2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) | 978-1-6654-3786-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/SANER53432.2022.00099

2022 TIEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

Endowing third-party libraries recommender
systems with explicit user feedback mechanisms

Riccardo Rubei, Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, Phuong T. Nguyen
Department of Information Engineering, Computer Science and Mathematics, Universita degli studi dell’Aquila, Italy
{riccardo.rubei, claudio.disipio } @ graduate.univaq.it, {juri.dirocco, davide.diruscio, phuong.nguyen} @univag.it

Abstract—During their daily routine, developers often deal
with a plethora of resources, attempting to search for relevant
artifacts that can be added to the project under development.
This kind of information overload may render developers over-
whelmed, thus undermining their productivity and efficiency.
Recommender systems are an effective means of easing such a
burden, providing relevant items for the current programming
contexts, e.g., third-party libraries (TPLs), API calls, or code
snippets. By focusing on TPLs, there has been no work to
allow for the integration of tailored feedback mechanisms with
which users can conveniently accept or discard libraries. In this
paper, we propose an approach to handle explicit user feedback,
including positive, negative, and additive. Thus, further than
accepting or discarding the recommended TPLs, users can also
endorse libraries that, in their opinion, are relevant for the cur-
rent context, even though they are not included in the provided
recommendations. As a proof of concept, we demonstrate how
user feedback generated by the proposed mechanism can change
the outcome of a real TPLs recommender system. The results
show that our proposed approach helps the considered system
retrieve relevant items, under different configurations.

Index Terms—Recommender systems; Third-party recommen-
dation; User feedback

I. INTRODUCTION

During the software development life cycle, developers usu-
ally use external tools and artifacts to assist their programming
tasks. Third-party libraries (TPLs) are software components
developed to provide functionalities to solve a wide range
of tasks. The purpose of TPLs is to help developers relieve
the burden of creating desired functionalities from scratch.
Though being very useful and widely used, TLPs are rather
heterogeneous, and thus developers may need to spend a lot
of effort to find the right ones. In this respect, the problem
of recommending TLPs has attracted attention from both
academia and industry [13], [12], [S]. A crucial aspect that
could potentially increase the overall precision is leveraging
developers’ perception of specific libraries. Various studies
[15], [3] succeed in improving existing recommender systems
by considering both implicit and explicit feedback [20]. In-
terestingly, no work has been done to address the issue of
empowering TPLs recommender systems with user feedback.

In this work, we pesent a novel approach to exploiting user
feedback to enhance TPLs recommendations. We address the
motivating question: “Is it possible to increase the relevance
of the items provided by a TPL recommender system by
augmenting it with user feedback?” taking into consideration
three types of feedback, i.e., positive, negative, and additive.

In the scope of this paper, we built an initial prototype based
on the Learning to Rank [11] (LTR) model to rearrange the
recommended list of items produced by CROSSREC [12], a
well-founded TPLs recommender system, according to the
given user feedback. Furthermore, we also propose a method
to enable additive feedback, i.e., a user can endorse a library
that was not in the original recommendations.

The preliminary study conducted on CROSSREC shows that
the approach obtains encouraging results in equipping the
system with the proposed feedback mechanism. Moreover,
our findings suggest that the envisioned technique can be
incorporated into different kinds of recommender systems. We
published the replication package to facilitate future research.!

II. MOTIVATION AND BACKGROUND
A. Explanatory example

To highlight our contribution, we take a motivating example
in Fig. 1. Given a ranked list of TPLs provided by a rec-
ommender system and that is supposed to be relevant for the
current development context, a user can express three different
types of feedback, namely positive, negative or additive. For
instance, the system provides as a first item junit by relying
on its internal mechanism. However, the user may prefer
another one, for instance, mockito, according to the requested
functionalities. To this end, a possible mechanism to upvote
or downvote a library is represented in Fig. 1, where mockito
has been preferred over junit that is, instead, marked with
a “dislike.” Furthermore, the user can suggest a new item
that does not belong to the original recommended list. In
the example, the user wants to add jackson since it provides
similar functionalities of json that was already suggested.
Such an envisioned feedback mechanism aims to increase the
performance of the used recommender systems, e.g., in terms
of the relevance of recommended items to the current context.

