
Machine Learning Methods for Model Classification: A
Comparative Study

José Antonio Hernández López

Universidad de Murcia

Spain

joseantonio.hernandez6@um.es

Riccardo Rubei

Università degli studi dell’Aquila

Italy

riccardo.rubei@graduate.univaq.it

Jesús Sánchez Cuadrado

Universidad de Murcia

Spain

jesusc@um.es

Davide di Ruscio

Università degli studi dell’Aquila

Italy

davide.diruscio@univaq.it

ABSTRACT
In the quest to reuse modeling artifacts, academics and industry

have proposed several model repositories over the last decade. Dif-

ferent storage and indexing techniques have been conceived to

facilitate searching capabilities to help users find reusable artifacts

that might fit the situation at hand. In this respect, machine learn-

ing (ML) techniques have been proposed to categorize and group

large sets of modeling artifacts automatically. This paper reports

the results of a comparative study of different ML classification

techniques employed to automatically label models stored in model

repositories. We have built a framework to systematically compare

different ML models (feed-forward neural networks, graph neural

networks, 𝑘−nearest neighbors, support version machines, etc.)

with varying model encodings (TF-IDF, word embeddings, graphs

and paths). We apply this framework to two datasets of about 5,000

Ecore and 5,000 UML models. We show that specific ML models

and encodings perform better than others depending on the char-

acteristics of the available datasets (e.g., the presence of duplicates)

and on the goals to be achieved.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; •Computingmethodologies→Machine learning.
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1 INTRODUCTION
In recent years, the use of Artificial Intelligence (AI) and Machine

Learning (ML) techniques to solveModel-Driven Engineering (MDE)

problems has begun to gain traction. This is an active line of work

intended to explore the application of ML to enhance several MDE-

related scenarios, as testified by the increasing research corpus [9].

For instance, feed-forward neural networks have been used to label

metamodels stored in model repositories automatically [29]. An

LSTM architecture is used to perform model transformation by

example [10]. A graph neural network assesses realistic model gen-

erators [25]. Model assistants based on providing recommendations

are starting to be built using different techniques [15, 35].

Common obstacles which need to be addressed when applying

ML-based projects for dealing with MDE problems are twofold: i)
understand the typical steps that need to be performed to employ

ML algorithms; ii) determine the best combination of ML model

and representation (i.e., the encoding of software models for their

consumption by ML algorithms) for the problem at hand. Unfor-

tunately, this topic is not yet well understood and has not been

explored in depth. By considering these shortcomings, this paper

overviews the typical process that needs to be followed to apply ML

projects in MDE. Subsequently, a concrete instance of the presented

methodology is presented to systematically compare several ML

methods and representations used to support the model classifica-

tion task. The goal is to determine the pros and cons of each method

and derive a set of applicable lessons. To this end, we will consider

the model classification problem using ModelSet [21] as the target
dataset. Over it, we will run and compare different classification

algorithms. Thus, the paper makes the following contributions:

• Overview of a typical workflow that needs to be followed

when applying ML models for MDE problems. The paper

itself serves as a guide for MDE experts who want to apply

ML techniques to understand the different types of mod-

els available and how to map software models to the input

representations expected by these ML models;

• A methodology instantiating the overviewed process to au-

tomatically evaluate the suitability of different ML models

to address a particular problem in MDE;

• A framework implementing the proposed methodology for

the task of model classification, in which several ML models

are systematically compared.

https://doi.org/10.1145/3550355.3552461
https://doi.org/10.1145/3550355.3552461
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550355.3552461&domain=pdf&date_stamp=2022-10-24
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Organization. Section 2 presents the related work and some back-

ground about ML and MDE. Section 3 describes our methodology

to perform the comparison of ML methods, while Sect. 4 describes

in detail the models and encodings used. Section 5 describes the ex-

perimental setup and Sect. 6 presents the results of the experiments

and a critical discussion. Finally, Section 7 concludes the paper and

highlights possible future directions.

2 BACKGROUND AND RELATED WORK
This section presents an overview of recent applications of ML to

address MDE problems (Sect. 2.1) and describes a typical workflow

to apply ML (Sect. 2.2), which is adapted for the sake of the software

model classification problem as presented in Section 3.

2.1 Machine Learning in MDE
Machine learning is a branch of artificial intelligence that encom-

passes techniques to make computers learn from data. Depending

on the shape of the data, ML techniques can be classified as super-

vised and unsupervised learning. In supervised learning the data

includes the labels, and the ML algorithm has to learn a mapping

function between the input data and the target labels. If this func-

tion is real-valued, then a regression problem is faced. Whereas, if

this function is discrete, we have a classification problem. In contrast,

in unsupervised learning the data is not labelled, and the system

tries to identify patterns by itself. A typical task is clustering, in

which the system identifies groups of similar examples according

to some criteria and similarity functions.

Machine Learning algorithms have been successfully employed

to face different issues in MDE [4, 18]. For example, in [12, 17] ML

techniques were used to automatically infer model transformation

rules from sets of source and target models. In [13], the authors

discussed about the cognification of Model-Driven Software Engi-

neering. The goal is to boost the performance of a process with

the utilization of knowledge. The cognification concept is referred

not only to artificial intelligence but also includes a combination of

past and current human intelligence.

Breuker [8] reviews the main modeling languages used in ma-

chine learning to exploremodel-driven big data analytics. The result

is a conceptualization of a DSML. Such a DSML can support code

generation from a visual representation of probabilistic models.

ML-Quadrat [27] is a research project conceived to improve

ThingML, an open-source modeling tool for IoT/CPS. The authors

integrate ML concepts into ThingML at modeling and code genera-

tion levels.

In [25], the authors use Graph Neural Networks (GNNs) to char-

acterize realistic model generators by mapping this problem to a

binary classification problem. The analysis and classification of

model repositories have been addressed also from a clustering per-

spective. Hierarchical clustering is applied in [6] to organize a

collection of metamodels and provide meaningful visualizations of

them. Similarly, in [7] the models handled by the MDEForge tool

are organized by employing hierarchical clustering. The topic of

model encoding for clustering has also been addressed in [5].

