)

Check for
Updates

TopFilter: An Approach to Recommend Relevant GitHub Topics

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei
Universita degli studi dell’Aquila, Via Vetoio 2, 67100 — L’Aquila, Italy
{juri.dirocco,davide.diruscio,phuong.nguyen}@univagq.it,{claudio.disipio, riccardo.rubei}@graduate.univaq.it

ABSTRACT

Background: In the context of software development, GitHub has
been at the forefront of platforms to store, analyze and maintain
a large number of software repositories. Topics have been intro-
duced by GitHub as an effective method to annotate stored reposi-
tories. However, labeling GitHub repositories should be carefully
conducted to avoid adverse effects on project popularity and reach-
ability. Aims: We present TopFilter, a novel approach to assist open
source software developers in selecting suitable topics for GitHub
repositories being created. Method: We built a project-topic matrix
and applied a syntactic-based similarity function to recommend
missing topics by representing repositories and related topics in a
graph. The ten-fold cross-validation methodology has been used to
assess the performance of TopFilter by considering different met-
rics, i.e., success rate, precision, recall, and catalog coverage. Result:
The results show that TopFilter recommends good topics depending
on different factors, i.e., collaborative filtering settings, considered
datasets, and pre-processing activities. Moreover, TopFilter can be
combined with a state-of-the-art topic recommender system (i.e.,
MNB network) to improve the overall prediction performance. Con-
clusion: Our results confirm that collaborative filtering techniques
can successfully be used to provide relevant topics for GitHub
repositories. Moreover, TopFilter can gain a significant boost in
prediction performances by employing the outcomes obtained by
the MNB network as its initial set of topics.

CCS CONCEPTS

« Software and its engineering — Search-based software engi-
neering; « Computing methodologies — Cross-validation; « In-
formation systems — Retrieval effectiveness.

KEYWORDS

Recommender systems, GitHub topics recommendation, Collabora-
tive filtering

ACM Reference Format:

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo
Rubei. 2020. TopFilter: An Approach to Recommend Relevant GitHub Topics.
In ESEM °20: ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) (ESEM ’20), October 89, 2020, Bari,
Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3382494.
3410690

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEM °20, October 8-9, 2020, Bari, Italy

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7580-1/20/10...$15.00
https://doi.org/10.1145/3382494.3410690

1 INTRODUCTION

In recent years, the software developer community has intensively
exploited open source repositories during their daily activities.
GitHub has become one of the most popular platforms that ag-
gregate these projects and support collaborative development ac-
tivities [5]. GitHub recently introduced the possibility to tag repos-
itories employing topics' intending to foster the popularity and
promote information discovery about available projects.? Topics
are terms used to characterize repositories and to facilitate their
discoverability from software developers who are searching for
existing projects providing them with some reusable features.

Assigning repositories with wrong topics can compromise their
popularity and reachability. To deal with such problems, in 2017
GitHub introduced a mechanism named Repo-Topix to suggest
topics by relying on various information retrieval techniques [9].
To improve Repo-Topix and to explore additional recommendation
strategies, in our recent work (named MNBN hereafter) [8], we
proposed a Multinomial Naive Bayesian network to recommend
relevant topics starting from the README file(s) of the repository
of interest. However, such a tool can recommend only featured
topics, i.e., a set of topics, which are curated by GitHub.?

In this paper, we propose TopFilter, a recommender system that
extends the recommendation capabilities of the MNBN approach
to non-featured topics by exploiting a collaborative filtering tech-
nique, which is widely used in the recommender system domain
[21]. Given an initial set of topics already assigned to the GitHub
repository of interest, we encode it in a graph-based structure to
represent the mutual relationships between repositories and topics.
From this, a project-topic matrix is created by following the typical
user-item structure used in existing collaborative filtering applica-
tions. Then, we compute a similarity function based on featured
vectors to recommend the most similar topics.

