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Abstract

GitHub has become a precious service for storing and man-
aging software source code. Over the last year, 10M new
developers have joined the GitHub community, contributing
to more than 44M repositories. In order to help developers
increase the reachability of their repositories, in 2017 GitHub
introduced the possibility to classify them by means of top-
ics. However, assigning wrong topics to a given repository
can compromise the possibility of helping other developers
approach it, and thus preventing them from contributing to
its development.

In this paper we investigate the application of Multinomial
Naive Bayesian (MNB) networks to automatically classify
GitHub repositories. By analyzing the README file(s) of the
repository to be classified and the source code implementing
it, the conceived approach is able to recommend GitHub top-
ics. To the best of our knowledge, this is the first supervised
approach addressing the considered problem. Consequently,
since there exists no suitable baseline for the comparison,
we validated the approach by considering different metrics,
aiming to study various quality aspects.
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1 Introduction

The open source software (OSS) community makes a daily
usage of open source repositories to contribute their work
as well as to access to projects coming from other develop-
ers. GitHub is one of the most well-known platforms that
aggregate these projects and render possible the exchange
of knowledge among the users. In order to aid information
discovery and help developers identify projects that can be
of their interest, GitHub introduced topics. They are words
used to characterize projects, which thus can be annotated
by means of lists of words that summarize projects’ features.
Thanks to the availability of topics, several applications are
enabled, including the automated cataloguing of GitHub
repositories [22], further than allowing developers to ex-
plore projects by type, technology, and more.

To our best knowledge, assigning the right topics to GitHub
repositories is a crucial step that, if not properly done, may
hamper their discoverability. In 2017, GitHub presented repo-
topix, a topic suggestion tool essentially based on informa-
tion retrieval techniques [9]. Although the mechanism works
well so far and it has been fully integrated into GitHub, in
our opinion there is still some room for improvement, e.g., in
terms of the variety of the suggested topics, novel data analy-
sis techniques, and the investigation of new recommendation
strategies.

In this work, we present our approach to automatically
recommend topics for GitHub repositories. By exploiting a
well-founded Machine Learning technique, we investigate
the usage of a probabilistic model-based tool to recommend
topics for a specific project by means of its README file(s)
and source code. Informally, the question the proposed sys-
tem can answer is:

“Which tags should I use to annotate this new
project being managed by means of GitHub?”

The proposed approach employs a Multinomial Naive Bayesian
(MNB) network to extract README files’ content, source
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code and eventually to recommend topics. It is fed with a
TF-IDF vectorization of README files, which represent the
most frequent terms over all documents. As the final output,
the tool retrieves the best-ranked topics according to their
probabilities, and suggests them to developers.

To the best of our knowledge, there are no comparable
approaches that deal with the same problem, apart from the
GitHub internal framework.! Thus, we assess the quality of
the results by means of suitable metrics for the examined
domain. The main contributions of the paper are summarized
as follows:

o Design and implementation of a tool for the automatic
recommendation of topics for GitHub repositories;

e An empirical evaluation of the proposed approach ex-
ploiting a dataset collected from GitHub;

e We made available online the tool and the dataset used
in our evaluation to facilitate future research [23].

This paper is organized as follows: Section 2 provides an
overview of GitHub topics and the main open challenges in
the given domain. Section 3 presents our proposed approach
to recommend topics for GitHub repositories. In Section 4,
we describe the evaluation process, and we present the exper-
imental results in Section 5 afterwards. Section 6 discusses
possible threats to validity of the findings. We present re-
lated work and conclude the paper in Section 7 and Section 8,
respectively.

2 Motivations and Background

When using OSS repositories, users can be interested in ac-
quiring knowledge from existing developed software projects
[17]. However, especially in the case of large source code
repositories, the potential benefits related to the availability
of reusable projects might be missed if they cannot be suit-
ably discovered. To mitigate such problems, in 2017 GitHub
introduced the possibility of assigning tags® to projects with
the final aim of increasing their discoverability. By means
of such a feature, users can find and contribute to software
projects by searching the topics of interest, affinity, and other
relevant elements.

Figure 1 shows an example of repository stored in GitHub. It
is a related to the bootstrap project’, and according to the
given tags, itis a css- framework, which involves javascript,
html, and css artifacts among others. GitHub maintains a
curated list of projects, which are organized with respect
to the list of featured topics®, which are meant to be the
most popular and active topics. Thus, users can monitor the
community’s trend by consulting such a public list.