AURORA [28, 29] is a tool that exploits a feed-forward neural

network to classify metamodels. The authors proved the tool’s

capability to classify Ecore models with considerable precision.

In a similar vein, a convolutional neural network (CNN) is used

to build the MEMOCNN metamodel classifier [30]. The idea is to

transform metamodels into special 2D images that the CNN can

process. However, both AURORA and MEMOCNN may be biased

due to the small size of the dataset (555 Ecore metamodels) and the

presence of duplicates. Another issue of the current state-of-the-art

in ML applied to MDE is that it typically targets Ecore metamodels.

Therefore, we also use UMLmodels in this work, which allows us to

contrast the results for the same task applied to Ecore metamodels.

The authors in [14] propose the application of graph kernels to

MDE. In this context, Di Rocco et al.[15] proposes MORGAN, a tool

based on graph kernels to support the completion of both models

and metamodels. The tool is conceived to recommend structural

features to complete the models under construction. In particular,

MORGAN can recommend classes, fields, and methods within a

model class, metaclasses, and structural features like attributes and

references.

Burgeño et al. [11] proposed a NLP-based architecture for the

completion of software models. The core of their proposal is to

use two word embedding models (e.g., GloVe [31], word2vec [26],

etc), one trained with general knowledge and the other with con-

textual knowledge. Both models are interpolated to perform the

recommendations.

Altogether, there is a trend to apply ML algorithms to address

MDE problems. However, there is currently a gap regarding the

knowledge about which ML models and representations are best

suited for each type of MDE problem. This work attempts to address

this shortcoming for the problem of model classification.

2.2 Common Machine Learning workflow
The application of ML techniques encompasses the execution of a

common workflow [2] consisting of typical tasks as shown in Fig. 1

and discussed below.

Data 
gathering

Data
Preparation

Feature 
Engineering

Data 
Encoding

ML model 
Selection

ML model 
Training

ML model 
Evaluation

ML model 
Monitoring

Parameter 
tuning

ML model 
Deployment

Figure 1: Overview of a common workflow for ML.

Data gathering: Identifying data sources relevant to the problem at

hand is the first step in a ML project. The size and quality of the

considered data are among the peculiar characteristics affecting the

final results. Once data sources are identified, data is fetched and

typically archived locally for subsequent manipulations.

Data preparation: A key aspect is to ensure that data is in a suitable

condition to be used. In this phase, clearing and pre-processing op-

erations are performed to fix issues like missing values, duplication,

contradictions, and outlier values. Such a phase is of paramount
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importance because if the ML application being developed is based

on inaccurate data, the corresponding quality will not be as wanted.

Feature engineering: In this phase, the properties of the subjects

under investigation are extracted from raw data. For instance, if we

want to predict the population growth in a specific geographical

area,we could discard attributes like hair color or height, but select

attributes like salary and unemployment rates.

ML model selection: Several machine learning algorithms might be

suitable for the available data. By relying on previous experiences

or similar applications already developed, candidate ML algorithms

are selected. It is important to remark that this is an iterative process

that encompasses conducting different experiments to evaluate how

the chosen algorithms perform with the available data with the

final goal of identifying the best configuration.

Data encoding: Depending on the previously selected ML algorithm,

prepared data must be encoded accordingly. For instance, if the

chosen ML algorithm is based on a graph-based similarity, it is

necessary to encode data as graphs.

ML model training: This is the process of feeding the selected ML

algorithm with the prepared and encoded data. In the case of su-

pervised learning, training data consist of input values and one or

more target variables (labels). The goal is to train the algorithm

so that in case values that are not in the training data are given

as input, expected output values are produced. In the case of un-

supervised learning, the goal is determining patterns in the data,

e.g., to automatically organize input items in clusters (i.e., groups

of objects that are similar with respect to some similarity function).

ML model evaluation: In this phase, the trained model is evaluated

against a testing dataset. Values not in the training data are given as

input to assess the model’s accuracy. The produced values are com-

pared with the expected ones, organized in a purposely prepared

ground truth. A number of evaluation metrics can be used to assess

the accuracy of the model under analysis, including precision, recall,

and success rate. If the obtained results are not satisfactory, there

are different ways to intervene, including fine-tuning the parame-

ters of the considered model, or moving back to the process, e.g., to

improve the encoding of the data, select a different ML algorithm,

or even refine or change the data under disposal.

ML model deployment: The trained model, which is satisfactory

according to the previous evaluation step, is deployed to cloud or

on-premises infrastructures to enable its adoption by the final users.

ML model monitoring: The deployed model is continuously mon-

itored for possible errors during real-world execution or even to

detect potential accuracy degradation that might induce the imple-

mentation of additional iterations of the process shown in Figure 1.

3 COMPARISON METHODOLOGY
This section presents a specific instance of the workflow shown in

the previous section, adapted to automatically evaluate the suitabil-

ity of different existing ML models to address the problem of model

classification. Although this problem has been investigated over the

last few years by the MDE community, no systematic comparison

of different ML techniques and encodings has been performed yet.

The proposed methodology aims at comparing existing ML/MDE

tools as well as new implementations, and consists of a specific

instance of the workflow shown in Fig. 1. The methodology has

been implemented in terms of a framework able to automatize

the execution of the different tools under analysis. The existing

approaches that have been analyzed in this paper are MAR [23, 24],

a custom implementation of Lucene [33] specifically designed to

classify metamodels, AURORA [28, 29] and MEMOCNN [30]. The

rationale behind this selection is that these tools are based on solid

ML techniques and demonstrated effectiveness in the metamodels

classification.MAR is a search engine designed toworkwithmodels;

nevertheless, the authors tested the capability of MAR to classify

metamodels. The implementation of Lucene is based on the well-

knownApache search engine and represents an attempt to employ a

general-purpose tool to classify metamodels. AURORA is one of the

first experiments to classify metamodels by exploiting feed-forward

neural networks. Instead of relying on the original AURORA tools,

we reimplemented the FFNN of AURORA because we could not

integrate its tools that depend on external cloud-based technologies.

