , 𝑅(𝑒 𝑗,𝑁 )} (7)

where the list {𝑅(𝑒 𝑗,1), 𝑅(𝑒 𝑗,2), · · · , 𝑅(𝑒 𝑗,𝑁 )} is the recommended

modeling operations.

Large Language Model (LLM). A key phase of using LLMs

is the design and execution of the most suitable prompt strategy

given the goal [65]. According to the recent literature, there are

three main strategies:

Zero-shots represents the basic prompt strategy, in which the LLMs

are fed with just the query without any example of the expected

outputs [65]. The query can be expressed using natural language or

embodying specific keywords that refer to the context, e.g., parts

of models under development.

Few-shots requires explanatory outputs in the initial query [40].

In such a way, the task can be executed with weak labeling and

minimal supervision from the developers.
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Figure 3: Prompt schema and LLM answer example.

Chain-of-Thougts is a conversational reasoning task to assess the

ability of a model to maintain coherence and context across a series

of questions and answers [39, 42, 73]. Unlike traditional question

answering tasks where each question is independent.

In this paper, we adopt the few-shot prompting strategy 5 to

generate modeling operations 6 since it is suitable for obtaining the

traces using the specified models. Furthermore, we defined Γ+ (𝑀1

𝑖
)

as the set of LLM synthetic traces (i.e., emulated human modeling

operations) needed to realize the model𝑀1

𝑖, 𝑗
conforms to𝑀2

𝑖
, such

as:

Γ+ (𝑀1

𝑖
) = {𝜏+

1
(𝑀1

𝑖,1
), 𝜏+

2
(𝑀1

𝑖,2
), · · · , 𝜏+

𝑗
(𝑀1

𝑖, 𝑗
), · · · , 𝜏+

𝑀
(𝑀1

𝑖,𝑀 ′ )} (8)

Following modeling event recorder notation, we removed the inter-

nal model notation 𝜏+
𝑗
(𝑀1

𝑖, 𝑗
) and only kept 𝜏+

𝑗
as a generic synthetic

trace and Γ+
𝑖
as the set of synthetic traces. Each 𝜏+

𝑗
synthetic trace

can be split into N synthetic events (i.e., single LLM human emu-

lated modeling operation), as follows:

𝜏+𝑗 = {𝑒+𝑗,1, 𝑒
+
𝑗,2, · · · , 𝑒

+
𝑗,𝑘
, · · · , 𝑒+𝑗,𝑁 ′ } (9)

The prompting engineering problem regards the creation of a

< 𝑌 >= Γ+
𝑗
(𝑀1

𝑖
) synthetic trace model dataset from a given set

of models 𝑀1

𝑖
compliant with metamodel 𝑀2

𝑖
, where LLM is fixed

(no possible parameter tuning). The designer produces a generic

model < 𝑋 >= 𝑀1

𝑖, 𝑗
compliant with the considered metamodel

𝑀2

𝑖
. We want to produce < 𝑌 >= 𝜏+ (𝑀1

𝑖, 𝑗
), i.e., a synthetic trace

generated by LLM that tries to emulate actions needed by a human

designer to generate model 𝑀1

𝑖, 𝑗
from specifications. The LLM is

trained on demonstrations (i.e., input-output example traces) to

emulate the human modeling operation steps using the Few-Shot

In-Context Learning prompting approach 5 . Figure 3 shows an

example prompt schema used in this work.

5 EVALUATION MATERIALS AND METHODS
This section details the evaluation materials and methods used in

our work. Our approach ensures systematic analysis for reliable

and reproducible results. We outline the employed tools, datasets,

and evaluation approaches and explain the rationale behind their

selection. All the tools and evaluation approaches were executed on

a PC equipped with an Intel® Xeon CPU E3-1225 v5 @ 3.30 GHz,

32 GB system memory, 128KB LI cache, 1 MB L2 cache, and 8MB

L3 cache.

5.1 Employed tools
MSE Eclipse-based Workbench. The MSE is HEPSYCODE [53]

(HW/SW CO-DEsign ofHEterogeneous Parallel dedicated SYstems).

It has been developed using the Eclipse EMF as the reference lan-

guage workbench [37] and Sirius to generate its graphical modeling

environment as a plugin of the Eclipse platform. EMF [30] 10 is a

standard de-facto implementation of the MOF architecture. Its meta-

modeling language, Ecore, represents the 𝑀3
layer. Using Ecore,

developers define custom metamodels (𝑀2
). The main component

"Eclipse («platform»)" in Figure 2 represents our instantiation of

the MOF architecture in which EMF and the Sirius plugin are used

to create the Graphical Modeling Workbench 2 . The latter han-
dles models (𝑀1

) compliant with custom Domain Specific Meta-

model 1 (𝑀2
). Examples of this Graphical Modeling workbench can

be found in [62] and [15], which further extend the framework with

EMF-compliant technologies (e.g., EMF Views [13]). HEPSYCODE
is a framework and tool to improve the design time of embedded

and CPS applications. It is based on a System-Level methodology

for HW/SW Co-Design of Heterogeneous Parallel Dedicated Sys-

tems [52]. HEPSYCODE uses Eclipse MDE technologies, SystemC

custom simulator implementation, and AI-augmented algorithms

for partitioning activities, all integrated into an automatic frame-

work that drives the designer from the first input specifications to

the final solution.

The whole framework drives the designer from an Electronic
System-Level (ESL) behavioral model, with related Non-Functional

(NF) requirements, to the final HW/SW implementation, consider-

ing specific HW technologies, scheduling policies, and Inter-Process

Communication (IPC) mechanisms. The metamodeling language

introduced in HEPSYCODE, named HEPSY, is based on the Commu-

nicating Sequential Processes (CSP) Model of Computation (MoC).