jackson

Recommendation Items

Fig. 1: Explanatory example.
B. Background

Third-party library recommendation. TPLs recommender
systems provide developers with third-party libraries that
are considered to be relevant to the projects under devel-
opment [5], [8], [12], [13]. Due to space limitations, this

Ihttps://github.com/SANER2022- UserFeedback/RecSys

978-1-6654-3786-8/22/$31.00 ©2022 IEEE 817
DOI 10.1109/SANER53432.2022.00099
Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 13:52:26 UTC from IEEE Xplore. Restrictions apply.

H OSSProject W
e :Librios

[0.7] library | Library

[0..1] consists_of [0.X] contrbute

El Recommendation

[0.] express [0..] recitem
& Feedback |

J

E Recltem

[E User [1.1] recitem

l[o..u defines

£ Query] S Positive || £ Negative H E Additive LAddedNem]

T 0.1] refated_to [o7 addedten | ‘

O S
(a) Conceptual model

y G

=
(5] ‘&)

(b) System architecture

5

Fig. 2: Conceptual model and system architecture of the user feedback mechanism for TPLs recommendations.

section recalls only one of them, i.e., CROSSREC [12], as it
is considered as among state-of-the-art TPLs recommenders.
CROSSREC works based on the assumption that “if projects
share some third-party libraries, then they will probably share
additional libraries.” In particular, CROSSREC encodes the
relationships among OSS projects in a graph and utilizes a
collaborative-filtering technique [10] to retrieve TPLs. The
system returns a ranked list of libraries collaboratively mined
from the most similar projects given an input project.

To the best of our knowledge, though several TPLs rec-
ommender systems exist, no work has been done to enable
them to exploit user feedback to increase the relevance of the
recommended items. As detailed in the next section, this paper
proposes a novel approach to equip recommender systems with
the management of user feedback.

Learning to Rank (LTR). It is a supervised learning tech-
nique widely used to cope with the ranking task [2]. Given
a query g and a set of documents D(dy,..,d,), LTR ranks
them according to their relevance with respect to the query.
To this end, the feature vectors are extracted from the initial
dataset and are used to feed the model using the stochastic
gradient descent method. It eventually retrieves a ranked list
of documents and the corresponding relevance score.

In this paper, we utilize a particular LTR model, namely the
Weighted Approximate-Rank Pairwise (WARP) model [19].
The rationale behind this choice is that it works better in
sorting top-K elements of a recommended list. In particular,
the WARP model is employed to sort the list of TPLs as
recommended by CROSSREC to align it with user preferences
that have been previously expressed in terms of feedback.

III. PROPOSED METHODOLOGY

We conceptualize an approach to endow recommender sys-
tems with the management of user feedback. Even though
the final goal is to define such a mechanism generically, in
this paper, we focus on the problem of recommending TPLs
and supporting user feedback for them. Figure 2(a) represents
a conceptual model covering the concepts of interest. In
particular, we focus on open-source projects that depend on a
set of TPLs (see the concepts OSSProject and Library). A
developer that is working on a given software project can
ask the available recommender system to provide her with
a list of further TPLs that might be added to the project
under development (see the concept User that defines a Query