Finally, MEMOCNN is the first attempt that represents metamodels

using matrices and exploits a convolutional neural network to

classify them. Additionally, we have implemented new classifiers

based on Support Vector Machine, 𝑘-Nearest Neighbours, Naive

Bayes Models, and Graph Neural Networks.

The framework automatizes and supports the activities shown

in Fig. 2 and described below.

Data gathering. We have directly used an existing dataset,ModelSet,
instead of creating a new one to address this step.ModelSet provides
5,000 Ecore models and 5,000 UML models, labelled with a category

that reflects the application domain of the model (e.g., an Ecore

model representing a state machine or a UML model describing the

behaviour of an ATM). We use the provided Python library
1
to load

and handle the labels of the dataset consistently.

Data preparation. To perform fair comparisons, we have pre-processed

the original models as follows.

• Detect duplicates.We have observed that there are a large

number of quasi-duplicate models for some categories of

models. This seems to be due to the fact that ModelSet was
built by gathering models from public repositories (GitHub

and GenMyModel) in which users tend to copy-paste models.

This may introduce a bias in the evaluation of the methods.

Therefore, we have adapted to models the method to detect

duplicates in program files devised by Allamanis in [1]. This

pre-processing step is optional since we will perform exper-

iments with duplicates and without them to compare the

effect of duplication.

• Filter. Another issue is that some categories contain few

models. Therefore, we filter out those categories with less

than ten models as discussed and motivated later in the

paper.

• Prepared dataset. After detecting duplicates and filtering

categories, we obtain the list of models that we use for the

evaluation. Finally, we apply this process to both UML and

Ecore and save the list in a separate file to ensure that the

evaluation of the different methods consistently uses the

same models.

1
http://github.com/modelset/modelset-py
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Figure 2: Overview of the methodology.

Feature engineering. Depending on the selected ML model, the fea-

tures that need to be used to train the model are different. We are

interested in experimenting with two different kinds of features.

First, textual features are gathered by extracting the attribute values

of the models, as suggested in [28]. This type of feature represents

the models’ application domain (i.e., the names given by the user

capture some meaning). Second, we convert the models into graphs

that ML models can consume. The goal, in this case, is to study the

effect of considering the model structure.

ML model selection. In this work we are interested in comparing

several ML models for the task of model classification. In particular,

we have considered six models which are discussed in detail in

Sect. 4.1.

Data encoding. A key element is how to map the model features

of interest (attribute values and graph structure) into the kind of

representation that can be manipulated by each underlying ML

model (i.e., how to map strings into numeric vectors?). We have

also considered several encodings and tested them systematically

to address this issue. They are discussed in detail in Sect. 4.2.

Model training and evaluation: We aim to evaluate different MLmod-

els and encodings systematically. To do so, we rely on the 𝑘−fold
cross-validation resampling method used in previous works [28–

30]. First, the dataset is divided into 𝑘 disjoint validation sets. Then,

given a ML model and an encoding method, for each 𝑗 = 1, . . . , 𝑘 ,

the validation set 𝑗 is used to assess the ML model trained with the

other 𝑘−1 sets. Finally, we report the average of the 𝑘 performances.

It is important to note that a ML model could admit several config-

urations of hyperparameters (e.g., number of neighbors in 𝑘−NN,
and number of units in a hidden layer in FFNN). To select the best

configuration we do the following: given a ML model and for each

considered configuration, we run the 𝑘−fold and we compute the

average accuracy. Finally, the best configuration is the one that

achieve the highest accuracy. As it is done in [28–30], we consider

10 folds and run a 10−fold cross-validation procedure.

4 COMPARISON DIMENSIONS
The comparison of existing techniques and tools for model classifi-

cation has been performed by considering two different aspects, i.e.,

the adopted ML algorithm (see Section 4.1) and the way software

models are encoded (see Section 4.2). We developed a set of tools to

Inspired by/

ML model Encoding Impl. Adapted from

FFNN

BoW TF-IDF scikit [22, 28]

BoW word embeddings scikit and gensim [11]

SVM

BoW TF-IDF scikit [22]

BoW word embeddings scikit and gensim [11]

Graph kernel scikit and GraKeL [14, 15]

𝑘−NN

BoW TF-IDF scikit [22]

BoW word embeddings scikit and gensim [11]

Raw BoW Lucene [33]

BoP MAR [23]

Naive Bayes models BoW TF-IDF scikit [16]

GNN Raw graph PyTorch [25]

CNN BoW 2D TF-IDF Keras and TensorFlow [30]

Table 1: Combination of ML models and input features con-
sidered in this paper.

automate the methodology presented in the previous section and

thus simplify the investigation of all the possible encoding and ML

algorithm combinations.

The considered combinations of model encodings andMLmodels

are shown in Table 1 and graphically depicted in Fig 3. The choice

of these combinations was driven by the compatibility of each en-

coding with the ML model (e.g., Naive Bayes models cannot handle

word embeddings) and the techniques used in previous works about

the application of ML toMDE (column Inspired by/Adapted from).

Specifically, there are twomain families of representations i.e.,BoW
(Bag-of-Words) and graph. The former encodes the terms of the

model (e.g., the names associated with the model elements), and

the latter encodes the structure of the model plus some attributes

of the model elements.

4.1 ML Models
In this paper, we will focus on classification problems. Thus, in the

rest of the section, we will present several ML algorithms used to

solve this problem. From now on, we will assume that we have a

dataset of pairs D = {(𝑥𝑖 , 𝑦𝑖 )}𝑖 where 𝑥𝑖 is the input data and 𝑦𝑖 is
its associated label.

4.1.1 𝑘−Nearest Neighbors (KNN). This one of the simplest clas-

sification algorithms. Given new data 𝑥 , its 𝑘 most similar/closest

elements of the dataset D are computed. Then, the label of the

majority is assigned to 𝑥 . The flexibility of this technique is given

by the concept of similarity that has to be defined by the user.