It allows modeling the system’s behavior as a network of pro-

cesses communicating through unidirectional synchronous chan-

nels. Moreover, a Model-to-Model (M2M) transformation involving

the Xtext [75] framework has been used to translate the HEPSY

model into an executable CSP-SystemC model of the system behav-

ior. Through the execution of different simulation activities, includ-

ing a system-level Design Space Exploration (DSE) approach that

allows the related co-design methodology to suggest an HW/SW

partitioning of the application specification and a mapping of the

partitioned entities onto an automatically defined heterogeneous

multi-processor architecture, it is possible to proceed with system

implementation. The tool is freely available on GitHub.

Modeling Event Recorder for EMF-based editors. The MER

implementation for EMF-based models and editors is presented

in [19] as subcomponents of aModeling ProcessMining Tool [19] 3 .
MER is thus implemented as an Eclipse plugin that interacts with

Sirius-based graphical editors for EMF-based models, as the CAEX

modeling workbench [41] or HEPSYCODE tool [53], and records

users’ modeling traces. Traces are encoded in the IEEE Standard

for eXtensible Event Stream (XES) [34], which provides an XML

schema for log encoding. The MER tool also provides an Ecore-

based XES metamodel for encoding traces as EMF-based models.
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Figure 4: Modeling Event Recorder Workflow

Figure 4 shows the workflow in MER on a high level. The user

starts interacting with the modeling editor. A modeling session

starts when the editor is opened (step 1). Then, MER attaches itself

to the created editing session (step 2) and listens to changes in

the EMF-based models that are being modified by the graphical

editors. As the user interacts with the editor and creates, modifies,

and deletes graphical elements from the modeling canvas (e.g.,

internal elements, external interfaces, and internal links in the

CAEX Modeling Workbench, or processes, channels, and ports in

HEPSYCODE), the MER plugin captures all of the corresponding

events. This change observation is done via the EMF Notification

API, a built-in API in EMF. In step 3, as the editing session is closed

(i.e., when the containing Eclipse project is closed), the plugin stores

the collected traces in an XES log file. Step 4 demonstrates that the

MER output can be utilized as an input for a recommender, in this

case, MORGAN. The recommender will then be able to generate

recommendations based on these traces.

MORGAN. As the IMA component, we consider the MORGAN

tool [22] as discussed in Section 2. Compared to the previous ver-

sion [22], we modify MORGAN ’s architecture by introducing a

Trace parser 4 to extract relevant information from XES traces

obtained by the MER component 3 [19]. In such a way, we obtain a

textual-based representation used by the graph encoder to produce

a list of trace graphs. To this end, the encoder extracts different

features for each event, i.e., the type of event and the affected arti-

facts. Each graph is constructed using a set of Natural Language

Preprocessing (NLP) techniques, i.e., stemming and dash-removal.

Afterward, we assess the graph similarity between the XES graphs

using theWeisfeiler-Lehman algorithm [69], provided by the Grakel

Python library [2]. The outcomes of this Python component are the

ranked list of similar operations given the context of the modeler,

i.e., the initial XES trace.

Large Language Model. LLM synthetic dataset generation uses

pre-trained LLM to create synthetic datasets that mimic real-world

data. This method leverages the extensive knowledge and contex-

tual understanding embedded in LLMs to generate data that can be

used for training, validation, and testing of various ML models. Fur-

thermore, LLM synthetic dataset generation effectively addresses

the challenges of reducing the time and effort to collect traces (CH1),

representing realistic designer behavior (CH2), and overcoming se-

curity concerns, privacy regulations, and industry restrictions [23].

By leveraging the advanced capabilities of LLMs, our proposed

approach provides a robust solution for creating high-quality, rele-

vant, and secure datasets, thereby enhancing the development and

performance of ML models.

In such a context, our work used four LLMs 6 as instances of

component 6 in Figure 2: (1) Gemini [29], developed by Google

DeepMind; (2) GPT-3.5 [57], available for free and developed by

OpenAI; (3) GPT-4 Turbo [58], the professional version of GPT also

developed by OpenAI; (4) LLaMA3 70B [48] developed by Meta.

GPT-4, GPT-3.5, and Gemini are proprietary, meaning their underly-

ing details and weights are not shared publicly. They are generally

accessed via paid APIs or cloud services. LLama3 is an open-source

model, offering transparency and flexibility with its publicly avail-

able architecture and weights. We selected these LLMs because

they represent the best proprietary and open-source technologies

according to LMSYS LeaderBoard [4]. In the scope of the paper, we

used a web-based interface for all the selected LLMs. Therefore,

we cannot configure the token size for each of them. For instance,

GPT-4 offers a context window of 8K tokens. Noteworthy, we didn’t

suffer from this limitation in the input prompts. Meanwhile, in the

output phase, we experimented with this limitation in some cases.

To cope with this, we asked the LLM to continue the generation

phase in the same chat, thus preserving the active context.

5.2 Datasets
This section presents information about the dataset used for the

training and evaluation steps of the proposed approach. In contrast,

enhancement has been proposed with LLM in-context learning

synthetic dataset generation.

D1 - Hepsycode dataset: The HEPSYCODE dataset is com-

posed of embedded systems application models taken from the

literature [52, 66, 72], with a total amount of 2379 XES events,

D2 - LLM datasets: Starting from the models and trace files

generated through the MSE flow, in this work we created a syn-

thetic dataset using 4 LLMs available on the market, as presented

in Section 5.1. For the creation of the datasets, we used the same

prompt, as shown in Figure 3, on all the considered four LLMs

through the online query form.

D3 - Industrial dataset: HEPSYCODE has also been used and

validated through several industrial Use Case (UC) studies from

European Projects, covering 4 domains (i.e., Avionics, Smart cities,

Space, Automotive). The total amount of XES events for these in-

dustrial models is 1079, spanning over three different EU projects,

i.e., MegaM@aRt2 [8, 55], AQUAS [6, 61], and AIDOaRT [1, 12].