consisting of the project under development and gets back a
Recommendation element consisting of different Items). Users
might want to express their Feedback for each returned item
to increase the relevance for future similar requests. Users can
like or dislike recommended items (see the concept Positive
and Negative, respectively) or can even suggest additional
items that were not included in the original recommended
list (see the concept Additive feedback). It is worth noting
that the entities encapsulated in the dashed frame represent
the agnostic part of the methodology, meaning that the same
concepts can be adapted to any kind of recommendations,
e.g., API calls or snippets. However, thoroughly assessing the
genericity of the proposed approach is planned as future work.
The architecture implementing the conceptual model pre-
viously described is shown in Fig. 2(b) and consists of the
following components:
D> TPLs RecSys: it is the recommender system, which is able
to recommend third-party libraries for the project under de-
velopment. Given the current development context, the system
generates a ranked list of recommended libraries (.
> User feedback: the user can express three different types of
explicit feedback for each item in the recommended list, i.e.,
positive, negative and additive @. Including or removing a
TLP from the project under development is mapped to positive
or negative feedback, respectively. Additive feedback consists
of injecting endorsed libraries into the training data of TPLs
RecSys. Thus, during the next iteration of the whole process,
the system will take into account the new addition. It is worth
mentioning that only one injection may not be sufficient to
promote the new library for the next recommendation requests;
> LTR Ranking: LTR is applied to the ranked list provided
by the adopted recommender system by considering previously
stored user feedback (3). We make use of the LightFM Python
library [6] which implements the WARP model. Using the
feedback collected in the previous phase, a set of feature
vectors v are extracted to train the LTR model according to the
following format: v=(1,0,0, 1,0.....1,0), where 1 is a positive
rate and O is a negative one expressed for each TPL. To feed
the ranking model, such vectors need to be transformed into
a scipy coordinate matrix,? i.e., each pair user-library has a
rating. Concerning the hyperparameters, we set the learning
rate to 0.02 and the number of epochs to 70, given that higher

2https://bit.ly/30v9sVD

818

Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 13:52:26 UTC from IEEE Xplore. Restrictions apply.

values seem to have negligible effects on the performance. As
final output, this component produces the rearranged list of
TPLs by considering positive and negative feedback;

> Sorted Recommended List: The sorted list of recommended
items is eventually presented to the user @ who decides to
either (i) accept it or (ii) express additional feedback to trigger
another recommendation session.

IV. PROOF OF CONCEPT

This section presents the results of the conducted prelim-
inary evaluation to assess the feasibility and the effective-
ness of the proposed approach. To this aim we considered
CROSSREC [12] as TPL recommender system. The rationale
behind such a selection is that it is considered as among state-
of-the-art library recommender systems, e.g., it achieves a
better performance compared to three well-founded baselines,
namely LibRec [16], LibFinder [13] and LipCUP [14]. To
simulate binary feedback, we introduce a rating mechanism
that assigns a vote to each library suggested by CROSSREC.
Furthermore, we modify the original graph by adding projects
and libraries to measure the impact of additive feedback.

A. Experimental parameters

— L is the set of libraries on which the user expresses feedback,
i.e., positive, negative or additive;

— p and p’ are the original position and position after the
ranking phase respectively of [€ L;

— Ry is the set of user feedback for a specific library [€ £
expressed as a binary rate r, i.e., 0 and 1 for negative and
positive feedback, respectively;

— REC(!) is the recommended list provided by CROSSREC
that includes a specific library [€ L;

— c is the cut-off value (the number of recommended libraries);
— N is the number of positive feedback given to library [;

— K is the set of new OSS projects that includes intentionally
seeded libraries to simulate additive feedback.

B. Metrics

To measure the capability of the methodology to upvote/-
downvote a given library, we use hit-rank;@QN [20] defined
as: hit-rank; QN =%2M’ where r is the feedback
expressed on the library [€ R; by the user and |Ap| is the
delta between the original position p of the item and its new
position p’ after rearranging. This metric represents how many
times the considered library [€ L should be upvoted/down-
voted to modify its starting position p. For positive feedback,
we consider a match if the p’ > p. Similarly, p’ < p means
that ! was successfully downvoted using negative feedback.

We measure the effectiveness of additive feedback by
hit-count;@K computed as: hit-count; @ K=count;crec()
where K is the number of projects that include the new library
I € L added by the user, and REC(l) represents the rec-
ommendations of CROSSREC. In other words, hit-count; QK
measures how many times REC(!) includes the added library
I according to the number of additive feedback K.