!Unfortunately, the source code of repo-topix is not available and, thus, it
cannot be used directly as baseline.

ZFor the sake of presentation, the terms “tags” and “topics” are used inter-
changeably throughout the paper

3https://getbootstrap.com/

4https://github.com/topics
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Manually assigning topics can be an error-prone activity
that can lead to wrongly specified tags. Over the last years,
several attempts have been made to classify GitHub projects
by automatically inferring appropriate topics. In the context
of data mining, classification is one of the critical operations
that are used to dig deep into available data for gaining
knowledge and for identifying repetitive patterns [15].

Sharma et al. [22] present an approach based on topic
modeling techniques to create categories of GitHub projects.
Manual interventions are needed to refine initial sets of
categories, which are identified by an LDA-GA technique,
that combines two algorithms: Latent Dirichlet Allocation
(LDA) and Genetic Algorithm (GA) [19]. The approach pro-
posed [22] is unsupervised, meaning that the categories of
the catalogue being identified are not known ex-ante.

In a GitHub blog post [9], the author presents repo-topix,
a tool to recommend topics for GitHub repositories. Such a
tool combines standard NLP techniques to find an initial set
of topics, by parsing the README files and the textual con-
tent of a repository e.g., the repository’s description. Then,
the results are weighted with the TF-IDF scheme and “bad”
topics are removed exploiting a regression model. Using this
refined list, repo-topix computes a custom version of the
Jaccard distance to identify additional similar topics. To as-
sess the quality of the framework, a rough evaluation was
conducted based on ROUGE-1 metrics, an n-gram overlap
metric that counts the number of overlapping units between
the suggested topics and the repository description. Never-
theless, neither the tool nor the dataset is made available,
thus a comparison with the approach is not feasible.

With the aim of providing a practical solution to the prob-
lem of recommending GitHub topics, in the next section we
propose a novel supervised machine learning approach based
on a multinomial naive bayesian network. The challenges
that we had to cope with for evaluating its performance are
mainly the following ones:

> Dataset definition: the creation of the datasets to be used
for evaluating the approach being proposed and comparing
it with some baseline is a daunting task: repositories might
be moved, heavily changed or even deleted during the initial
creation. Thus, the crawling activity can be negatively af-
fected by these continuous changes and lead to lack of data,
as well as poor topic coverage. GHTorrent’ tries to tackle
this issue by offering daily dumps of the repositories’ meta-
data. However, this kind of data might not be enough or even
appropriate (e.g., source code is not available in GHTorrent
dumps) to properly classify an entire repository. Even consid-
ering directly GitHub data can be difficult: GitHub limits the
total number of requests per hour to 5,000 for authenticated
users and 60 for unauthorized requests. Considering all these

Shttp://ghtorrent.org/
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Figure 1. An example of GitHub repository and corresponding topics.

constraints, building a suitable dataset poses a real challenge
which in turn, needs to be carefully managed.

> Topics distribution: although tags can be assigned only by
the owners of GitHub repositories, users may potentially
wrongly specify topics or introduce information overload
by inserting too many elements. Thus, creating a reliable
ground truth to assess the classification performance of the
proposed approach represents another relevant difficulty.

3 Proposed Approach

Given a GitHub repository, our approach aims to suggest a
set of relevant featured topics by analyzing its README file
and its source code. A typical scenario involves a developer
who looks for suggestions while she is working with the
repository. Our approach helps increase the visibility of the
repository on the platform by suggesting pertinent topics.
Different from other GitHub project classifiers, we turn from
a standard classification to a multi-classification problem by
using different modules of the source code classifier (SCC)
infrastructure of the scikit-learn library.® In particular, the
MultinomialNB (MNB)’ and TF-IDF vectorizer® components
are used as follows: (i) we first create a curated dataset by
selecting README files for each selected featured topic; (ii)
then, the MNB is trained with vectors computed by the TF-
IDF vectorizer; (iii) once we have the predicted list of topics,
we discover the programming language with the GuessLang
tool’; (iv) finally, we combine the results and deliver the list
of recommended topics.

The architecture of the proposed approach is shown in
Figure 2 and described in greater detail in the following
subsections.

3.1 GitHub Crawling

To create a dataset with README files coming from GitHub
projects, we used PyGithub [1], a library that provides a
complete set of APIs to interact with GitHub repositories.
Using a project’s name as query, we can retrieve different

Shttp://scikit-learn.org
Thttps://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
MultinomialNB.html
8https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.Tfidf Vectorizer.html

%https://pypi.org/project/guesslang/

types of information such as commits, issues, and name of
the repository’s owner. For each repository, we downloaded
only its README file(s) to provide input to the MNB net-
work. The rationale behind the selection is that README
files provide an informative description of the project being
developed!’, e.g., among others, what the project does, or
how developers can start with it [20]. In this sense, we as-
sume that information coming from README files is suitable
for the recommendation process.