5.3 Evaluating synthetic data
Synthetic data generated from LLMs inherently faces several data

limitations that must be acknowledged and addressed. As an inher-

ent characteristic, LLMs may inadvertently propagate inaccuracies

or biases present in their pre-training data, leading to outputs that

may not always align with factual or unbiased information. More-

over, synthetic data generated by LLMs can sometimes not only be

inaccurate but completely fictitious or disconnected from reality, a

phenomenon often referred to as "hallucination".

To address these issues, the quality of the synthetic data can

be assessed from the perspectives of diversity, correctness, and
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hallucination, measured using quantitative metrics, as presented

below.

CorrectnessMetric. TheCorrectnessmetric measures whether the

data instance is related to the given label. Existing approaches for

measuring correctness can be divided into two categories: automatic

evaluation and human evaluation. Human evaluation has been

conducted by prompt engineers to self-tune the Few-shot In-Context
Learning component. Automatic evaluation has been implemented

to check the correctness of event syntax using the following metric:

𝐶 (𝜏+𝑗 ) =
∑𝑁 ′

𝑘=1
𝑐 (𝑒+

𝑗,𝑘
)

|𝜏+
𝑗
| , where 𝑐 (𝑒+𝑗,𝑘 ) =

{
1 if 𝑒+

𝑗,𝑘
has correct syntax

0 otherwise

(10)

This metric can be evaluated on the full 𝜏+
𝑗
synthetic trace while

it is possible to cluster the metrics w.r.t syntax features (i.e., MER

metamodel classes).

Diversity Metric. Diversity measures the difference between a

chunk of text and another in the generated instances. In this work,

we evaluate differences between 𝜏+
𝑗
synthetic traces generated by

LLMs and real 𝜏 𝑗 traces generated by designers using the MER

component. The considered metrics are the follows:

Edit-based similarities, also known as distance-based, measure

the minimum number of single-character operations (e.g., inser-

tions, deletions, or substitutions) required to transform one string

into another.

Levenshtein: The Levenshtein distance 𝑑𝑖𝑠𝑡 (𝜏 𝑗 , 𝜏+𝑗 ) between 𝜏 𝑗

and 𝜏+
𝑗
is the minimum number of single-character edits (inser-

tions, deletions, or substitutions) required to change one trace into

the other. Starting from the Levenshtein distance, the Levenshtein

similarity is defined as follows:

LEV(𝜏 𝑗 , 𝜏+𝑗 ) = 1.0 −
𝑑𝑖𝑠𝑡 (𝜏 𝑗 ,𝜏+𝑗 )

𝑚𝑎𝑥 ( |𝜏 𝑗 |, |𝜏+𝑗 | )
(11)

Longest Common substrings (LCS): The maximum-length common

events subsequence LCS(i,k) of 𝜏 𝑗 and 𝜏
+
𝑗
, considering only char-

acters insertion and deletion, where i and k represent the prefix

length of trace string 𝜏 𝑗 [𝑖] ∈ 𝜏 𝑗 and 𝜏+
𝑗
[𝑘] ∈ 𝜏+

𝑗
, respectively, is

given by:

𝐿𝐶𝑆 (𝑖, 𝑘) =

0 if 𝑖 = 0 ∨ 𝑘 = 0

𝐿𝐶𝑆 (𝑖 − 1, 𝑘 − 1) + 1 if 𝑖, 𝑘 > 0 ∧ 𝜏 𝑗 [𝑖] = 𝜏+
𝑗
[𝑘]

0 if 𝑖, 𝑘 > 0 ∧ 𝜏 𝑗 [𝑖] ≠ 𝜏+
𝑗
[𝑘]

(12)

Jaro–Winkler : The Jaro Similarity is calculated using the following

formula:

JARO(𝜏 𝑗 , 𝜏+𝑗 ) =

0 if𝑚 = 0

1

3

(
𝑚
|𝜏 𝑗 | +

𝑚
|𝜏+
𝑗
| +

𝑚−𝑡
𝑚

)
Otherwise

(13)

where m is the number of matching characters between 𝜏 𝑗 and 𝜏
+
𝑗

and t is half the number of transpositions.

Among the token-based similarity function, we consider:

Jaccard: measure the size of the intersection divided by the size

of the union of the strings, as follows:

JACCARD(𝜏 𝑗 , 𝜏+𝑗 ) =
|𝜏 𝑗 ∩ 𝜏+

𝑗
|

|𝜏 𝑗 | + |𝜏+
𝑗
| − |𝜏 𝑗 ∩ 𝜏+

𝑗
| (14)

Sorensen-Dice: evaluate twice the number of elements common to

both traces divided by the sum of the number of elements in each

trace, as follows:

DICE(𝜏 𝑗 , 𝜏+𝑗 ) =
2|𝜏 𝑗 ∩ 𝜏+

𝑗
|

|𝜏 𝑗 | + |𝜏+
𝑗
| (15)

Q-Gram: count the number of occurrences of different q-grams in

the two traces. Given a trace 𝜏 𝑗 and let 𝑣 ∈ Ψ𝑞
a q-gram, the total

number of occurrences of v in 𝜏 𝑗 , denoted by G(𝜏 𝑗 [𝑣]), is obtained
by sliding a window of length q over the trace tokens. Given two

traces 𝜏 𝑗 and 𝜏
+
𝑗
, the Q-gram similarity is described as follows:

Q-GRAM(𝜏 𝑗 , 𝜏+𝑗 ) = 1 −

∑
𝑣∈Ψ𝑞

|𝐺 (𝜏 𝑗 ) [𝑣] −𝐺 (𝜏+
𝑗
) [𝑣] |∑

𝑣∈Ψ𝑞
𝑚𝑎𝑥 (𝐺 (𝜏 𝑗 ) [𝑣],𝐺 (𝜏+

𝑗
) [𝑣]) (16)

the traces are the closer relatives the more they have q-grams in

common.