-

Split
ten-fold

Additive
feedback

Positive

Dataset |‘

Simulate
feedback
[

feedback [Rankedlibs | hit-rank@N

Fig. 3: The evaluation process.
C. Dataset

We use the original CROSSREC replication package and
dataset made available online.> The dataset consists of 1,200
projects with 13,498 libraries. Due to the lack of real user
feedback, we mimic explicit feedback by counting the fre-
quencies of the examined libraries, i.e., if a given project p
includes a certain library 1, the value for the pair (p,[) is 1
otherwise it is set to 0. Such an occurrence is mapped to a
positive feedback, and the rate of a library is its frequency on

the whole dataset, i.e., the number of projects that invoke it.
TABLE I: Features of the examined TPLs.

Library
Value avro guice | mockito | guava slf4j junit
Freq. 26 74 213 306 473 969
fo—10 | 0.007 | 0.010 0.232 0294 | 0415 | 0.754
fc—20 | 0.025 | 0.043 0.359 0398 | 0478 [0.755

We chose six among the libraries that are representative in
terms of popularity, i.e., from the least to the most popular
libraries, and counted the occurrence of the recommended
libraries. Table I describes the libraries, their frequency, and
percentage of occurrences in the results, considering two
CROSSREC cut-off values, i.e., 10, and 20.

D. Methodology

We set up different configurations as follows. Concerning
the cut-off values, ¢c=10 and ¢=20 are chosen to measure
the effectiveness of the LTR model when different sizes
are considered. We empirically vary the number of pos-
itive and negative feedback by varying N, and K, ie.,
N={20, 40, 100, 200, 600, 1000}, K={0, 20, 50, 100, 200}, to
assess the contribution of additive feedback. Fig. 3 depicts
the evaluation process consisting of three phases, i.e., data
preparation, recommendations, and evaluation. Starting from
the dataset (see Section ['V-C), positive, negative, and additive
feedback is simulated according to ¢, NV, and K. We applied
the ten-fold cross-validation technique, and the query data
is generated from testing projects by removing half of their
libraries. To inject an additive feedback for a library [
with respect to the project context p={l4, ...,1,}, a new row
{p,11, ..., In, I } is added to the training data. Given such query
data, the system retrieves the list of recommended items. Then,
given the first ¢ items, positive and negative feedback, LTR
ranks the result provided by CROSSREC.

E. Results

We analyze the results using two research questions.

3https://github.com/crossminer/CrossRec

819

Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 13:52:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results obtained with positive feedback.

TABLE III: Results obtained with negative feedback.

Lib. P hrao | hrgo | hrioo| hraoce| hreco| hricoo Lib. P hrao | hrgo | hrioo| hraoe| hreco| hricoo
avro 7 | 056 | 044 | 044 | 056 | 044 | 044 avro 5 | 011 | 033 | 011 | 0.1 | 022 | 0.1
guice 8 | 046 | 053 | 062 | 038 | 046 | 061 guice 6 | 015 | 015 | 0.5 | 000 | 0.5 | 0.00
mockito | 6 | 049 | 052 | 048 | 054 | 047 | 055 mockito | 4 | 0.25 | 023 | 022 | 021 | 0.8 | 024
s [puava 6 | 048 | 048 | 048 | 052 | 047 | 050 s [guava 5 [019 | 016 | 019 | 024 | 0.9 | 0.9
I [sEg 3 [064 | 071 | 061 | 0.70 | 0.64 | 0.70 I [sIg 3 [016 | 015 | 0.4 | 017 | 013 | 0.06
Jumit 3 | 089 | 090 | 089 | 092 | 084 | 090 Jumit 2 | 008 | 004 | 019 | 004 | 008 | 0.07
avro 13 | 020 | 030 | 020 | 027 | 033 | 027 avro 12 | 027 | 020 | 027 | 0.3 | 043 | 020
guice 12 | 037 | 037 | 041 | 041 | 035 | 033 guice 12 | 022 | 018 | 0.8 | 022 | 0.14 | 0.8
mockito | 10 | 044 | 044 | 045 | 042 | 048 | 048 mockito | 7 | 0.20 | 028 | 028 | 028 | 028 | 027
] [guava 10 | 044 | 045 | 046 | 048 | 046 | 046 s [puava 8 | 021 | 026 | 021 | 022 | 024 | 027
W [sig 8 | 057 | 048 | 053 | 048 | 044 | 054 I [sIg 7 | 029 | 024 | 024 | 028 | 023 | 023
Jumit 6 | 087 | 079 | 090 | 088 | 0.86 | 0.88 Fanit 2 | 007 | 007 | 0.1 | 006 | 014 | 0.05
> RQ;: How does the positive and negative feedback con- TABLE IV: Results obtained with additive feedback.
tribute to rearranging CROSSREC’s recommendations? We Lib. heo | heao | heso | hcioo| Rezoo] Resoo] heiono
measure the impact of positive and negative feedback in o LR 2 138 {ou [l 178
: ! ana ; gUice 15 | 122 | 221 37T | 514 | 695 | 740
upvoting and downvoting a certain library, through a series mockito | 322 | 449 | 520 | 640 | 732 | 836 | 864
of experiments using the configurations described in Section ﬁ fl‘;:;’a ggé gz gg 2(3); gg; Zgg z;;
IV-A. Table II shows the results obtained by the proposed Junit 995 | 086 | 993 | 985 | 985 | 983 | 992
rpethodology when positive feedba_cl.c 'is cons_ifiered.4 Givel'l a *;‘l’n“c’e g; égg gﬁ gg g}g ;2‘; gﬁ
library [, we compute the average initial position p by setting mockito | 491 | 618 | 680 | 782 | 838 | 930 | 944
. . - [—]
the rating of all users to 0 as described by‘ the p colufm?, ie., T o Z%g ZTS; e
[has not been rated by any user yet. Starting from this initial Junit 997 | 989 993 990 | 989 | 988 | 997