Concerning the topics, we consider only the featured ones
for two reasons: (i) it is not feasible to train a network for all
possible topics available on the platform; and (ii) the featured
topics are the most popular according to GitHub’s statistics;
this means that they can offer a pretty good coverage of the
community’s interests. Among these topics, we deployed an
additional filter on the query to limit the number of topics
considered in the training as this phase suffers from a de-
crease in performance with too many categories. By using
the GitHub query language [2], we applied the following
query filter:

Qf ="7is : featured topic : t stars : 100..80000 topics :>= 2" (1)

to consider only GitHub repositories having a number of
stars between 100 and 80,000, and tagged with at least two
topics. We set such a filter after several query refinements, as
the chosen featured topics have different degrees of popular-
ity. For instance, the most starred project of the 3d topic has
around 53,000 stars; reversely, some other topics have top
rank projects that do not reach 1,000 stars. Thus, we tried to
select the best query filter to include a sufficient number of
repository for each topic. By imposing such a filter, we tried
to avoid skewed repositories that may not have an informa-
tive README, or projects that are already abandoned for a
long time.

GitHub developers use stars as a voting mechanism to
foster the popularity of a certain project [6]. Through this
system, each user can support her/his favorite projects avail-
able on the platform. Forking is another index related to the
quality of the project. This feature is typically employed as
a starting point for a new project [11]. Furthermore, there
is a strong correlation between forks and stars [5]. In this

WOhttps://help.github.com/en/github/creating-cloning-and-archiving-
repositories/about-readmes
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Figure 2. Overview of the proposed approach.

sense, we suppose that a project with a high number of stars
means that it gets attention from the OSS community, and
thus being suitable to identify popular repositories [4, 7].

3.2 README Encoding

Before the training process, we encode the content of each
README using the TF-IDF vectorizer provided by scikit-
learn. The library embeds all the Natural Processing Lan-
guage (NPL) techniques to preprocess README files, i.e.,
stop word removal, stemming and lemmatization. After the
preprocessing phase, the vectorizer computes the TF-IDF
weighting scheme to find the most representative terms over
all documents. The TF-IDF computes the inverse document-
frequency using the formula showed in Equation 2:

1+n +1
1+ df(¢)

where n is the total number of documents in the document
set; df(t) is the number of documents in the document set
that contain term ¢ The encoding is applied to the entire
content of each README file to be fed to the MNB network.
This is a preparatory phase to the training and it is conducted
only at the beginning of the process.

idf(t) = log @)

3.3 Topic Prediction

Once we encoded the data using the mentioned techniques,
we feed the model to perform the training phase. Naive
Bayesian network is a probabilistic model based on the Baye-
sian theorem that expresses the probability of a certain event
given a set of preconditions [12]. The terms “Naive” refers
to the assumption that all the features are conditionally in-
dependent. This means that the classifier reaches a higher
performance if each class does not have any relationship
with the others. However, this condition does not always
hold in practice and the model is used with relevant results.
In our work, we use a Naive Bayesian network based on a
multinomial distribution, defined as follows:

Py | %1, x0) o Py) [ | PCxi | ) (3)
i=1

where xi, .. ., x, are the features and y the class to be pre-
dicted with a certain probability P. We decided to employ
the technique as it has demonstrated itself to outperform

other ML models in the context of text classification [3]. To
improve the performance of the network, we applied the
TF-IDF scheme on the input data (see Section 3.2). Such a
preprocessing phase should possibly enhance the quality of
predicted items of the Bayesian classifier as this has been
confirmed by an existing work [13].

As previously mentioned, we exploited the MNB imple-
mentation provided by scikit-learn. By default, MNB predicts
only one class for each sample, we modified this feature by
ranking all the results to include the most probable topics as
we aim to recommend more than one topic.