An advantage of using 𝑘−NN is that one can use a well-known

measure (e.g., euclidean distance) or create a user-defined one. In
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Figure 3: Input features and ML models.

particular, in this paper, we will use search engines to take advan-

tage of their capabilities to compare and rank models according

to their similarity to an input query. In our experiments, we con-

sider 𝑘−NN using the following three different similarity measures

(the first one is typically used in 𝑘−NN, whereas the other two are

intended to evaluate the possibility of using off-the-shelf search

engines to as a lightweight method to perform model classification):

– The euclidean distance over numeric vectors. In the next

section we will show two strategies to encode models us-

ing a Bag-of-Words representation. This enables us to map

software models to numeric vectors.

– The Lucene search engine. Lucene uses the scoring function

Okapi BM25. It is a bag of words retrieval function that ranks

a set of documents based on the query terms appearing in

each document.

𝑅(𝑞, 𝑑) =
∑
𝑡 ∈𝑞

𝑓 𝑑𝑡

𝑘1

(
1 − 𝑏 + 𝑏 𝑙𝑑

𝑎𝑣𝑔𝑙𝑑

)
+ 𝑓 𝑑𝑡

(1)

where 𝑓 𝑑𝑡 is the frequency of term 𝑡 in document 𝑑 ; 𝑙𝑑 is the

length of the document 𝑑 ; 𝑎𝑣𝑔𝑙𝑑 is the document average

length along the collection; 𝑘 is a free parameter usually set

to 2 and 𝑏 ∈ [0, 1].
– The MAR search engine. MAR uses an adapted scoring func-

tion Okapi BM25 over BoPs. We use an approach similar

to Lucene, that is, we use MAR as the similarity measure

of 𝑘-NN by performing a query using the given model and

retrieving the top 𝑘 more similar models.

4.1.2 Bayes Naive Classifiers (BNC). This is a simple ML technique

that takes advantage of the independence assumption between the

dimensions of the data. Given new data 𝑥 , we want to assign it the

label 𝑙 such that

argmax𝑙𝑃 (𝑦 = 𝑦𝑙 |𝑥). (2)

Using the Bayes theorem, we have the following:

𝑃 (𝑦 = 𝑦𝑙 |𝑥) =
𝑃 (𝑦𝑙 )𝑃 (𝑥 |𝑦 = 𝑙)

𝑃 (𝑥)
If we replace this fomula into (2) and taking into account that 𝑃 (𝑥)
does not depend on 𝑙 , we can transform (2) into

argmax𝑙𝑃 (𝑦𝑙 )𝑃 (𝑥 |𝑦 = 𝑙)
Now, using the indepence assumption of the components, 𝑃 (𝑥 |𝑦 =

𝑙) = ∏𝐾
𝑗=1 𝑃 (𝑥 𝑗 |𝑦 = 𝑙) and we have the following

argmax𝑙𝑃 (𝑦𝑙 )
𝐾∏
𝑗=1

𝑃 (𝑥 𝑗 |𝑦 = 𝑙)

where each 𝑥 𝑗 is the 𝑗 component or dimension of 𝑥 . Normally,

𝑃 (𝑦𝑙 ) is estimated by counting the proportion of the different classes

of the dataset D. Depending on how 𝑃 (𝑥 𝑗 |𝑦 = 𝑙) is estimated

using D, BNC are divided in several types. We will to consider the

following ones:
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– Gaussian Naive Bayes (GNB). The 𝑃 (𝑥 𝑗 |𝑦 = 𝑙) distribution
is assumed to be Gaussian.

– Multinomial Naive Bayes (MNB). In this case, a multinomial

distribution is considered.

– Complement Naive Bayes (CNB). This is an adaptation of

the MNB for unbalanced datasets.

4.1.3 Support Vector Machine (SVM). Let us assume that we are

facing a binary classification problem i.e., there are only two distinct

labels. This ML algorithm tries to find a hyperplane in the data space

that divides the group of data points 𝑥𝑖 into two groups, one for

each label. Given new data 𝑥 , we just have to see in which side of

the hyperplane it falls in. It is important to remark that this ML

model has two important hyperparameters:

– The regularization term𝐶 it is used to control the overfitting,

affecting the number of misclassified points in the training

set.

– The kernel used: sometimes it is not possible to find a sepa-

ration hyperplane, and it is necessary to map these points to

a higher dimensional space (kernel trick). The kernel is the
dot product in this new dimensional space.

Finally, we will use the one-vs-one schema to extend this ap-

proach to multiclass classification. First, we train one SVM that

distinguishes between these two labels for each pair of different

labels. Then, given a new data point, we run all these SVMs over

this data point, and we assign it the label of the majority.

We will run SVMs over a Bag-of-Words representation (using

two different encodings). Furthermore, we will consider the kernel

presented in MORGAN [15] in order to run SVMs over graphs.

4.1.4 Neural networks (NNs). A neural network is an almost ev-

erywhere differenciable function 𝑓𝜃 (𝑥) that tries to approximate

the probability distribution 𝑃 (𝑦 |𝑥) i.e., given new data, it returns

the probabilities of beloging to each class. The training process is

basically solving an optimization problem:

argmax𝜃

∑
(𝑥,𝑦) ∈D

L (𝑓𝜃 (𝑥), 𝑃 (𝑦 |𝑥)) ,

where 𝜃 represents the trainable weights of the NN, L is the loss

function (i.e., a measure that compares the expected output with the

actual one). That is, the idea is to find a 𝜃 such that 𝑓𝜃 (𝑥) performs

very well in the dataset D.

There exists several types of NN depending on the architecture

of the function 𝑓𝜃 and the shape of the input. In this paper, we

consider the following ones:

• FeedForward Neural Network (FFNN). This neural network

is the first and the simplest among the neural networks. Es-

sentially is composed of three types of layers, i.e., one input,

one output, and one or several hidden layers. The simplest

type of feedforward neural network is the perceptron, a feed-

forward neural network with no hidden layers. Given the

input, a non-linearity function (normally ReLU) is used to

compute the output. A FeedForward network is made of

several connected layers of neurons, and the output of one

layer becomes the input of the next one.