state, we increase the number of positive ratings according to
N. In this way, we resemble the situation where an unrated
library grows in popularity by exploiting explicit feedback.

The results show that the mechanism is able to promote a
library. Such an improvement is more evident for the most
popular libraries, i.e., junit, slf4j-api. In fact, the number of
positive rates needed to upvote a library is not the same for all
libraries, i.e., the LTR module reduces the popularity impact.
For instance, assigning 100 positive rates to guice improves
its ranking 0.62 of the time with c=10. Meanwhile, mockito
reaches the maximum value at hit-rank;@1000, though it is
more popular with the frequency of 213.

While the mechanism works better in upvoting popular
libraries, i.e., hit-rank;@QN reaches around 0.90 of effec-
tiveness for junit, the most popular library, it suffers from
degradation of performance when a less popular item is
considered, e.g., the system improves the ranking for avro only
0.56 of the time with ¢ = 10. The performance is negatively
affected when increasing ¢ from 10 to 20 for almost the
libraries, except junit. This can be reasoned by referring to
Table I. Since junit is the most popular item, it appears in the
CROSSREC top rank items in almost all the tests.

We conduct a similar experiment to measure the impact
of a negative feedback to downgrading a popular library.
The different configurations and the corresponding results are
shown in Table III. In this setting, the p column represents the
initial position of the library when its rate is equal to 1,200,
i.e., every user upvotes the library. In such a way, we are able
to simulate negative feedback by decreasing the votes using
the same threshold defined for the previous experiment.

Downvoting a popular library is more difficult as the cor-
responding hit-rank;@QN scores are lower for all libraries,
compared to the results in Table II. Generally speaking, the

“For the sake of presentation, hry and hcy stand for hit-rank;@N and
hit-count; @K, respectively.

negative feedback successfully downvotes the target library
only 0.30 of the attempts. The better results are reached with
avro, i.e., hit-rank;@40 =0.33 with c=10 and hit-rank; @600
=0.46 with =20. The findings suggest that it is easier to
downvote a less popular library than a most used one. This
claim is confirmed by the results obtained with junit since
hit-rank;@1000 is extremely small for all the configurations,
i.e., the maximum value is 0.07. This is expected since
users usually follow the wisdom of the crowd during their
development activities, i.e., they tend to select libraries used
by the majority of the community [7].

Answer to RQ;. Either positive or negative feedback has a clear
impact on the recommendation results. The effectiveness strongly
depends on the popularity of the considered libraries.