3.4 Language Prediction

Among featured topics, 20 of them are related to the main
programming languages, e.g., Java, Python, C. Detecting
them in a GitHub project requires a comprehensive anal-
ysis of the source code. Consequently, the MNB network
is not suitable for this type of analysis due to its internal
construction. However, since language is an important tag,
we attempted to recommend it by employing GuessLang, a
Python library which was tailored for this purpose. As it has
been claimed in the documentation, GuessLang can predict
20 different programming languages with satisfying accu-
racy. This component is executed as stand-alone instance
to predict the language for each analyzed repository. To
correctly predict the programming language, this module
analyzes all files within a repository. Due to the timing and
memory constraints in the computation, we limit the number
of analyzed files to 1,000 for each repository that does not
exceed 10KB in size.

3.5 Topics Aggregation

The final step consists of combining the predicted topics
coming from the MNB network and the language discovered
by the tool. To aim for reliable results, we replace the last
element of the predicted topic list with the programming
language delivered by GuessLang. Let T = t3, 13, ....., t, be
the list discovered by the MNB model, and t; be the topic
related to a programming language, then as the last element
of T is the less probable of the retrieved set, the final output
is the list Tr = ty, 13, ...., ;, where t; becomes the new last
element.
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4 FEvaluation

This section presents the evaluation conducted to study our
proposed approach. In particular, Section 4.1 presents the
research questions we wanted to answer by means of the
performed experiments and thus, to study the approach’s
performance. Section 4.2 introduces the datasets we popu-
lated to serve as input for the experiments. The metrics used
to study the final outcomes are presented in Section 4.3.

4.1 Research questions

By performing the evaluation, we aim at addressing the
following research questions:

e RQ;: How does the variation of training data impact on
the prediction performance? To answer this question,
we varied the dimension of the dataset to include more
training data. In particular, we assess the quality of
three different datasets to find out the best one in terms
of success rate.

e RQ,: Is the approach able to provide consistent recom-
mendations considering featured topics? We compute
the metrics given in Section 4.3 to measure the rele-
vance of our suggested topics considering the distri-
bution of the considered repositories.

4.2 Dataset

To build the dataset, the quality filter discussed in Section
3.1 was exploited to select 134 different featured topics. The
final aim is to build a balanced dataset in which every topic
does not surpass the others in terms of influence, so as to
avoid possible negative impacts on the final results.

The employed MNB network is slightly different from
other models because it works on probability. Thus, we want
to measure how the dimension of training data can affect the
accuracy of the model. In this way, we created a global dataset
of 13,400 README files by considering 100 repositories for
each topic. Moreover, since we can recommend 20 additional
topics related to the programming languages exploiting the
GuessLang module, summing up our approach is able to
predict a total number of 154 topics.

The number of topics for each repository has an important
impact on the recommendation quality. As several reposito-
ries may have a low number of featured topics, it is necessary
to examine the distribution of number of featured topics over
the repositories. If we call c as the cut-off value for the num-
ber of topics, then Figure 3 displays such the distribution by
varying c. The y-axis represents the percentage of reposi-
tories with respect to the created golden dataset, while the
x-axis corresponds to c. We can see that, if we set the cut-off
value ¢ = 1, then 100% of the repositories have at least 1
featured topic. However, the percentage of repositories de-
creases considerably when c increases. For instance, only
40% of the repositories have c=3 featured topics and only 10%
of them have c=5 featured topics. Given the circumstances,
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Figure 3. Distribution of the number of topics in the dataset.

the prediction of more than 5 featured topics becomes a hard
task considering this strict assumption.

4.3 Metrics

To assess the proposed approach, we exploited success rate,
precision, recall, and top-rank as they have been widely used
to evaluate recommender systems in Software Engineer-
ing [21]. Before going in detail, we consider the following
definitions:

e True positive (Tp): the topics that are correctly recom-
mended;

e False positive (Fp): the recommended topics which ac-
tually do not belong to the ground-truth data;

o False negative (Fn): the topics that should be present
in the recommended items, but they are not.

As the ground truth data UsrTp(r), we consider all the fea-
tured topics of the real repository r available on GitHub.
Then, the metrics are defined as follows:

Success rate: Given a set of R testing repositories, this metric
measures the rate at which a recommendation engine can
return at least 1 correct tag for each repository r.

count,eg(Tp > 0)
R|

where the function count() is a boolean function that returns

1 for each true positive.

Precision: the metric measures the rate of correct items

over the entire set of recommended items:
Tp

Tp+Fp

Recall: the ratio of the user’s topics appearing in the N

recommended items:

Recall =

Success rate = X 100% (4)

Precision =

®)

_TIr ©)
Tp+Fn

Top rank: it measures the percentage of the first top element
in the user’s topics:

TpRank(r)
IR|
where TpRank(r) returns 1 if the first predicted element be-

longs to UsrIp(r), 0 otherwise.