• Convolutional Neural Network (CNN) [20]. This network

has been specifically conceived to process images. A CNN

consists of three layers, i.e., convolutional, pooling, and fully-

connected layers. The convolutional layer extracts the fea-

tures from the input image. The pooling reduces the spatial

size of the convolved features. The last layer works like a

multilayer perceptron in which every layer is fully connected

to the previous one.

• Graph Neural Network (GNN) [34]. This neural network

receives as input the nodes of a graph and generates node

embeddings based on local network neighborhoods. More

specifically, each node of the graph is initialized with an

initial vector. Then, in each step (i.e., after the application of

each layer), it is updated with the vectors of its neighborhood.

We have applied FFNN using BoW representations. Also, we

have experimented with a GNN (which can directly used a graph

representation) with two convolutional layers with the GraphSAGE

operator [19] and a mean global pooling. Finally, we have also ap-

plied a CNN by encoding a model as a special BoW representation

mapped to a 2D matrix to emulate an input image. The input image

transits three convolutional layers. In each transition, a convolu-

tional filter is applied together with a pooling procedure to decrease

the size of the feature. Finally, the output of this pipeline is passed

through two fully-connected layers to perform the classification.

4.2 Encoding of Software Models
AMLmodel cannot receive a raw software model as input, but it has

to be transformed to a set of features which can be processed by the

target ML model (e.g., a numeric vector). Therefore, an important

task to use ML models with software models is to choose the proper

encoding and implement it effectively. In the following, we present

different encoding techniques with which we have experimented

in this work.

Models as a Bags of Words (BoW). For each model, we extract

the string attribute values
2
and we split them taking into account

the whitespace, snake case and camel case conventions. As a result,
a multiset (bag) of words is obtained from an input model. For

instance, the BoW associated to the Ecore model in Fig. 3 is {fsm,
states, state, target, source, transition, transitions}.
In this way, the vocabulary associated to the dataset is the set

of words extracted from it. Finally, each bag is transformed into

a real valued vector. For this, we have considered the following

alternatives:

• TF-IDF. Each bag of words is represented by a high dimen-

sional vector whose number of dimensions is the size of the

global vocabulary (i.e., one dimension per different word).

More concretely, each bag 𝑏 is transformed into a vector 𝑣

and the component associated to the word 𝑖 of the vocabulary

is the following:

𝑣𝑖 = tf(𝑏, 𝑖) × log

1 + 𝑛
1 + df(𝑖) + 1.

Where tf(𝑏, 𝑖) is the number of times 𝑖 appears in 𝑏, 𝑛 is

the number of bags and df(𝑖) is the number of bags that

contain the term 𝑖 . Finally, we normalize the vector 𝑣 by

its norm. The final vector is a high-dimensional vector in

which a zero means the absence of a term and the higher

2
e.g., in the case of Ecore, the most notable attribute is ENamedElement.name.
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the component associated to a concept is the stronger it is

in the model. For instance, in the graphical representation

of the TD-IDF encoding of the simple FSM metamodel in

Fig. 3, the fsm term is represented with a lighter grey than

the transitions.
• Word embeddings. A word embedding is a representation

of text where each word has an associated vector, and words

with similar meanings have similar vectors (i.e,., geometri-

cally close vectors). A valuable property of word embeddings

is that once learned (from a certain collection of documents),

it is possible to reuse them for several projects. Thus, there

are several already trained word embeddings ready to be

used. In this work, we consider the 300-d GloVe [31] embed-

dings trained with Wikipedia and Gigaword 5. Since each

word already has a vector associated that encodes its mean-

ing, we transform each bag into a vector by computing the

average of the vectors associated with the words of the bag.

• 2D TF-IDF. We follow the encoding technique used in [30]

to encode the features. The TF-IDF vectors are split into

sequences of consecutive cells and then they are stacked

vertically to generate 2D matrices.

Models as graphs. Software models typically have a graph-like

structure. Hence, this representation is particularly suitable to en-

able ML models to learn the structure of the models. In particular,

we transform each model of the dataset into a graph following this

procedure:

– Each object of the model is mapped to a node in the graph.

– Each reference of the model is mapped to a edge in the graph.

– Each node is given two attributes: an identifier for the ob-

ject if available (e.g., a name attribute) and the name of its

meta-class. In general, an object may have more than one

attribute, but ML graph algorithms typically require a fixed

number of attributes. Thus, we have chosen these two pieces

of information as the most representative ones for classifica-

tion. Nevertheless, other tasks may require the selection of

different types of attributes.

If the target ML model is SVM (see Sect. 4.1.3), we consider graph

kernels [14] and we can run SVM directly over the raw graphs. A

graph kernel can be seen as a dot product between graphs in a

high-dimensional vector space.

If the target ML model is GNN (see Sect. 4.1.4), the raw graph

is introduced into the ML model. However, to adequately handle

attribute values (which are strings), we need to map the vocabulary

to numeric vectors. This is done in three steps. First of all, each

word in the vocabulary is assigned a unique integer value. Then,

the node attributes are converted into a numeric vector (with size 2

because we are considering only two attributes). Finally, the GNN

requires an embedding layer to map the node attributes into a larger

numeric vector which is learned during training and represents the

meaning of the node.

Finally, we useMAR as an alternative means to encode the model

structure. MAR is a search engine designed to perform query-by-

example [23]. InMAR each model is encoded as bag-of-paths (BoPs),
where paths are computed between attribute values. For instance,

for the metamodel shown in Fig. 3, the path (FSM, name, EClass)
has length 1 and simply encodes the name of class. However, (FSM,

name, EClass, transitions, name, EStructuralFeature) has length 2 and
encodes the existence of a reference named transition associated to

the FSM. A configuration parameter of MAR is the maximum length

of the paths. The longer the path is, the more model structure is

encoded. In this work, we set the path length to 3, which is the

standard value used by MAR (as reported in [24]).