Cosine: similarity between two non-zero vectors of an inner

product space that measures the cosine of the angle between them,

as follows:

COSINE(𝜏 𝑗 , 𝜏+𝑗 ) = 𝑐𝑜𝑠 (𝜃 ) =
𝜏 𝑗 · 𝜏+𝑗

| |𝜏 𝑗 | | · | |𝜏+𝑗 | |
(17)

where 𝜏 𝑗 · 𝜏+𝑗 is the dot product between the vector 𝜏 𝑗 and 𝜏
+
𝑗
, and

| |𝜏 𝑗 | | represents the Euclidean norm of the vector 𝜏 𝑗 . The resulting

measure of similarity spans from -1, signifying complete opposition,

to 1, indicating absolute identity. A value of 0 signifies orthogonality

or decorrelation, while values in between denote varying degrees of

similarity or dissimilarity. For text matching, the attribute vectors

𝜏 𝑗 and 𝜏
+
𝑗
are usually the term frequency vectors of the documents.

These metrics can be used to evaluate how well LLMs can emu-

late both the designer’s modeling approach and patterns, as well as

human-based modeling approaches.

Hallucination Metric. In the scope of the paper, we define the

hallucination as the number of additional operations, namely non-
realistic events, generated compared to the human ones by specify-

ing the following metric:

𝐻 (𝜏 𝑗 , 𝜏+𝑗 )<event> =
Number of Synthetic Events 𝑒+

𝑗,𝑘
of type <event>

Number of Real Events 𝑒 𝑗,𝑘 of type <event>

(18)

This metric can be evaluated on the full 𝜏+
𝑗
synthetic trace file and

𝜏 𝑗 real trace file and also for all the considered DSL metamodel

classes. If these metrics are greater than 1, then the LLM produces

an incorrect synthetic trace file (i.e., hallucination results, the LLM

adds more classes than those present in the real trace model).

5.4 Evaluating modeling recommendations
Concerning the produced recommendations, we set up an automatic

evaluation of accuracy metrics aiming at mimicking the modeler’s

behavior. In the scope of this paper, we define the true positive (TP)

as the correct recommended operation, false positive (FP) as the

wrong operation, and false negatives (FN) as the operations that

should be included in the recommendations but actually are not.

Given these definitions, we define Precision (PR), Recall (REC), and

F1-score (F1) as follows: 𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑃); 𝑅𝐸𝐶 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁 );
and 𝐹1 = 2 ∗ 𝑃𝑅 ∗ 𝑅𝐸𝐶/(𝑃𝑅 + 𝑅𝐸𝐶).
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Concerning the assessed modeling operations, we evaluate the

approach using two different parameters, i.e., context ratio (CR)
and cutoff (CO). The first paramenter represents the number of

operations captured at a certain timestamp, i.e., past operations. In

the scope of the paper, we mimic three different stages of models,

i.e., early stage, medium, and almost complete, considering three

thresholds, i.e., 0.2, 0.5, and 0.8 of the original testing model. Simi-

larly, we variate the number of recommended operations by setting

the CO parameters 3,5 and 10 operations as thresholds.

By relying on these two parameters, we derived nine different

configurations represented in Table 1. In such a way, we can analyze

how the overall accuracy varies according to contextual informa-

tion. For instance, configuration𝐶1.1 represents the situation where

the system recommends few operations in an early stage of devel-

opment, i.e., C0=3 and CR=0.2, respectively. Each configuration

Table 1: Configurations for the accuracy evaluation

CR=0.2 CR=0.5 CR=0.8

CO=3 𝐶1.1 𝐶1.2 𝐶1.3

CO=5 𝐶2.1 𝐶2.2 𝐶2.3

CO=10 𝐶3.1 𝐶3.2 𝐶3.3

has been evaluated using the 5-fold cross-validation since it is a

well-founded strategy to automatically evaluate ML-based recom-

mender systems [35]. In particular, we split the operations into

train, test, and ground truth (GT) data by resembling the MORGAN

original setting presented in [22]. The train traces are used to feed

the underpinning graph kernel engine and are compared with the

testing ones. We obtained the ground truth data by relying on the

CR parameter to vary the number of already performed operations.

Concretely, augmenting CR reduces the number of operations to

be predicted, i.e., the GT operations. We eventually use the test and

GT data to compute the accuracy using the metrics presented in

Section 5.3. To avoid any bias in the evaluation, we randomize the

testing and GT operations, thus assuming that there is no temporal

relationship between them.

In addition, we analyze the time required to perform i) the load-
ing of training traces and encoding them in graph-based format

and ii) the recommendation for all the testing operations.

6 RESULTS
Addressing 𝑅𝑄1. To answer this research question, we evaluate

the quality of the generated synthetic data using the four LLMs

listed in Section 5.1 and the evaluation approach presented in Sec-

tion 5.3. The quality of the synthetic data has been assessed from

the perspectives of diversity, correctness, and hallucination, mea-

sured using quantitative metrics through the python-text-distance
library [5]. All the statistical analysis have been performed using

Jamovi [3] software version 2.3.28.0.

We also calculate the total evaluation time by summing the time

needed to complete each activity, from creating a domain-specific

metamodel to generating a final dataset for training IMAs. More-

over, using the PC configuration presented in Section 5, the total

time for modeling and trace collection in MSE was approximately

150 minutes, while the time for generating models using the four

LLMs and performing validation was approximately 15 minutes.

Figure 5: Synthetic Data Quality Evaluation Results. The
violin plots show the distribution of points with the scatter
plot. The white dots in the center represent the median.

Correctness evaluation: To assess the correctness of the gener-
ated data, we apply two different evaluations: human and automatic.