We evaluate TopFilter’s prediction performances by changing
different parameters. Moreover, as a direct comparison between
TopFilter and MNBN is not possible due to their internal construc-
tion, we used a well-defined set of metrics used in the literature to
evaluate them by considering different datasets. More importantly,
we showed that by augmenting MNBN with TopFilter, we are able
to provide more relevant topics. In this sense, we substantially
improve the performance of the original MNBN approach.

The contributions of this paper are as follows:

e By considering GitHub topics as a product to recommend,
we improve repositories’ popularity by suggesting a list of
relevant topics;

Lhttps://help.github.com/en/github/administering-a-repository/classifying- your-
repository-with-topics

?Hereafter the terms GitHub “projects” and “repositories” are used interchangeably.
Shttps://github.com/topics

https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1145/3382494.3410690
https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics
https://help.github.com/en/github/administering-a-repository/classifying-your-repository-with-topics
https://github.com/topics
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3382494.3410690&domain=pdf&date_stamp=2020-10-23

ESEM 20, October 8-9, 2020, Bari, Italy

e We assess the quality of the work employing a well-defined
set of metrics commonly used in the recommendation system
domain, i.e., success rate, accuracy, and catalog coverage;

e Considering a well-founded approach, we improve it by rec-
ommending an extended set of topics.

The paper is structured into the following sections. Section 2
presents the context of this work by means of a motivating example.
In Section 3, we introduce the TopFilter approach, with its eval-
uation being presented in Section 4. Section 5 discusses relevant
findings, and the related threats to validity are discussed in Section
6. Related work is summarized in Section 7. Finally, we conclude
the paper and discuss future work in Section 8.

2 MOTIVATION AND BACKGROUND

GitHub is one of the most used development services that includes
version control systems (i.e., git) plus social and collaborative fea-
tures (e.g., bug tracking, contribution requests, task management,
and wikis). At the time of writing this paper, GitHub counts more
than 40 million users and over 100 million repositories. Because of
this enormous amount of data, the availability of reusable projects
might be compromised if they cannot be suitably discovered. In
recent years, GitHub introduced a mechanism based on topics to
explore repositories. The managed GitHub repositories are being
continuously monitored and assigned with topics to improve their
organization. Moreover, repositories are periodically analyzed to
extract the most popular and active topics (i.e., featured topics®).
Thus, users can observe the community’s trend by consulting such
a public list. In the beginning, this activity was entirely done by hu-
mans (i.e., project contributors) who label the repository according
to their knowledge, feeling and belief. In the literature, there are a
plenty of approaches that mine and exploit available data to analyze
repositories. Nevertheless, a few of them cope with the topic recom-
mendation task, which can be crucial in the project’s development
initial phase. Figure 1 shows an explanatory repository with related
topics. By this simple snapshot, a GitHub user can figure out that
the SpaceshipGenerator® repository makes use of Blender-scripts
(i.e., a python 3d modeling library) for procedural-generation of 3d
spaceships from a random seed.

As previously mentioned, the MNBN approach takes as input
README file(s) of a given repository to recommend the related
featured topics, which can be assigned to it. To conceive MNBN [8],
we have adopted standard techniques employed in the ML domain,
i.e., textual engineering, feature extraction, and training phase. By
relying on the multinomial probability distribution, the approach
can extract relevant information from README file(s) and suggest
a set of topics. Table 1 shows an example of the outcomes obtained
by MNBN given the list of the actual repository topics.

Though MNBN works in practice, it suffers some limitations.
First, the underlying model can recommend only featured topics
that represent only a small set of all possible terms that can be po-
tentially assigned to the analysed repository. For instance, blender-
scripts® as well as game-development (which are not featured topics)

“https://github.com/topics

Shttps://github.com/alstudmuffin/SpaceshipGenerator

®blender is the most used python library to manipulate 3d objects. https://www.blender.
org/

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei

Table 1: Example of the MNBN outcomes for the Spaceship-
Generator repository.