5 EXPERIMENTS
In this section, we explain our experimental setup and report the

results of our experiments. Through the performed experiments,

we aim to answer the following research questions:

• RQ1: Which model achieves a greater performance in the

task of model classification?

• RQ2: How the chosen encoding of software models affects

the task of model classification?

• RQ3: Which is the effect of data duplication on the perfor-

mance of the ML models?

The first research question aims at providing insights into which

ML model to choose when faced with a classification task. Then,

RQ2 complements RQ1 by studying the importance of the selected

encoding in the performance of the models. Finally, RQ3 addresses

the question of whether the results can be biased due to the presence

of duplicates, which is a typical scenario when data is downloaded

from public sources. It is important to remark that the experiments

have been facilitated by the methodology explained in Sect. 3, in-

stantiated and automated for the task of model classification.

5.1 Replication Package
The results of the experiments and detailed instructions to run

them from scratch are described in a replication package available

at https://figshare.com/s/5904baec3dbd0a48036c.

The replication package is built using standard Python ML li-

braries like scikit-learn, PyTorch, Pandas, etc. Moreover, we provide

a Python execution environment to make sure that the same depen-

dencies are used. Finally, the results of the paper are automatically

generated from the outputs of the experiments.

5.2 Data
We use ModelSet [22] as the source dataset to perform our experi-

ments. It contains about 5,000 Ecore models and 5,000 UML models

labelled with their categories and gathered from GitHub and Gen-

MyModel respectively. The main reason for choosing it is that,

currently, it is the largest dataset of labelled models available. In

this work, we are interested in classification which is a supervised

task and requires a labelled dataset. Although other datasets have

been used in previous works, they are very small [3] which contains

only 555 Ecore metamodels, and this hinders the possibility of ob-

taining reliable conclusions from its use. The Lindholmen dataset,

instead, contains more than 90,000 UML models [32], but they are

are not labelled. Moreover, the dataset is not curated, and actually,

many of the models are broken.

An important aspect to consider when using ModelSet is that it
contains duplicate and quasi-duplicate models, which is a typical

issue in datasets extracted from public sources like GitHub. There-

fore, we have built an implementation of the algorithm proposed

https://figshare.com/s/5904baec3dbd0a48036c
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Ecore UML

All No-dups All No-dups

Num. models 4167 2068 Num. models 3720 1317

Num. categories 67 48 Num. categories 44 28

Avg. elements 219 145 Avg. elements 126 129

Classes 28 19 Class diagrams 9 9

Attributes 16 12 Use case diag. 3 3

References 29 22 Others 1.25 1.5

Table 2: Statistics of the used dataset, after filtering. We re-
port the statistics with and without duplicates.

by Allamanis [1] but adapted it to detect and remove duplication

in modeling datasets.

Table 2 shows some statistics about the models of the datasets,

after filtering for removing models whose associated category has

less than 10 models. For both Ecore and UML datasets and the

variants with duplicates removed, we report the number of models,

the number of categories, and the average number of elements per

model. In addition, we also report the average number of objects

per meta-type for some types of elements to give hints about the

structure of the models (e.g., number of classes, attributes, and

references for Ecore and the number of class diagrams, use case

diagrams, and an aggregation of the other UML diagrams).

In ModelSet, each model has a main label called category which

we use as the target variable for the classification task. The category

of a model refers to its main application domain. For instance,

models intended to describe conference systems (e.g., like EasyChair

or HotCRP) are labelled with conference. As can be observed, after

removing duplicates, the dataset size is halved, and the number of

categories is reduced. Nevertheless, the number of models is large

enough to perform the classification task adequately.

5.3 Considered Hyper-Parameters
Table 3 shows the hyper-parameters considered for each ML model.

In the case of FFNN, we consider one layer and several hidden

units. For SVM, we consider several values of 𝐶 (the regularization

parameter). If the input of the SVM is a vector, we study the perfor-

mance of the rbf kernel and the linear one. If the input is a graph,
then we use the graph kernel used in MORGAN [15]. For 𝑘−NN
models, we test several values of 𝑘 . In the case of CNB and MNB,

we vary the smoothing parameter (𝛼). GNB does not admit any

hyper-parameters. Our experiments consider a GNN with a fixed

initial embedding dimension, hidden dimension, and two layers.

We do not systematically vary these hyper-parameters because the

training procedure of these networks is expensive. Through ad-hoc

experiments, we observed that these values are adequate. Finally,

we consider the architecture used in [30] for the CNN.

5.4 Evaluation Metric
We evaluate how well the presented models are able to classify

metamodels. Initially, we considered Accuracy, that is, the correctly
classified models over the total models analysed:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Correctly classified models

Total models

(3)

ML model Hyper-parameters Values

FFNN Hidden size [50, 100, 150, 200]

SVM

𝐶 [0.01, 0.1, 1, 10, 100]

Kernel rbf, linear, graph kernel

𝑘−NN 𝑘 [1, 2, 3, 4, 5]

CNB, MNB 𝛼 [0.1, 0.6, 1.1, 1.6]

GNB - -

GNN

Initial embedding dimension 256

Layers 2

Hidden dimension 128

CNN - -

Table 3: Hyper-parameters considered for each model

However, to make sure that we take into account the potential

bias due to the unbalanced of the dataset (i.e., there may be cat-

egories with much less instances than other category), we have

considered the Balanced Accuracy. This is a modified version of the

accuracy that takes into account unbalanced categories. It is defined

as the average of the recalls for each category. More concretely, for

each category 𝑘 , its associated recall is defined as:

Recall𝑘 =
TP𝑘

Number of samples𝑘

,

where TP𝑘 is the number of corrected identified models of the

category 𝑘 . Finally, the balanced accuracy is defined as:

Balanced accuracy =

∑𝐾
𝑘=1

Recall𝑘

𝐾

In practice, it means that all categories will have the same im-

portance even if they contain a small number of samples.

5.5 Addressing RQs
To support our experiments we have developed a framework to

easily plug-in new classification methods and evaluate them con-

sistently. To this end, we have relied on the Python library sci-kit
learn. To integrate a ML method in our framework, there are three

main scenarios:

– Using an ML algorithm already supported by sci-kit. This is

straightforward.