Human evaluation has been conducted by prompt engineers in com-

ponent 5 in Figure 2. The designers start by selecting input and

output demonstrations and analyzing the MSE context and the task

to complete (i.e., the creation of synthetic traces). Prompt refine-

ments are applied until good quality results are achieved (i.e., the

generated traces have the needed syntax, contain a good number of

events, and the data do not have inaccurate or completely fictitious

events). After a few minutes, it was possible to define the basic

structure of the prompt through human validation, as shown in

Figure 3, and we proceeded to the human data cleaning activities

in component 7 (e.g., remove unwanted text and/or characters,

standardize the format, and format the files to be used appropri-

ately in the subsequent steps) and the automatic validation of the

LLM generation results throughout component 8 (i.e., the Quality

Checker).

The automatic validation was performed following Eq.10 in com-

ponent 8 (i.e., the Quality Checker). The results for all the LLMs

show syntactic correctness 𝐶 (𝜏+
𝑗
) greater than 99% with p-values «

0.001 for all LLMs using the One Sample T-Test with Null Hypothesis
𝐻0 : 𝜇 < 99% (i.e., mean minor than 99%). Therefore, we can reject

the Null Hypothesis 𝐻0 and we can assess that all the LLMs can

accurately emulate, from a syntactic point of view, the generation

of reference traces under the considered configuration.

Diversity evaluation: Concerning the diversity, we evaluate

differences between 𝜏+
𝑗
synthetic traces generated by LLMs and real

𝜏 𝑗 traces generated by designers using the diversity metrics defined

in Section 5.3, from Eq. 11 to Eq. 17. Figure 5 presents the violin
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plot results with the point distributions related to each considered

metric value. The graph shows that all the LLMs behave similarly

except for GPT-4, which has metric values closer to the median (i.e.,

lower variance).

To identify significant differences among metrics, we conducted

Welch’s One-WayANOVA tests, which account for varying variances

among LLM groups. This analysis reveals substantial differences

in the JARO, COSINE, and Q-GRAM metrics across at least one

LLM (p-values « 0.001). For a detailed analysis of metric group

differences, we further utilized the Games-Howell test for post-hoc
analysis, where the pairs of LLMs with a p-value less than 0.05

are: (i) JARO: (GPT-4, GPT3.5) with p = 0.002; (GPT-4, Gemini)

with p = 0.018; (GPT-4, Llama3) with p « 0.001. (ii) COSINE: (GPT-4,
Llama3) with p « 0.001. (iii) Q-GRAM: (GPT-4, GPT3.5) with p =

0.004; (GPT-4, Gemini) with p = 0.010; (GPT-4, Llama3) with p «

0.001.

Finally, we used the Independent Samples T-Test to determine

which of the LLMs considered in the previous combinations is the

best in terms of the mean value. This analysis confirms that GPT-4

outperforms the other LLMs in terms of the considered similarity

measures.

Hallucination: Automatic evaluation of non-realistic events have

been implemented considering the Hallucination metric defined

in Eq. 18 in Section 5.3. Table 2 shows the statistics related to the

hallucination metrics. The Confidence Interval (CI) of the mean

assumes sample means follow a t-distribution with N-1 degrees of

freedom.

Table 2: Hallucination metric result statistics.

LLM N 𝜇 SE CI-L CI-U Median SD Variance IQR

GEMINI 330 0.969 0.0207 0.929 1.01 1 0.377 0.142 0.211

GPT35 307 1.066 0.0327 1.001 1.13 1 0.572 0.327 0.536

GPT4 335 0.912 0.0192 0.874 0.95 1 0.352 0.124 0

LLAMA3 306 0.775 0.0318 0.713 0.838 0.75 0.557 0.31 0.68

𝜇: Mean; SE: Standard Error; SD: Standard Deviation; IQR: Interquartile range; CI-L:

95% Confidence Interval Lower Bound; CI-U: 95% Confidence Interval Upper Bound;

Based on Table 2, GPT-4 is the only LLM with better values

than the others, with a CI < 1 (CI-L = 0.874, CI-U = 0.95), an IQR

equal to 0 (up to the 95th percentile all values are ≤ 1, minimizing

hallucination effects), and with SE (0.0192), SD (0.352) and Variance

(0.124) lower than all other LLMs. Applying the One Sample T-Test
on GPT4 with the Null Hypothesis 𝐻0 : (𝜇𝐺𝑃𝑇−4 > 1), we get a
p-value « 0.001, allowing us to reject the 𝐻0. This confirms that

GPT-4, regarding the hallucination metric, is the best LLM among

those considered.

Answer to RQ1: The results show that the traces generated by

the LLMs are very similar to those generated by a human, especially

considering GPT-4, which has the best statistical results and reduced

hallucination effects. This demonstrates that LLMs can be used as

tools to reliably emulate modeling operations that a human could

perform.

Addressing 𝑅𝑄2. To answer this research question, we analyze two

different aspects, i.e., the amount of training data and how syn-

thetic data can be used to replace human-generated operations. To

support the first aspect, we run the 5-fold validation on the three

datasets using the configurations discussed in Section 5. Concern-

ing the second aspect, we obtain a new dataset, i.e., 𝐷2, starting

from the human-generated traces from dataset 𝐷1 as discussed in

Section 5.2. To obtain 𝐷2, we use the in-context few-shots learning

setting described in Section 4 by relying on GPT-4 LLMs, as it rep-

resents the best model according to the conducted evaluation in the

previous research question. Moreover, we create the 𝐷𝑚𝑖𝑥 dataset

by randomly mixing traces belonging to 𝐷1 and 𝐷2. In addition,

we analyze the recommendation capabilities in suggesting opera-

tions that affect i) classes and ii) attributes, resembling the original

MORGAN experiment [22]. Table 3 shows the results obtained by

MORGAN in recommending class operations considering the three

datasets and the nine configurations.