Actual Topics Recommended topics
python, blender-scripts, space- | shell, terminal, 3d, opengl,
ship, procedural-generation, | python

game-development, 3d

could be recommended as possible topics because the project in-
cludes both 3d and python topics. Thus, MNBN does not express
all the concepts covered by a GitHub repository. As shown in the
table, only two of the predicted topics match with the real ones.
Moreover, in the case the repository already includes all suggested
topics, MNBN is not able to recommend new ones. The second
major limitation is the underlying structure needed for the training
phase. MNBN requires a balanced dataset to deliver relevant items,
i.e., each topic must have a similar number of README files. It is
indeed challenging to satisfy such a constraint in practice, as topics
are generally heterogeneous. Furthermore, repositories in GitHub
are regularly updated with new topics, and thus, the training phase
must take place several times to avoid outdated recommendations.

In recent years, many techniques have been conceived to predict
users’ interests by relying on the preferences collected from other
users. Such techniques can be classified as content-based [17] where
the relationships among items have been exploited to predict the
most similar items, or collaborative-filtering [14] that calculates the
missing ratings by taking into account the set of items rated by sim-
ilar customers. There are two main types of collaborative-filtering
recommendation: user-based [23] and item-based [20] techniques.
The former computes missing ratings by considering the ratings
collected from similar users, whereas, the latter performs the same
task by using the similarities among items [6].

In the following section, we show that the proposed approach
can recommend missing topics for GitHub repositories. Moreover,
we also demonstrate that it is possible to increase the accuracy of
MNBN by combining it with the proposed technique.

3 PROPOSED APPROACH

This section describes TopFilter, a recommender system that models
the relationships among OSS projects using a graph representa-
tion, and exploits a collaborative filtering technique [21] to rec-
ommend relevant GitHub topics for the repository under develop-
ment. Collaborative filtering techniques have been conceived in
the e-commerce domain to recommend products [13], based on the
assumption that “if users agree about the quality or relevance of some
items, then they will likely agree about other items” [21]. TopFilter
works following the same line of reasoning to mine GitHub topics:
“if projects have some tags in common, then they will probably contain
other relevant tags” [15].

In the following subsections, we describe two TopFilter config-
urations to recommend relevant topics by incorporating different
types of input data. The first configuration exploits a collaborative-
filtering technique, while the second one is a combination of both
MNBN and TopkFilter, aiming to improve the prediction performance
of the original MNBN approach [8].

https://github.com/topics
https://github.com/a1studmuffin/SpaceshipGenerator
https://www.blender.org/
https://www.blender.org/

TopFilter: An Approach to Recommend Relevant GitHub Topics

alstudmuffin / SpaceshipGenerator

ESEM 20, October 8-9, 2020, Bari, Italy

® Watch~ 225 Star | 5.5k Y¥Fork 293

<> Code Issues 3 Pull requests 2 Actions Projects 0 Wiki Security 0 Insights
A Blender script to pracedurally generate 3D spaceships
python blender-scripts spaceship procedural-generation game-development 3d

Figure 1: A GitHub repository with different topics.

3.1 Recommending topics using a
collaborative-filtering technique

Figure 2 depicts the architecture conceived to realize the TopFilter
prototype. First, the Data Encoder component encodes GitHub
repositories in a graph-based representation, and then Similarity
Calculator computes similarities among all the managed projects.
The Recommendation Engine component implements a collabora-
tive-filtering technique to generate a ranked list of top-N topics
which is eventually suggested to the developer to complement
an initial list of topics given as input. We explain in detail the
functionalities of each component as follows.

Similarity calculator

Github projects Data Encoder

- —
- —
. — Ve _ﬁ
Input topics L J
R .
< = F dation
= engine
Repository Recomn_'uended
contributors topics

Figure 2: Overview of the TopFilter architecture.