Top rank = X 100% (7)
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4.4 Experimental settings

We performed ten-fold cross-fold validation [14] on all the
datasets. In particular, the README files used in each dataset
are divided into 10 equal parts. To preserve a balanced train-
ing set along with all the training phases, for each topic,
we used 90% and 10% of the files for training and testing,
respectively.

Figure 4 depicts the testing process for a single test file.
In particular, we computed the TF-IDF vectors for each test
README file to get predicted topics. Then, we retrieved the
real topics from GitHub projects. Using the API provided
by the PyGithub library, we mapped each repository to its
real topics. From these, we filtered out the ones that are not
featured topics because the network is not able to retrieve
hand-made topics out of the train set. To aim for a better cov-
erage, some lightweight NLP techniques have been applied
to both the predicted topics and user topics, i.e., stemming
and dashes removal. This processing phase has no impacts
on the topics semantic, as the employed techniques work on
syntactical aspects. For example, the topics data-structures
and datastructures are semantically the same and we consider
them as a true positive during the accuracy measurement.
The last step involves the comparison of real topics and the
recommended ones. To have a qualitative measure of the
approach, we computed all the evaluation metrics for each
test file and we are going to report the results in the next
section.

5 Results

In this section, we present the results obtained from the
performed experiments. Section 5.1 describes a concrete ex-
ample of 10 repositories and their corresponding topics, as
well as the topics recommended by our proposed approach.
In Section 5.2, we analyze the results by answering RQ; and
RQ,, aiming to study the approach’s performance.

5.1 Explanatory example

Before going into detail, we take a concrete example to illus-
trate how the system recommends topics in Table 1. In this
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table, there are 10 repositories and each of them includes a
number of real and featured topics. For each repository, we
compare its featured topics with the top-5 results retrieved
by our approach. As it has been mentioned in Section 4.4,
topics that are out of the training set from the real topics of
a repository are removed. The last proposed topic is discov-
ered by the language predictor component and the matched
topics are printed in bold to distinguish them with the others.
By all repositories, there is at least one matched item, i.e.,
success rate is equal to 1. Among others, given the testing
project fishercoder1534/Leetcode, all the recommended top-
ics are matched with those from the ground-truth data. As
it can be seen, although the other recommended items do
not belong to the ground-truth data, they are well correlated
with the suggested ones. To be concrete, the topic linux is
strongly related to ubuntu in the esell/deb-simple project
although it does not appear in the real topics set. Given the
circumstances, we suppose that the application of a lexical
database to map words with similar semantic meaning such
as WordNet [16] should possibly increase the overall predic-
tion performance. However, this is out of scope of this paper,
and thus we consider it as a future work.

5.2 Result Analysis

RQ;: How does the variation of training data impact on the
prediction performance?

Starting from the dataset described in Section 4.2, three
different datasets have been populated, i.e., Dy, D,, and D3
by incrementally enlarging the considered training files as
described in Table 2. We applied the same experimental set-
tings described in Section 4.4 for all the datasets. Dataset D
consists of 1,340 README files and 10% of each topic are
used as testing. Dataset D, and D3 follow the same structure
in which we increase the number of README files up to 50
and 100, respectively.

By running the tool on the datasets, for each testing item,
we obtained a ranked list of topics that is considered to be
relevant. Given the multi-classification problem, the number
of recommended items dramatically affects the final results.
As it has been shown in Figure 3, generally the repositories
contain a low number of topics. Thus, we varied the number
of retrieved topics for each testing item with a small value,
ie,c=2,c=05,and c = 8 recommended topics to find out
the best configuration with respect to the returned items.

If N is the number of correctly predicted topics then for
each setting, the corresponding quality metrics are computed
with respect to N. The final success rates are depicted in
Figure 5, Figure 6, and Figure 7 for ¢ = 2, ¢ = 5and ¢ = 8,
respectively.

In Figure 5, it is evident that a better success rate is ob-
tained when N=1, and this holds for all the datasets, i.e., D;,
D, and Ds. Running the tool on D; and Ds yields a compa-
rable success rate, i.e., 75.8% and 75.68%. This implies that at
a certain point, increasing the amount of training data does
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Example of repositories, their topics and the recommended topics.