It is evident that the system obtains better performance when

real traces are used in all the considered configurations presented

in Section 5.3. In particular, configuration C3.3 leads to better per-

formances, i.e., the F1-score is equal to 0.60 on average. On the

contrary, the maximum value achieved by MORGAN considering

synthetic data is 0.34 using configuration 𝐶3.2, meaning that the

generated traces are less accurate compared to the human ones.

Intuitively, powerful LLMs like GPT-4 can be used to generate mod-

eling operations when real traces are not available. This claim is

confirmed by analyzing the results obtained for 𝐷𝑚𝑖𝑥 where the

results are slightly increased compared to synthetic traces. On the

one hand, we report that using only half of the real traces has

limited impact. On the other hand, a small portion of synthetic

data can contribute to enabling IMAs focused on recommending

modeling operations. Concerning the configurations, we report

that increasing both the CR and CO value contributes to increasing

the overall performance of MORGAN, i.e., the F1-score value is

increased by 0.17 on average for all the datasets.

A similar trend in performance accuracy can be observed for

recommending attribute operations summarized in Table 4. As ex-

pected, the accuracy is lower compared to class operations, i.e.,

the best F1-score value is 0.46 using configuration 𝐶1.3. This result

can be explained by the higher variability in defining modeling

operations. Concerning the impact of synthetic operations, the re-

sults confirm that 𝐷1 offers better performance, even though the

delta between the synthetic data is lower than the class recommen-

dations. It is worth mentioning that the obtained performance is

in line with state-of-the-art IMAs [16, 20, 74] used in modeling

completion tasks. Furthermore, we report that the NEMO approach

[21], the most relevant approach to ours, achieves 0.60 of accuracy

on a curated dataset. In this respect, our approach employs traces

extracted from real-world models.

Similarly to 𝑅𝑄1, we evaluated the time needed to compute the

training and testing phase considering only the MORGAN tool,

thus excluding the time to generate the traces. Overall, the time

to load and encode the training traces is equal to 0.07 seconds on

average for each fold, while 7 seconds are required to perform the

recommendation phase.

Answer to RQ2: The results show that real traces are better to

feed traditional IMAs like MORGAN. However, synthetic traces can

be used to augment the training set in a faster way and preserve

the accuracy of other state-of-the-art tools.
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Table 3: Class recommendations results

𝐶1.1 𝐶1.2 𝐶1.3 𝐶2.1 𝐶2.2 𝐶2.3 𝐶3.1 𝐶3.2 𝐶3.3

PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1

D
a
t
a
s
e
t
𝐷
1

R1 0.55 0.35 0.43 0.55 0.35 0.43 0.68 0.62 0.64 0.67 0.30 0.39 0.64 0.47 0.50 0.59 0.44 0.50 1.00 0.24 0.39 1.00 0.47 0.63 0.60 0.44 0.50

R2 0.62 0.42 0.49 0.62 0.42 0.49 0.58 0.59 0.57 0.63 0.31 0.34 0.65 0.40 0.45 0.68 0.61 0.63 1.00 0.24 0.38 0.96 0.40 0.56 0.73 0.57 0.63

R3 0.46 0.31 0.37 0.46 0.31 0.37 0.72 0.72 0.71 0.63 0.30 0.38 0.64 0.39 0.45 0.55 0.49 0.50 1.00 0.25 0.39 0.88 0.37 0.51 0.70 0.51 0.58

R4 0.49 0.39 0.42 0.49 0.39 0.42 0.59 0.68 0.60 0.63 0.28 0.37 0.76 0.49 0.57 0.69 0.63 0.64 1.00 0.22 0.36 0.84 0.39 0.53 0.76 0.64 0.68

R5 0.58 0.39 0.46 0.58 0.39 0.46 0.62 0.63 0.59 0.54 0.17 0.25 0.56 0.29 0.38 0.51 0.46 0.47 0.89 0.26 0.40 0.90 0.41 0.56 0.71 0.58 0.63

Avg. 0.54 0.37 0.43 0.54 0.37 0.43 0.64 0.65 0.62 0.62 0.28 0.35 0.65 0.41 0.46 0.61 0.53 0.55 0.98 0.24 0.38 0.92 0.40 0.56 0.70 0.54 0.60

D
a
t
a
s
e
t
𝐷
2

R1 0.44 0.27 0.30 0.32 0.27 0.29 0.23 0.34 0.27 0.33 0.10 0.15 0.31 0.17 0.21 0.32 0.33 0.30 0.78 0.15 0.25 0.63 0.24 0.34 0.36 0.35 0.33

R2 0.44 0.26 0.31 0.45 0.28 0.34 0.29 0.45 0.34 0.38 0.13 0.18 0.46 0.23 0.29 0.44 0.48 0.43 0.44 0.08 0.14 0.64 0.26 0.36 0.34 0.29 0.30

R3 0.36 0.21 0.25 0.25 0.17 0.20 0.28 0.43 0.32 0.33 0.16 0.19 0.38 0.15 0.22 0.31 0.26 0.28 0.78 0.15 0.25 0.56 0.21 0.31 0.38 0.36 0.35

R4 0.44 0.23 0.28 0.37 0.25 0.29 0.26 0.31 0.27 0.44 0.21 0.27 0.46 0.36 0.35 0.29 0.36 0.30 0.67 0.13 0.21 0.60 0.26 0.35 0.29 0.21 0.24

R5 0.33 0.15 0.20 0.43 0.28 0.33 0.31 0.42 0.34 0.48 0.21 0.26 0.44 0.24 0.30 0.28 0.31 0.28 0.78 0.15 0.25 0.55 0.21 0.30 0.55 0.40 0.44

Avg. 0.40 0.24 0.27 0.38 0.25 0.29 0.27 0.39 0.31 0.39 0.15 0.21 0.41 0.23 0.27 0.33 0.35 0.32 0.69 0.13 0.22 0.60 0.24 0.34 0.38 0.32 0.33