3.1.1 Data Encoder. The mutual relationships among GitHub repos-
itories and topics are encoded using a project-topic matrix [20]: Each
row represents a project, and each column corresponds to a topic.
In this sense, a cell in the matrix is set to 1 if the project in the
corresponding row is tagged with the topic in the corresponding
column, otherwise the cell is set to 0.

To build the project-topic matrix, raw topics are first pre-process-
ed using various Natural Language Processing (NLP) techniques,
such as stemming, lemmatization, and stop words removal. This
aims to remove possible syntactical duplicated terms, e.g., document
and documents, which are frequent in GitHub. Afterwards, the final
matrix is constructed by means of the topics obtained through the
pre-processing phase.

For explanatory purposes, we consider a set of four projects
P = {p1, p2, p3, p4} together with a set of topics L = {#; = machine-
learning; ty = javascript; t3 = database; t4 = web; t5 = algorithm, ts =
algorithms}. Moreover, the project-topic inclusion relationships is
denoted as 3. By parsing the projects, we discover the following
inclusions:p1 S 11,12, le; P2 2 L1, 13;p3 D L1, 13,14, 15; P4 D 11, E2, 14, 5.
After the NLP normalization steps, the topics t5 and #s collapse on

the same term which is named as t5. The final project-topic matrix
is shown in Table 2.

Table 2: The project-topic matrix for the example.

51 to 13 ta ts
P1 1 1 0 0 1
P2 1 0 1 0 0
P3 1 0 1 1 1
P4 1 1 0 0 1

3.1.2 Similarity Calculator. This component relies on the previ-
ously encoded data to assess the similarity of given repositories. For
explanatory reasons, we represent a set of projects and their topics
in a graph, so as to calculate the similarities among the projects.
For instance, Figure 3 depicts the graph-based representation of the
project-topic matrix in Table 2. Two nodes in a graph are considered
to be similar if they share the same neighbours by considering their
edges. Such a technique has been successfully exploited by many
studies to do the same task [4] in different domains.

Figure 3: Graph representation for projects and topics.

Considering a project p that has a set of neighbor nodes (t1, t2,..,
t;), the features of p are represented by a vector ¢ = (41, ¢2, .., 1),
with ¢; being the weight of node #; computed as the term-frequency
inverse document frequency function as follows: ¢; = f;, x log(|P| x
a;l_l), where f;, is the number of occurrences of t; with respect to
p, it can be either 0 and 1. |P| is the total number of considered
projects; ay; is the number of projects connecting to t; via corre-
sponding edges. Intuitively, the similarity between two projects p
and g with their corresponding feature vectors ¢ = {¢;};=y_; and
® = {wj}j=1,.,m is computed as the cosine of the angle between
the two vectors as given below.

Z?;l Pt X ¢
VEI (902 x {2 (00)?

where n is the cardinality of the union of topics by p and q.

(1)

sim(p,q) =

ESEM 20, October 8-9, 2020, Bari, Italy

3.1.3 Recommendation Engine. Given an input project p, and an
initial set of related topics decided by the developer, the inclusion of
additional topics can be predicted from the projects that are similar
to p. In other words, TopFilter predicts topics’ presence by means of
those collected from the top-k similar projects using the following
formula [15]:

qutopsim(p) (rge —7q) - sim(p,q)
qutapsim(p) sim(p, q)

rp,t = rp +

@)

where 7, and 74 are the mean of the ratings of p and g, respectively;
q belongs to the set of top-k most similar projects to p, denoted
as topsim(p); sim(p, q) is the similarity between the active project
and a similar project g, and it is computed using Equation 1.