Repository

Real topics

Featured topics

Recommended topics

alstudmuflin/SpaceshipGenerator

python,blender-scripts, spaceship, procedural-

python, 3d

shell, terminal, 3d, opengl,

generation, game-development, 3d python
0xAX/go-algorithms golang, algorithm, data-structures, go, sort, | algorithm, data-structures, | data-structures, algo-
tree-structure go rithm, twitter, library,
go

ajenti/ajenti

ajenti, python, javascript, administration,
linux, panel, angular

python, javascript, linux, an-
gular

firefox, webpack, linux, an-
gular, python

fishercoder1534/Leetcode

leetcode, algorithm, java, interview, mysql,
bash, apache, data-structures, leetcode-
solutions, leetcode-questions, leetcode-java,
leetcoder

algorithm, java, mysql, bash,
data-structures

algorithm, mysql, bash,
data-structures, java

cryogen-project/cryogen

clojure, cryogen, static-site-generator

clojure

jekyll, clojure, atom, gulp,
html

alizahid/slinky

jquery, navigation, mobile, es6, javascript,
menu, plugin, yarn, babel, webpack, css, sass

jquery, mobile, javascript,
es6, css, sass, babel, webpack

es6, jquery,
javascript

css, sass,

esell/deb-simple

maintainer-wanted, golang, go, debian, ubuntu

go, ubuntu

ubuntu, ansible, linux, shell,
go

JamesRamm/longclaw

python, django, e-commerce, shop, python3,
python-2, wagtail, wagtail-cms

python, django, wagtail

wagtail, django, serverless,
express, python

nitin42/terminal-in-react

terminal, react, design, javascript, svg, web-
pack, webapp, css

terminal, react, javascript,
webpack, css

webpack, eslint, react-

native, react , javascript

kerl/kerl erlang, otp-release, kerl, homebrew, shell erlang, homebrew, shell elixir, homebrew, bash, de-
ployment, shell
Table 2. Datasets. 100 TaN=1TaN=2lIN=31IN=401N=5 |
86.52 85.8

Dataset | # of testing files | # of training files | Exe. time (sec)

D; 134 1,206 658

D, 670 6,030 3,782

Ds 1,340 12,060 7,823

not bring a radical change in the overall performance. This
is interesting since it suggests that in practice, we just need
a certain amount of training data in order to get a decent
accuracy. When N=2, it can be seen that the obtained success
rate improves considerably along the addition of more train-
ing data. For example, by D; we get 23.1% as success rate,
however the corresponding value by D3 is 63.14%, which is
almost triple larger than that of D;.

By considering Figure 6 and Figure 7 together to study
the approach’s performance for the cases c=5 and c=8, we
witness the same trend as that by c=2. To be concrete, re-
questing more of correctly predicted topics means getting a

100

IiN=100N=2

80 5 . ,

70.18

40 -

Success rate (%)

20

Dy Dy Dy
Dataset

Figure 5. Success rate for c=2.

Success rate (%)

D, Dy D
Dataset

Figure 6. Success rate for c=5.

lower success rate. For example when c=5, by Dataset Dy the
maximum success rate is 80.15% and it is obtained when N=1.
This score decreases dramatically for a larger value of N, i.e.,
with N=4 corresponding the success rate is 19.83% which
is four times lower than that of the case where N=1. This
suggests that obtaining a higher number of correct topics
becomes more difficult. Similarly, by D, and D3, success rate
deteriorates quickly if we want to see more matched topics.
By comparing the results yielded by all three datasets, we
see that running the MNB network on D; brings a slightly
better prediction performance in terms of success rate, and
this is consistent with what we got for c¢=2. This is further
confirmed in Figure 7 as using D, for training data yields a
better success rate.

These findings should be explained by the internal con-
struction of MNB. As the network uses probabilities without
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Figure 7. Success rate for c=8.

considering any other type of relationships among the fea-
tures, it works well even with a small amount of data. Thus,
the addition of further data has a negative impact on the
learning rate of the MNB network. Concerning the number
of recommended topics, our experimental configurations
demonstrate that suggesting more topics increase the suc-
cess rate. As a large part of the dataset contains repositories
with at most 8 featured topics, those that have more than
this number of topics are not statistically significant for our
purposes. Additionally, we normalized success rate measures
to be compliant with the distribution of the dataset.

Once a certain threshold has been reached, augmenting
the training data does not bring a radical change in per-
formance. In particular, adding more data to Dataset D to
yield Dataset D3 has a negligible impact on success rate,
precision, and recall.

RQ,: Is the approach able to provide consistent recommen-
dations considering featured topics?