> RQy: How does the additive feedback impact on the original
recommended list? We study the influence of additive feedback
by simulating the addition of new projects relying on libraries
recommended by users. Such additions induce the modification
of the CROSSREC’s original matrix and allow us to measure
the number of additions needed to promote the user suggested
library to make it appear in the recommended list. The
results obtained for additive feedback are shown in Table IV.
Column hcy contains data that is obtained without operating
any change to the CROSSREC’s original matrix. Subsequent
columns instead, contain values that are obtained after adding
fake projects including the library of the corresponding row.
For instance, the cells [avro,hcop] contain how many times
out of 1,200 queries, the library avro has been recommended
after having added 20 artificial projects containing it. The table
shows a dominant trend: the more projects are seeded, the
more often the endorsed library gets recommended. While this
is more visible with less frequent libraries, e.g., avro, it is less
evident with popular libraries, such as junit, for instance, with

820

Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 13:52:26 UTC from IEEE Xplore. Restrictions apply.

=20, from hcg to hcigee, there is only a small fluctuation
in the number of recommendations. Altogether, we see that
similar to results with positive feedback, the additive ones have
a remarkable impact on the less popular libraries, i.e., they
increase their probability of being suggested by CROSSREC.

Answer to RQ.. Introducing additive feedback helps increase
popularity of the endorsed libraries. The more frequent a library is
(e.g., junit), the less the additive feedback impacts on the number
of times it is recommended.

V. RELATED WORK

The BRAID framework [20] has been built on top of an
existing API recommender system to allow for the specifi-
cation of a user-based query. Furthermore, it combines LTR
and Active Learning techniques to adapt the original recom-
mendations according to the user query. Elixir [4] supports
user feedback expressed on items’ explanations using pairwise
learning. The list of pair ratings-explanations is encoded to
user-specific latent vectors that have been used to improve
a well-founded recommender system based on random walk
with restart technique. Wang et al. [18] proposed Active
Code Search to incorporate explicit user feedback. Given a
recommended list, the user can iteratively express feedback
on the proposed items to rearrange the final rank. Then, a
refined engine is employed to embody the collected feedback
using NLP techniques. Similarly, WebAPIRec [17] employs
a personalized ranking model to recommend an ordered list
of web APIs given the project profile. The model is fed with
historical data of APIs usages to retrieve the ranked list of
APIs. Recently, several studies employed federated learning
to collect user feedback by preserving sensitive data [1], [9].

Ouni et al. [13] make use of multi-objective algorithm by
relying on library usage history. Given a library, the system
recommends new items by maximizing the semantic similarity.
LibCUP [14] uses a clustering approach to identifying co-
usage patterns and suggests similar TPLs. Similarly, LibD [8]
provides libraries to mobile apps using a clustering technique.

To the best of our knowledge, the possibility of providing
positive, negative, and additive feedback in the context of TPLs
recommender systems is still underinvestigated. Our approach
allows users to provide feedback on recommended TPLs. The
experiments performed on CROSSREC are encouraging, and
we plan to consider other TPLs recommender systems.

VI. CONCLUSION AND FUTURE WORK

The introduction of user feedback in recommender systems
has brought considerable benefits in different domains. This
paper conceived a novel approach to incorporate user feedback
into TPLs recommender systems. The proposed methodology
supports binary and additive feedback by relying on a well-
founded LTR model to rearrange the delivered items. The
preliminary evaluation of an existing TPLs recommender
system using simulated feedback confirms the approach’s
feasibility. For future work, we plan to integrate the technique
in one of the existing IDEs e.g., Eclipse or VSCode, before
conducting a user study to collect real feedback. Moreover,

further than improving the adopted LTR model by tuning
the hyperparameters, we will investigate the application of
other ranking models e.g., vector space and probabilistic ones.
Lastly, we will extend the proposed methodology to different

TPLs recommender systems.
ACKNOWLEDGMENT
The research described in this paper has been partially

supported by the AIDOaRT Project, which has received fund-
ing from the European Union’s H2020-ECSEL-2020, Federal
Ministry of Education, Science and Research, Grant Agree-
ment n° 101007350.