3.2 Combined use of MNBN and TopFilter

As already mentioned in Section 2, though MNBN works in prac-
tice, it suffers from some limitations. First, it can recommend only
featured topics which account for a small fraction of all possible
terms. Second, given that a repository already includes all suggested
topics, MNBN is not able to recommend new ones. Moreover, the
tool requires a balanced dataset, i.e., each topic must have a similar
number of README files, and this is hard to come by in practice
as topics are generally heterogeneous. With TopFilter, we attempt
to improve MNBN by combining it with the collaborative-filtering
technique presented in Section 3.1. The set of featured topics pre-
dicted by the MNBN model is used as input to feed TopFilter, which
then runs the filtering process to deduce the inclusion of new topics.

README fil Topics I 5 z :I'nplcs f =
iles (o) 1 T 1.
@ » > o4 >® >]

GitHub MNBN TopFilter A Topics

|

Figure 4: Overview of the combined approach.

Figure 4 depicts an overview of the combined use of MNBN
and TopkFilter: a list of featured topics computed by MNBN using
README files is fed as input for TopFilter, which computes a list
or ranked topics, including also non-featured ones. Finally, a list
is generated by combining the topics computed by TopFilter with
the top-N featured ones computed by MNBN, and recommended to
developers.

We assume that TopFilter is beneficial in the following aspects:

e It is able to recommend non-featured topics, which are se-
lected from similar repositories, independently from their
nature;

o TopFilter recommends topics by iterating over refining steps:
once we select some topics from the recommended ones,
TopkFilter can discover new topics using the selected ones as
new input;

e MNBN does not provide additional recommendations given
that the suggested topics are already included. As discussed
in Section 5.1, TopFilter considerably improves the perfor-
mance when more topics are incorporated as input.

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei

In the following sections, we introduce the experiments con-
ducted to evaluate the performance of TopFilter and its combined
use with MNBN by means of different evaluation metrics.

4 EVALUATION MATERIALS AND METHODS

In this section, we report on the evaluation process conducted to
study the performance of TopFilter. Section 4.1 presents the re-
search questions we want to answer by means of the performed
experiments. Section 4.2 gives an informative description of the
datasets exploited in the evaluation. Section 4.3 and Section 4.4 de-
scribe the evaluation metrics and process, respectively. To facilitate
future research, we made available the TopFilter tool together with
the related data in a GitHub repository.’

4.1 Research Questions

The following research questions are addressed to study the perfor-
mance of the proposed approach:

® RQ1: Which TopFilter configuration yields the best perfor-
mance? We investigate different configurations of TopFilter
i.e., the number of input topics as well as the number of
neighbour projects is varied, to find the best configuration.

® RQo: To what extent can the accuracy of MNBN be improved
by means of TopFilter? We are interested in understanding if
our proposed approach can be used to improve the accuracy
of the original MNBN.

4.2 Data Extraction

To study our proposed approach, we reused the same dataset em-
ployed to evaluate MNBN which was already made available online
in a replication package.® In particular, to investigate TopFilter’s
prediction performances, we populated five different datasets start-
ing from the original MNBN corpus by varying the cut-off value
t [8], i.e., the maximum frequency of the topic distribution (it is de-
tailed in Section 4.4). In this way, we removed infrequent elements
from the dataset to analyze their impacts on the overall recom-
mendation phase. We firstly filtered the initial set of topics using
their frequencies counted on the entire GitHub dataset. Afterwards,
we removed irrelevant topics to reduce probable noise during the
prediction phase.

We developed a filter by means of tailored Python scripts and ap-
plied it to the initial dataset. As a GitHub user can manually specify
a topic list for a repository, many of them can contain infrequent
or improper terms, i.e., the name of the author, duplicated values,
or terms that rarely appear, to name a few. On one hand, imposing
such a preprocessing phase reduces the number of repositories to
analyze as well as topics to recommend. On the other hand, we
improve the overall quality of recommendation by removing “bad”
terms. This pruning phase can be done offline and does not affect
the time required for the recommendation process.