D
a
t
a
s
e
t
𝐷
𝑚
0
5

R1 0.33 0.11 0.14 0.27 0.20 0.22 0.38 0.47 0.41 0.48 0.26 0.30 0.40 0.30 0.31 0.34 0.30 0.31 0.72 0.19 0.29 0.51 0.27 0.34 0.46 0.40 0.41

R2 0.46 0.18 0.25 0.27 0.15 0.19 0.29 0.30 0.29 0.33 0.18 0.21 0.39 0.44 0.34 0.31 0.37 0.29 0.78 0.17 0.28 0.64 0.32 0.42 0.43 0.43 0.40

R3 0.48 0.13 0.20 0.43 0.37 0.36 0.34 0.43 0.36 0.39 0.15 0.21 0.38 0.27 0.29 0.35 0.50 0.38 0.72 0.15 0.25 0.58 0.26 0.35 0.39 0.37 0.36

R4 0.39 0.14 0.14 0.37 0.26 0.29 0.36 0.42 0.38 0.37 0.15 0.20 0.40 0.30 0.31 0.37 0.39 0.36 0.67 0.15 0.25 0.57 0.29 0.37 0.48 0.50 0.47

R5 0.46 0.26 0.28 0.33 0.25 0.28 0.36 0.41 0.38 0.43 0.17 0.22 0.44 0.23 0.29 0.43 0.40 0.41 0.78 0.20 0.31 0.60 0.29 0.38 0.34 0.32 0.32

Avg. 0.42 0.17 0.20 0.33 0.25 0.29 0.35 0.42 0.36 0.40 0.18 0.23 0.40 0.31 0.30 0.36 0.32 0.33 0.73 0.18 0.28 0.58 0.28 0.36 0.42 0.37 0.37

Table 4: Attributes recommendations results

𝐶1.1 𝐶1.2 𝐶1.3 𝐶2.1 𝐶2.2 𝐶2.3 𝐶3.1 𝐶3.2 𝐶3.3

PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1 PR REC F1

D
a
t
a
s
e
t
𝐷
1

R1 0.50 0.16 0.20 0.40 0.22 0.25 0.59 0.46 0.48 0.60 0.30 0.26 0.49 0.10 0.15 0.56 0.28 0.34 1.00 0.04 0.07 0.67 0.14 0.20 0.70 0.32 0.38

R2 0.52 0.20 0.26 0.46 0.21 0.26 0.60 0.45 0.46 0.47 0.10 0.14 0.55 0.25 0.26 0.52 0.37 0.36 1.00 0.04 0.08 0.88 0.16 0.24 0.71 0.23 0.34

R3 0.56 0.22 0.26 0.42 0.22 0.25 0.64 0.46 0.51 0.46 0.13 0.16 0.62 0.16 0.23 0.61 0.33 0.35 1.00 0.06 0.11 0.77 0.16 0.24 0.74 0.30 0.41

R4 0.61 0.27 0.32 0.48 0.30 0.32 0.57 0.36 0.42 0.71 0.18 0.21 0.69 0.20 0.26 0.74 0.35 0.43 1.00 0.03 0.05 0.90 0.07 0.13 0.88 0.33 0.41

R5 0.50 0.23 0.25 0.45 0.20 0.27 0.53 0.37 0.41 0.63 0.10 0.16 0.60 0.23 0.22 0.62 0.34 0.36 1.00 0.05 0.09 0.76 0.10 0.17 0.76 0.44 0.42

Avg. 0.54 0.22 0.26 0.44 0.24 0.28 0.59 0.42 0.46 0.58 0.14 0.19 0.59 0.19 0.23 0.61 0.34 0.36 1.00 0.04 0.08 0.80 0.12 0.20 0.76 0.33 0.38

D
a
t
a
s
e
t
𝐷
2

R1 0.26 0.14 0.14 0.24 0.19 0.17 0.27 0.21 0.23 0.33 0.10 0.13 0.27 0.08 0.11 0.33 0.17 0.19 0.54 0.04 0.07 0.38 0.17 0.20 0.28 0.17 0.17

R2 0.33 0.13 0.17 0.36 0.25 0.25 0.25 0.30 0.23 0.24 0.13 0.11 0.33 0.10 0.13 0.23 0.14 0.16 0.44 0.06 0.09 0.44 0.16 0.20 0.26 0.14 0.15

R3 0.20 0.09 0.10 0.25 0.11 0.14 0.24 0.24 0.21 0.20 0.07 0.09 0.35 0.19 0.18 0.26 0.19 0.16 0.50 0.07 0.10 0.41 0.14 0.18 0.25 0.14 0.14

R4 0.13 0.04 0.06 0.31 0.21 0.21 0.25 0.29 0.23 0.27 0.07 0.09 0.21 0.05 0.07 0.24 0.17 0.14 0.52 0.04 0.07 0.44 0.16 0.20 0.24 0.13 0.12

R5 0.18 0.07 0.09 0.28 0.15 0.18 0.25 0.30 0.24 0.22 0.06 0.07 0.19 0.04 0.06 0.23 0.12 0.15 0.60 0.06 0.10 0.43 0.17 0.22 0.16 0.06 0.08

Avg. 0.22 0.09 0.11 0.29 0.18 0.20 0.26 0.27 0.23 0.26 0.08 0.10 0.27 0.09 0.11 0.26 0.16 0.16 0.54 0.05 0.08 0.42 0.16 0.19 0.24 0.13 0.14

D
a
t
a
s
e
t
𝐷
𝑚
0
5

R1 0.52 0.21 0.25 0.36 0.17 0.21 0.34 0.29 0.29 0.56 0.13 0.19 0.48 0.14 0.20 0.37 0.30 0.27 0.54 0.04 0.07 0.63 0.07 0.12 0.33 0.11 0.14