Considering once again the three experimental datasets
shown in Section 4.2, we computed precision and recall by
varying the two values ¢ and N. The precision, recall, and
top-rank scores for all the test configurations are shown in
Table 3. As it can be seen there, precision and recall scores
decrease when N increases, which is consistent with success
rate. Again, using D; as input data helps us achieve a bet-
ter precision and recall compared to D; and Ds. Using D3
helps obtain a better result with c=2. However, the difference
between the two recall values is negligible. As expected con-
sidering the previous results, Dataset D; contributes to the
worst performance along with all the possible configurations
of N and c.

Table 3. Precision, recall, and top-rank.

Precision Recall Top rank
Dy D, D3 Dy D, D3 D, D, Ds
43.61 | 47.98] 47.98| 38.10 | 42.62 | 42.96| 60.59| 65.19 | 64.81
27.51 | 31.20| 30.70 | 55.68 | 63.45] 63.06 | — — —
19.63 | 22.05| 21.57 | 61.96 | 69.77| 69.04 | — — —

OOWNZ
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These results can be explained by the particular nature of
the user’s topics. As shown in Table 1, the featured topics be-
longing to the real repositories are very few. The side-effect
of this assumption has a particular impact on the precision
value, that goes down when we increase the number of rec-
ommended items. Meanwhile, recall does not suffer from the
dataset composition, as this metric highlights the true posi-
tive ratio. We assume that the obtained results are strongly
affected by the distribution of the user topics.

To further study the approach’s performance, we com-
puted Top Rank scores following Equation 7 and the results
are depicted in Table 3. We considered only the first top rank
items since all repositories belonging to the golden dataset
have at least one featured topic. Thus, we exploit this index
to assess the capability of the MNB network in a more re-
liable way. Once again, using D, brings a better top rank
compared to using the other datasets. In particular, the Top
Rank index increases to 65.19% from 60.59% when we run
the tool on Ds instead of D;. Moreover, running the tool on
D; places a burden on the overall performance. This con-
firms the findings of RQ,, in which D, facilitates a better
prediction.

Our approach is able to provide relevant results in terms of
Top Rank scores given a decent amount of training data.

6 Threats to validity

We identify the threats that may adversely affect the va-
lidity of the evaluation, and the countermeasures taken to
minimize them.

Threats to internal validity concern the criteria behind the
selection of GitHub topics. As we already mentioned before, a
GitHub’s user can manually insert several numbers of topics.
As this affects the quality of the final results, we considered
only a limited set of featured topics. Another issue is related
to the training phase that employs only README files to
discover topics: They contain usually rough data that might
not properly represent the entire repository’s content. We
mitigate this threat by obtaining a stable number of README
files for each topic, and adding the GuessLang module to
cover programming languages.

Concerning the threats to external validity, there might
be issues with the selected dataset. First, we downloaded the
projects directly from GitHub using the Python API The
platform limits the number of results to 1,000 for each query,
so we were not able to access to the entire knowledge of
the platform. Moreover, the query changes the set of the
retrieved results at each run. Thus, the same query could
retrieve different records into different runs. To avoid this
situation, we imposed the above mentioned quality filter
to cover projects as much as possible, without needing to
execute a query several times.
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Construct validity pertains to the conducted testing phase.
As said, 10% of the README files for each topic are removed
in every testing fold. In this way, we cannot test all possi-
ble permutation that might affect the training phase, as it
requires the storage of a huge amount of data. To the best of
our knowledge, the selected testing configuration is suitable
to assess the approach’s accuracy. Another issue concerns
the chosen metrics to evaluate the approach: the overall pre-
cision considerably decreases due to the aleatory number
of user’s topics. We tackle this issue by setting the Top rank
index to highlight the precision in terms of the first result.

7 Related Work

Orii [18] proposed a collaborative topic regression (CTR)
model based on topics argued directly from the GitHub repos-
itory. The approach combines two different strategies to rec-
ommend a list of repositories given a pair user-repository.
The first step involves a Gaussian model to compute matrix
factorization. Through this strategy, it is possible to extract
the latent vectors given a pre-computed matrix rating. Then,
the approach employs a probabilistic topic modeling to dis-
cover topics from the repositories by analyzing high frequent
terms. Finally, the two strategies were combined to build the
CTR model. A dataset consisting of 120,867 repositories has
been used to evaluate the proposed approach. After a manual
classification of the repositories by examining source code,
a five-fold cross validation was conducted to evaluate the
approach by considering the pairs user-repository that have
at least 3 watches.