– Using anML algorithmwhich can be implemented in Python.

In this case, a scikit classifier needs to be created. This re-

quires essentially implementing a training procedure (a fit
method) and a prediction procedure (predict method). In this

case, integration is straightforward as well, although addi-

tional work maybe need in the implementation. This is the

case of our implementation of GNN for models which rely

on Pytorch and PyG.

– Integrate a third-party tool, typically not implemented as a

Python library. This is the case with the MAR and Lucene

search engines and the MEMOCNN classifier. In this case,

the strategy is similar to before. A scikit classifier is created,

but it is much more complex since it needs to wrap the third-

party tool by calling external programs and processing their

results.

The column IMPL. in Table 1 shows which tool we have used to

implement each ML method and encoding. We have implemented a

TF-IDF encoding using the scikit facilities, word embeddings using
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Model Encoding B. accuracy Best hyper.

1 FFNN TF-IDF 0.898511 hidden size = 200

2 SVM TF-IDF 0.895735 kernel = linear,𝐶 = 100

3 GNN Raw graph 0.888875 –

4 CNN 2D TF-IDF 0.885606 –

5 𝑘-NN Lucene (BoW) 0.882907 𝑘 = 1

6 SVM WordE 0.880327 kernel = linear,𝐶 = 10

7 𝑘-NN TF-IDF 0.879817 𝑘 = 1

8 FFNN WordE 0.877892 hidden size = 50

9 𝑘-NN MAR (BoP) 0.873174 𝑘 = 1

10 𝑘-NN WordE 0.852933 𝑘 = 1

11 GNB TF-IDF 0.809371 –

12 SVM Graph kernel 0.792745 𝐶 = 0.1

13 CNB TF-IDF 0.775844 𝛼 = 0.1

14 MNB TF-IDF 0.754884 𝛼 = 0.1

Table 4: Results for Ecore, with duplicate models

Model Encoding B. Accuracy Best hyper.

1 FFNN TF-IDF 0.824972 hidden size = 150

2 SVM TF-IDF 0.815609 kernel = linear,𝐶 = 10

3 GNN Raw graph 0.807656 –

4 SVM WordE 0.786988 kernel = linear,𝐶 = 100

5 𝑘−NN Lucene (BoW) 0.786793 𝑘 = 1

6 CNN 2D TF-IDF 0.778440 –

7 FFNN WordE 0.777899 hidden size = 150

8 𝑘−NN MAR (BoP) 0.775339 𝑘 = 3

9 𝑘−NN TFIDF 0.764505 𝑘 = 1

10 CNB TFIDF 0.733788 𝛼 = 0.1

11 𝑘−NN WordE 0.723883 𝑘 = 1

12 MNB TF-IDF 0.716409 𝛼 = 0.1

13 GNB TF-IDF 0.607369 –

14 SVM Graph kernel 0.593098 𝐶 = 0.1

Table 5: Results for Ecore, removing duplicate models

GloVe (through the gensim library) and a graph kernel usingGraKeL.

Then, we have used scikit to implement FFNN, SVM, 𝑘-NN and

Naive Bayes models over these encodings. Additionally, we have

created a GNN specifically designed for model classification using

PyTorch. We have reused the MAR search engine to experiment

with its BoP encoding. We have also used Lucene as a an alternative

search engine, following [33]. Finally, we have reused the CNN

implementation presented in [30] based on Keras and TensorFlow.

A limitation of the experiments is that, since CNN and Lucene are

third-party implementation, we could not experiment with UML

models because they are not currently supported.

6 RESULTS
Using the experimental setup presented in the previous section, we

have obtained the following results. Table 4 shows the results for

Ecore without discarding duplicates. Table 5 shows the results for

Ecore, but applying the pre-processing phase to discard duplicates.

Table 6 shows the results for UML without discarding duplicates.

Table 7 shows the results for UML, but discarding duplicates. In the

rest of the section we analyse these results.

Model Encoding B. Accuracy Best hyper.

1 SVM WordE 0.873906 kernel = linear,𝐶 = 10

2 FFNN WordE 0.872578 hidden size = 150

3 SVM TF-IDF 0.870490 kernel = linear,𝐶 = 100

4 FFNN TF-IDF 0.864192 hidden size = 100

5 𝑘−NN MAR (BoP) 0.859487 𝑘 = 1

6 𝑘−NN WordE 0.849309 𝑘 = 1

7 𝑘−NN TF-IDF 0.848727 𝑘 = 1

8 GNN Raw graph 0.843559 –

9 GNB TF-IDF 0.798754 –

10 SVM Graph kernel 0.769627 𝐶 = 0.1

11 CNB TF-IDF 0.760579 𝛼 = 0.1

12 MNB TF-IDF 0.745817 𝛼 = 0.1

Table 6: Results for UML, with duplicate models

Model Encoding B. Accuracy Best hyper.

1 FFNN WordE 0.775893 hidden size = 150

2 FFNN TF-IDF 0.758389 hidden size = 50

3 SVM WordE 0.756125 kernel = rbf,𝐶 = 100

4 SVM TF-IDF 0.744753 kernel = linear,𝐶 = 10

5 𝑘−NN MAR (BoP) 0.716452 𝑘 = 3

6 GNN Raw graph 0.713418 –

7 CNB TF-IDF 0.703389 𝛼 = 0.1

8 𝑘−NN WordE 0.694383 𝑘 = 1

9 𝑘−NN TF-IDF 0.686937 𝑘 = 1

10 GNB TF-IDF 0.630084 –

11 MNB TF-IDF 0.628251 𝛼 = 0.1

12 SVM Graph kernel 0.530019 𝐶 = 0.1

Table 7: Results for UML, removing duplicate models

6.1 RQ1: Best Model
The best models are feed-forward neural network (FFNN) and SVM

in the four scenarios (Ecore and UML with and without duplicates).

Moreover, FFNN outperforms the SVM for 3 out of the 4 scenarios.