Table 3 summarizes the main features of the datasets, i.e., D1,
Ds, D1, D15, and Dy, corresponding to different cut-off values ¢
={1,5,10,15,20}. Avg. topics is the average number of topics that
the repositories include; Avg. freq. topics is the average frequency
of the topics in the dataset.

https://github.com/MDEGroup/TopFilter
8https://github.com/MDEGroup/MNB_TopicRecommendation/

https://github.com/MDEGroup/TopFilter
https://github.com/MDEGroup/MNB_TopicRecommendation/

TopFilter: An Approach to Recommend Relevant GitHub Topics

20000 1

15000 -

forks

10000 * e

5000

0 5000 10000 15000 20000 25000 30000 35000 40000
stars

(a) Dataset D5

20000 1

15000 - .

forks

10000 - .

5000

0 5000 10000 15000 20000 25000 30000 35000 40000
stars

(c) Dataset D5

ESEM 20, October 8-9, 2020, Bari, Italy

20000

15000 -

forks

10000 * e

5000 1

0 5000 10000 15000 20000 25000 30000 35000 40000
stars

(b) Dataset D1g

15000

12500

10000 .

forks

7500 1

5000 1

2500 1

0 5000 10000 15000 20000 25000 30000 35000 40000
stars

(d) Dataset Dy

Figure 5: A summary of the number of forks and stars for the datasets.

Table 3: Datasets.

D Ds D1y | D15 | D2o
Number of repos | 6,253 | 3,884 | 2,897 | 2,273 | 1,806
Number of topics | 15,743| 1,989 | 964 634 456
Avg. topics 9.9 8.4 8.0 7.8 7.7
Avg. freq. topics | 3.9 16.5 241 28.1 30.5

As discussed in Section 5, removing infrequent topics improves
the overall quality of the considered datasets: the collaborative fil-
tering provides better prediction performance when there is enough
data, i.e., topics in the training set. Once infrequent topics have
been removed, all the repositories that contain less then five topics
are filtered out from the dataset, as they contain little information
to enable the collaborative filtering prediction. In particular, we
remove around 2,300 repositories by increasing the cut-off value
from 1 to 5. It means that the excluded repositories in Dataset Ds are
tagged with topics that rarely appear in the considered repositories.
This finding is strengthened by the number of topics, which dra-
matically decreases to 1,989 when t=5. We stop at t=20 and consider
Dataset Dy as the best one according to our metrics. Additionally,
we observe that repositories are tagged by 9.9 and 7.7 topics on

average for ¢t = 1 and t = 20, respectively. This demonstrates that a
large number of topics are not beneficial to the discoverability of a
project.

From the list of projects under analysis, we exploited the GitHub
API to retrieve their number of stars and forks. A summary of the
retrieved data is plotted in Fig. 5. Forking is a means to contribute to
the original repositories, furthermore, there is a strong correlation
between forks and stars [3], as it can be further observed in Fig. 5. A
project with a high number of forks means that it garners attention
from the developers community. A repository with a large number
of forks can be considered as a well-maintained and well-received
project. Whereas, since commits also have an influence on source
code [2], the number of commits is also a good indicator of how a
project has been developed. As can be seen, most of the repositories
possess a number of stars and forks less than 5,000. A small fraction
of them have more than 30,000 forks and 10,000 stars. In this respect,
we see that the datasets exhibit a wide variety of quality in terms
of the number of forks and stars.

4.3 Metrics

In the scope of this paper, success rate accuracy, and catalog coverage
are used to study the TopFilter performance as they have been

ESEM 20, October 8-9, 2020, Bari, Italy

Data preparation

Recommendation production

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei

Outcome Evaluation

GT topics

Split topics

Data collection

Split ten-fold

Testing data

MNBN+TopFilter

Figure 6: Evaluation Process.

widely exploited by related research [19]. First, we introduce the
following notations as a base for further presentation:
o tis the frequency cut-off value of input topics, i.e., all topics
that occur less than t times are removed from the dataset;
e 7 is the number of topics that TopFilter takes as input;
e N is the cut-off value for the recommended ranked list of
topic;
e k corresponds to the number of top-similar neighbor projects
TopFilter considers to predict suggested topics;
o GT(p)is defined as a half of the extracted topics for a testing
project p using as ground-truth data;
e RECN(p) is the top-N suggested topics sorted in a descend-
ing order;
e a recommended topic rt to a repository p is marked as a
match if rt € REC(p);
o matchn (p) is the set of items in RECn (p) that match with
those in GT(p) for repository p.
o T is the set of all the available topics.
By means of the notations, the success rate, accuracy and coverage
metrics are defined as follows.