REFERENCES

[1] V. W. Anelli, Y. Deldjoo, T. Di Noia, A. Ferrara, and F. Narducci, “Fed-
erank: User controlled feedback with federated recommender systems,”
in Advances in Information Retrieval, 03 2021, pp. 32-47.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” ser. ICML.
Bonn, Germany: ACM Press, 2005, pp. 89-96.

[3] C. Carpineto and G. Romano, “A survey of automatic query expansion
in information retrieval,” ACM Comput. Surv., vol. 44, p. 1, 01 2012.

[4] A. Ghazimatin, S. Pramanik, R. S. Roy, and G. Weikum, “ELIXIR:
learning from user feedback on explanations to improve recommender
models,” ser. WWW. ACM / IW3C2, 2021, pp. 3850-3860. [Online].
Available: https://doi.org/10.1145/3442381.3449848

[S] Q. He, B. Li, F Chen, J. Grundy, X. Xia, and Y. Yang, “Diversified
third-party library prediction for mobile app development,” IEEE Trans.
on Software Engineering, pp. 1-1, 2020.

[6] M. Kula, “Metadata embeddings for user and item cold-start recom-
mendations,” in Procs. the 2nd CBRecSys, co-located with RecSys 2015,
Vienna, Austria, September 16-20, 2015., vol. 1448. CEUR-WS.org,
2015, pp. 14-21.

[71 R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” EMSE., vol. 23, no. 1,
p- 384417, feb 2018.

[8] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and

W. Huo, “Libd: Scalable and precise third-party library detection in

android markets,” ser. ICSE, 2017, pp. 335-346.

G. Lin, F Liang, W. Pan, and Z. Ming, “Fedrec: Federated recommen-

dation with explicit feedback,” IEEE Intelligent Systems, vol. 36, no. 5,

pp- 21-30, 2021.

G. Linden, B. Smith, and J. York, “Amazon.com recommendations:

Item-to-item collaborative filtering,” IEEE Internet Computing, vol. 7,

no. 1, pp. 76-80, Jan. 2003.

T.-Y. Liu, Learning to Rank for Information Retrieval. Springer, 2011.

P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta, “CrossRec:

Supporting software developers by recommending third-party libraries,”

J. Systems and Software, vol. 161, p. 110460, 2020.

A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and

K. Inoue, “Search-based software library recommendation using multi-

objective optimization,” IST Journal, vol. 83, pp. 55-75, 2017.

M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and

D. Lo, “Improving reusability of software libraries through usage pattern

mining,” J. Systems and Software, vol. 145, pp. 164 — 179, 2018.

G. Salton and C. Buckley, “Improving retrieval performance by rel-

evance feedback,” J. the American Society for Information Science,

vol. 41, no. 4, pp. 288-297, 1990.

E. Thung, D. Lo, and J. Lawall, “Automated library recommendation,”

in 2013 20th Work. Conf. on Reverse Eng. (WCRE), 2013, pp. 182-191.

E Thung, R. J. Oentaryo, D. Lo, and Y. Tian, “Webapirec: Recom-

mending web apis to software projects via personalized ranking,” IEEE

TETCI, vol. 1, no. 3, pp. 145-156, 2017.

S. Wang, D. Lo, and L. Jiang, “Active code search: Incorporating

user feedback to improve code search relevance,” ser. ASE, 2014, p.

677—-682. [Online]. Available: https://doi.org/10.1145/2642937.2642947

J. Weston, H. Yee, and R. J. Weiss, “Learning to rank recommendations

with the k-order statistic loss,” ser. RecSys. ACM, 2013, p. 245-248.

Y. Zhou, H. Jin, X. Yang, T. Chen, K. Narasimhan, and H. C.

Gall, “BRAID: an API recommender supporting implicit user

feedback,” in ESEC/FSE, 2021, pp. 1510-1514. [Online]. Available:

https://doi.org/10.1145/3468264.3473111

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

171

[18]

[19]
[20]

821

Authorized licensed use limited to: University of Koblenz. Downloaded on June 11,2025 at 13:52:26 UTC from IEEE Xplore. Restrictions apply.