Using a “lightweight method” like 𝑘−NN plus MAR (or Lucene)

obtains consistently worse results than more advanced ML meth-

ods, particularly neural networks and SVMs. However, the loss

of accuracy when using MAR or Lucene is not very high, which

means that these models are still competitive. This suggests that

the classification tasks could be effectively addressed with simple,

off-the-shelf machinery. We foresee two scenarios in which light-

weight methods can be a good fit: a) for teams with little experience

with ML and the additional complexity that it brings for testing and

deploying the ML models and b) when there already exist search

engines with a large number of indexed models, and thus, it is

possible to profit from them with little effort.

Finally, it is worth mentioning that FFNN and SVM, which can be

considered simple ML models, outperforms more complex models

like CNN and GNN which can be considered deep learning models
since they have much more learnable parameters. One reason could

be that the dataset size is not large enough for the usage of complex

models.

6.2 RQ2: Encoding Schemes
In the case of Ecore, the best encoding scheme is TF-IDF. In Tables 4

and 5 the first two models use as encoding technique TF-IDF. In-

terestingly, TF-IDF outperforms word embedding, which is a more

sophisticated encoding. We believe that this can be caused by the
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fact that we use a word embedding model trained on general texts,

which may not be a good fit for software models. Thus, a potential

future direction is to train word embeddings based on modelling

texts.

On the other hand, for UML, the best encoding is word embed-

ding. This confirms our previous argument. The rationale, in this

case, is that UML models are often used to describe non-technical

domains: e.g., a shopping center, a bank, etc. Therefore, the pre-

trained embeddings capture the meaning of the model elements

much better.

In the same line, the performance of the GNN drops for UML (in

relative terms with respect to FFNN and SVM). This can be caused

by the fact that the embedding layer is simply initialized with the

vocabulary. A potential solution to improve the GNN performance

for UML could be to initialize the embedding layer directly with

word embeddings.

An interesting observation is related to the choice between sim-

ple or more complex encodings. One could expect that structured

encoding schemes based on graphs (as used by MAR and models

like GNN and SVM with kernel) should be superior. The rationale is

that they are a good match for the graph-based nature of software

models. However, our experiments reject this idea for the classifica-

tion task. The main reason that we have observed is that the domain

of application of a software model is mainly associated with the

names given to its model elements. For example, most meta-models

about Petri nets have words like petri, net, place, transition, arc, etc
and the main difference with e.g., a state machine model is not the

structure but the naming.

Thus, for ML tasks similar to the one in our experiments, possibly

a simple encoding scheme based on extracting the strings is enough.

6.3 RQ3: The Effect of (near) Duplication
There is an important reduction in the accuracy of all the methods

when duplicates are discarded. As expected, the type of model

whose performance decays the most is the 𝑘−NN. This model is

considered a naive memorization method [1]. If a model of the

training set is duplicated in the test set, likely, this model appears

first in the list of nearest neighbors.

Previous works [29] have obtained similar results using a feed-

forward neural network, with a similar TF-IDF encoding (i.e., preci-

sion above 90%). However, our results show that these experiments

could be biased due to the existence of duplicates. These results sug-

gest that future works applying ML for MDE tasks should carefully

consider the presence of duplicates.

Arguably, having duplicates in the dataset may reflect well sce-

narios in which the data has been obtained from public reposi-

tories (i.e., ModelSet was built from GitHub and GenMyModel).

Nevertheless, our results show that there is still room to improve

classification methods applied to software models.

6.4 Assessment
Our experiments have shown that the performance of the tested

ML models (which are standard models) for the task of model clas-

sification is good (around 80% when duplicates are removed) but

not excellent. This contrasts with previous works [16, 22, 28, 30].

The reason can be due to a variety of factors that makes the classi-

fication harder for the ML models, namely: the fact that we have

used a larger dataset (with more categories), the removal of dupli-

cates, and the use of UML models, which may be more complex

than Ecore models. In practice, this means that model classification

is not yet a solved problem. Instead, more research is needed to

propose specific ML models to obtain better performance.

The internal threats to our approach are essentially related to the

dataset we adopted. We identified some specific threats: ModelSet
is composed of ∼5000 Ecore and UML models, which could not be

enough to train some ML models properly, but its size is enough to

draw initial results. Moreover, to the best of our knowledge, it is

the largest curated and labeled dataset publicly available. Another

possible threat is related to the quality of ModelSet, the existence
of duplicates is a relevant problem which affects different datasets.

We alleviate this problem by considering two versions of the orig-

inal dataset, with and without duplicates. Some of the employed

tools are not able to classify UML models. We plan to extend these

tools to analyze their performance in this task. An external threat

that affects the generalization of the results is that we have only

considered one kind of ML task. To partially mitigate this, we have

performed the task with two with both Ecore and UML. Neverthe-

less, the proposed framework can boost the experimentation with

other relevant ML tasks in the context of MDE.

7 CONCLUSION AND FUTUREWORK
In the last years, the application of ML techniques to enhance MDE-

related scenarios has been increasingly researched. However, the

current body of knowledge lacks a good understanding of which

ML models and encodings are best suited. This paper aims to fill

this gap, focussing on the task of model classification. To this end,

we have considered six ML models and six possible encodings, and

we have systematically combined and evaluated them. Finally, we

applied these two datasets of about 5,000 Ecore models and 5,000

UML models. The results show that a feed-forward neural network

using a TF-IDF encoding is generally the best approach. However,

simpler models like 𝑘-NN combined with a search engine provide

almost comparable results. In general, for model classification, the

model structure is irrelevant (i.e., it is not needed to use more

complex models like GNNs). Moreover, we have shown that the

performance of all ML models is reduced when (quasi-)duplicate

models are discarded.

In future works, we plan to apply this framework to other ML

tasks in the MDE domain to generalise our results. Regarding ex-

tensions for the task of model classification, we plan to consider

multi-classification as done in [22] (e.g., multiple labels per model)

as well as using other performance metrics. We also plan to investi-

gate other ML models which can generalize better and improve the

accuracy of the tested models.
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