R2 0.33 0.10 0.15 0.23 0.09 0.12 0.24 0.26 0.20 0.47 0.12 0.14 0.30 0.06 0.09 0.32 0.26 0.22 0.44 0.06 0.09 0.56 0.07 0.11 0.46 0.18 0.25

R3 0.39 0.13 0.18 0.51 0.16 0.22 0.28 0.22 0.24 0.41 0.08 0.11 0.26 0.15 0.11 0.35 0.18 0.17 0.50 0.07 0.10 0.50 0.06 0.10 0.48 0.13 0.20

R4 0.36 0.20 0.22 0.34 0.19 0.23 0.27 0.25 0.23 0.33 0.03 0.05 0.32 0.06 0.09 0.38 0.20 0.24 0.52 0.04 0.07 0.63 0.10 0.15 0.39 0.14 0.14

R5 0.36 0.10 0.15 0.33 0.15 0.18 0.32 0.32 0.28 0.33 0.02 0.04 0.36 0.12 0.13 0.38 0.19 0.21 0.60 0.06 0.10 0.52 0.11 0.17 0.46 0.26 0.28

Avg. 0.39 0.13 0.18 0.36 0.15 0.18 0.29 0.25 0.25 0.43 0.07 0.10 0.32 0.11 0.13 0.36 0.23 0.20 0.54 0.05 0.08 0.59 0.08 0.13 0.38 0.18 0.21

Addressing 𝑅𝑄3. To answer this question, we run MORGAN on

Dataset 𝐷3 using the previous datasets as training, i.e., 𝐷1, 𝐷2, and

𝐷𝑚05. In addition, we derive two additional datasets by mixing

different ratios of synthetic and real traces, i.e., 𝐷𝑚02 and 𝐷𝑚08,

where the ratio of synthetic traces are 0.2 and 0.8 out of the total

number, respectively. Concretely, we used 𝐷3 datasets as the vali-

(a) Attributes results on 𝐷3. (b) Class results on 𝐷3.

Figure 6: Validation results.

dation set of our approach, aiming to evaluate how the produced

data can be used in different application domains. Figure 6 (a) and

Figure 6 (b) depict the results obtained using the three training sets

for class and attribute recommendations, respectively. Notably, we

used configuration C3.3 to compute the results, which leads to bet-

ter performance, as shown in the previous research question. While

the human-based traces are still the best training set for MORGAN,

the usage of synthetic data can be used to recommend operations in

different industrial contexts, i.e., the metrics values are in line with

the ones obtained in the previous RQ. In addition, we see that the

operations generated by the GPT-4 model tend to increase the recall

values while human-generated traces lower the precision values on

average. Therefore, mixing human and synthetic traces can repre-

sent an adequate trade-off to reduce the number of false negatives.

This is confirmed by analyzing the results obtained with the novel

datasets, i.e., 𝐷𝑚02 and 𝐷𝑚08. Concerning the time needed for

the recommendations, it is worth noticing that the training time is

reduced from 7 to 2 seconds on average as we are using MORGAN

pre-trained weights to perform the recommendations activity. In

addition, we demonstrate that our approach can be used in differ-

ent application contexts, thus representing a suitable alternative

to cope with CH3 discussed in Section 3. Concretely, IMAs can be

trained with synthetic traces that are not identical but similar to

the target ones, thus overcoming privacy issues in an industrial

context.
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Answer to RQ3: Even though we report a degradation of perfor-

mances when using the pre-trained MORGANmodel, our approach

can be used to support the specification of IMAs when training data

are missing. In practice, the recommendations that are produced

might be useful in different application domains.

7 THREATS TO VALIDITY
This section discusses the threats that may hamper the results of

our work and the mitigations. Threats internal validity concerns

two main aspects, i.e., the evaluation of synthetic data generated

using LLMs and the experiments conducted to evaluate the IMA

component. Concerning the generated data, hallucination may lead

to incorrect operations, thus feeding the IMA component with un-

suitable data. We mitigate this threat by experimenting with four

different popular LLMs and evaluating the generated data using

well-foundedmetrics. In addition, we adapt the concept of hallucina-

tion to the modeling context, focusing on generating only additive

events, i.e., we did not consider removing operations to reduce

any bias in computing the proposed hallucination metric. Regard-

ing the IMA accuracy, the computed metrics can lead to incorrect

results. To cope with this issue, we design three different configu-

rations to simulate different levels of completion, resembling the

evaluation setting exploited by state-of-the-art tools. Furthermore,

we confirmed the outcomes of the 5-fold cross-validation using

well-known statistical indexes.

Concerning the external validity, the main issue is the general-

izability of the proposed framework, i.e., the obtained results may

vary considering a different set of modeling tools. To mitigate this,

we validate the proposed approach by using a well-founded model-

ing component for each conceptual block of the architecture, i.e., the

modeling environment, the trace recorder, and the IMA assistant.

Furthermore, we employ an additional modeling dataset exploited

in several EU projects. In such a way, we validate synthetic traces

in different domain applications as discussed in 𝑅𝑄3.

8 CONCLUSION
This paper proposes a conceptual framework to support auto-

mated activities in the context of MBSE leveraging modeling event

recorders, intelligent modeling assistants, and large language mod-

els. In particular, we used prominent LLMs to generate synthetic

traces using an in-context few-shots prompt engineering strategy,

aiming at resembling human-style operations. The findings of the

study demonstrate that LLMs can be used to generate traces in a

specific format even though the evaluated assistant suffers from

degradation of performance when delivering recommendations.

Nonetheless, generating modeling operations can be seen as a valu-

able alternative when training data are not available due to different

factors, e.g., internal regulations or privacy issues.

In future works, we plan to extend the evaluation to additional

application contexts. In addition, we will include different modeling

tools to validate the quality of synthetic traces. Last but not least,

we plan to fully automate the whole pipeline and collect quality

feedback from modelers.
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