Success rate@N. Given a set of testing projects P, success rate is
defined as the ratio of queries that have at least a matched topic
among the total number of queries.

countyep(Imatchy(p)| > 0)
|P|

®)

success rate@N =

Accuracy. Given a list of top-N libraries, precision and recall are
utilized to measure the accuracy of the recommendation results. In
particular, precision is the ratio of the top-N recommended topics
found in the ground-truth data, whereas recall is the ratio of the
ground-truth topics belonging to the N recommended items [7]:

Imatchy (p)| |matchy (p)|
N W recall@N = w ()

Catalog coverage. Given the set of projects, we compare the num-
ber of recommended topics with the global number of the available

ones. This metric measures the suitability of the delivered topics
considering all the possible set of values.

precision@N =

|UpepRECN (p)]

T (6)

coverage@N =

4.4 Evaluation process

The ten-fold cross-validation technique [11] has been used to assess
the performance of TopFilter and its combined use with MNBN.
Figure 6 depicts the evaluation process consisting of three con-
secutive steps, i.e., Data Preparation, Recommendation Production,
and Outcome Evaluation, which going to be explained as follows.

Data Preparation. This phase is conducted to collect reposito-
ries that match the requirements defined in previous section from
GitHub during the Data collection step. The dataset is then split
into a training and testing set, i.e., Split ten-fold. Due to the
different nature of the recommender systems (i.e., MNBN requires
README files as input and training data, whereas TopFilter uses a
set of assigned topics as input and for training) testing and train-
ing data needs to be specifically prepared for each approach. The
Split topic activity resembles a real development process where
a developer has already included some topics in the repository, i.e.,
Query topics and waits for recommendations.

Recommendation production. To enable the evaluation of Top-
Filter, we extracted a portion of topics from a given testing project,
i.e., the ground-truth part. The remaining part is used as a query to
produce recommendations. Since MNBN uses only README file(s)
to predict a set of topics, it does not require any topics as input. The
approach parses and encodes text files in vectors using the TF-IDF
weighting scheme. Finally, the combined approach uses TopFilter
as the recommendation engine which is fed by topics generated
by MNBN. In this respect, both Testing data and Training set boxes
are simplified to provide the needed data, i.e., README files and
assigned topics to the recommender systems.

Outcome Evaluation. It is worth noting that we cannot directly
compare TopFilter with MNBN since they rely on different input
data. To be concrete, TopFilter is a supervised learning system that
requires an initial set of assigned topics for the training, whereas
MNBN is unsupervised learning and it uses only information mined
from README files to recommend, without making use of any
topics as input. Thus, we evaluate the performance of TopFilter
by analyzing the recommendation results that are compared with
those stored as ground-truth data to compute the quality metrics
(i.e., Success rate, Precision, Recall, and Catalog coverage). The same
metrics are used to evaluate the performance of the combined use
of TopFilter and MNBN.

TopFilter: An Approach to Recommend Relevant GitHub Topics

ESEM 20, October 8-9, 2020, Bari, Italy

0.9 0.9
D1 D5#D ;0" D15 Dag D D3 D1 D15 Dy
0.85 0.85 — . R
0.8 0.8 s B
0.75 - i e 0.75 — = ! g
0.7 222 0.7 = = :
0.65 828 z 2 2 0.65] 2
0.6 - 0.6
0.5 = (0.55
0.5 N . , ‘ 0.5 - = ‘ :
5 10 15 20 2 5 10 15 20 2

Number of neighbours (k)
(a) N=5

Number of neighbours (k)

(b) N=10

Figure 7: Success rate with 5 and 10 input topics.