SemiTagRec [8] is a semi-supervised approach aiming to
recommend tags for Docker repositories. The tool is com-
posed of four different components, i.e., predictor, extender,
classifier, and integrator. Each of these components combines
the results of the previous one. The predictor discovers an
initial set of tags by using the unsupervised Latent Dirichlet
Allocation (LDA) technique on the input repository. Then,
the extender employs the learned tags to find out similar
tags among the most popular topics provided by GitHub
Repository Library. The third component implies a logistic
regression model to argue new topics. This model is trained
by a dataset manually labeled by the authors. As the model
cannot cover all the topics due to the limited training data,
the integrator aggregates the results obtained to deliver the
final list of Docker tags.

Sharma et al. [22] exploit README files of GitHub projects
to extract descriptive fragments in order to catalog them us-
ing the standard NLP techniques, i.e., tokenization, stop word
removal, and stemming. The categorization has been done
by using LDA-GA, a mature technique that combines Latent
Dirichlet Allocation with Genetic Algorithm to build a topic
model. This step returns a list of words representing the topic
of the repository. A post-processing step was then manually
conducted to remove the wrong terms or merge similar ones
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in terms of granularity. To evaluate the approach, a dataset
composed of 10,000 GitHub repositories having at least 20
stars has been populated, and a user study has been done to
assign a category to each repository. The experimental re-
sults show that the tool reaches an accuracy of 70%, and it is
also capable of discovering new complementary categories.

Alreshedy et al. [3] proposed Source Code Classifier (SCC),
a tool that can classify the language of snippets coming from
StackOverflow posts. SCC uses the described Bayesian net-
work to classify 20 different languages. The tool obtains
75% of precision, recall, and success rate. Our approach par-
tially reuses SCC, which has been published under a free
license. We extend the analysis of the network by considering
README files coming from GitHub to recommend a set of
topics instead of a single programming language class. Thus,
we turn from a standard classification to a multi-classification
problem using part of the same SCC infrastructure, i.e., the
same MNB network and the TF-IDF vectorizer.

Developed for the InformatiCup 2017 competition, Classi-
fyHub [24] attempts to categorize GitHub repositories using
a combination of eight weak classifiers. Each classifier works
on different data, i.e., file extension, README files, commits,
and repository structure. The final aim is to create a robust
classifier using a combination of the weak ones, which per-
form slightly better than random classifiers. All the results of
each classifier are combined to improve the learning phase.
The final outcome of the tool is one of the seven categories
manually defined by the authors. The approach has been
evaluated using ten-fold cross validation over a dataset of
681 GitHub repositories. The results show that the combi-
nation of the weak classifier yields a precision and recall of
60%.

Sally [25] is a technique for automatic tagging of Maven-
based software projects. The tool extracts identifiers and
variables directly from bytecode. A filter is applied on the
identifiers to produce primary and secondary tags for the an-
alyzed projects. Primary tags are related to the project itself
without considering dependencies, while secondary ones
consider also dependencies. Moreover, Sally is able to build a
dependency graph of the whole project by using the DepFind
technique.!' As the final output, Sally produces tag cloud to
represent all the tags related to the project. This represents a
visual hint for the user, as in the cloud the tags are classified
by dimensions: the size is proportional related to the rele-
vance for the project. The approach has been evaluated with
the two most online tools for browsing dependencies in Java
projects: SourceForge and MVNRepository. The experimen-
tal results demonstrate that Sally outperforms two existing
approaches as it does not require additional information as
categories or pom.xml files. The second experiment exploits
MUDABIue [10] as baseline. A user study was conducted to
evaluate the performance of both approaches. Also in this

Mhttp://depfind.sourceforge.net/
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evaluation, Sally obtains a better performance compared to
that of MUDABIlue with respect to the expressiveness and
completeness of the categorization task.

8 Conclusions

In this work, we have presented a novel approach to rec-
ommend a set of featured topics given a software project
endowed with a corresponding README file. The tool is
based on a probabilistic machine learning network, the Naive
Bayesian classifier. We encode the relevant information about
repositories using the TF-IDF weight scheme. After the train-
ing phase, the approach provides the user with a list of fea-
tured topics related to its project. We evaluated the approach
using cross-fold validation.

As future work, we plan to extend the analysis to source
code of GitHub repositories to have more precise results
in terms of accuracy. Moreover, we are going to integrate a
reliable item-based collaborative filtering technique, with the
aim of extending the final recommendation list. In particular,
we attempt to solve the cold-start problem by using the MNB
network to discover an initial set of topics. It is our firm belief
that a combination of these two complementary techniques
will facilitate a better prediction.
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