5 EXPERIMENTAL RESULTS

This section analyzes the performance of TopFilter as well as the
combination of MNBN with TopFilter by addressing the two re-
search questions in Section 5.1 and Section 5.2, respectively.

5.1 RQ;: Which TopFilter configuration yields
the best performance?

As presented in Section 4, given a testing project p, a certain num-
ber of topics is used as input, i.e., 7, and the remaining ones are
saved as ground truth data, i.e., GT(p). To find the configuration
obtaining the best prediction performances, we experimented by
varying the available parameters, i.e., the number of top-similar
neighbour projects k, the number of recommended items N. To be
more concrete, we chose two different values of N, i.e., N = {5,10},
and five values of k, i.e., k = {5, 10, 15, 20, 25}. Furthermore, we also
considered all the five datasets defined in Section 4.2, i.e., D1, Ds,
D19, Dis, and Dyg. The value of 7 is always considered as half of the
number of topics already assigned to the project under analysis. In
particular, given a testing project, the first half of the related topics
are used to construct the query. The average success rates obtained
by running the ten-fold cross-validation technique with TopFilter
are depicted in Fig. 7(a) and Fig. 7(b).

Overall, it is evident that infrequent topics negatively affect
the prediction outcomes. With Dy, i.e., all projects are considered,
TopkFilter obtains a low success rate by both configurations N=5 and
N=10, compared to the results of other cut-off values t. For instance,
with k=5, TopFilter gets 0.54 as success rate for D1, meanwhile it
gets 0.62 as success rate for Ds and D19, and 0.63 for D15 and Day.
The same trend can also be witnessed with other values of k, i.e.,
k = {10, 15, 20, 25}: TopFilter achieves a better performance when
we consider a dataset with more topics for each project. This is
understandable since TopFilter relies on the availability of training
data to function: the more topics it has, the better it can compute
the similarities among projects (cf. Fig. 3 and Eq. 1), and thus it is
able to find more relevant topics (cf. Eq. 2). Similarly, for N=10, i.e.,
we consider a longer list of recommendations, TopFilter obtains a
better success rate when more detailed training data is exploited.

Next, we examine the influence of the number of neighbors k
on the prediction performance. For N=5, from Fig. 7(a) it is clear
that incorporating more neighbor projects for recommendation

helps improve the performance considerably. Take as an exam-
ple, for k=10 the best success rate is 0.69 obtained for Dy, and
the corresponding score achieved with k=25 is 0.73 for Dy. For
N=10, we see a clear gain in performance when more neighbors
are considered for the computation of recommendations. The best
obtained success rate is 0.83 when k=25 for Dyj. As a whole, we
conclude that increasing the number of neighbors used for comput-
ing missing ratings in the project-topic matrix is beneficial to the
final recommendations. On the other hand, this also increases the
computational complexity as comprehended in Eq. 2. Therefore, it
is necessary to maintain a trade-off between accuracy and efficiency
when deploying TopFilter by choosing a suitable value of k.

D1 D5 - D10 = D15 +~ D20

Precision
o
w

©
>

o
o

0.1 0.2 0.3 0.4
Recall

Figure 8: Precision/recall curves.

To further study TopFilter’s performance, we computed and
depicted in Fig. 8 the precision/recall curves (PRCs) for all the con-
sidered datasets. For this setting, the number of recommended items
N was varied from 1 to 20, aiming to study the performance for
a long recommendation list. Each dot in a curve corresponds to
precision and recall obtained for a specific value of N. Furthermore,
we fixed k=25 since this number of neighbors brings the best predic-
tion outcomes among others, while it still maintains a reasonable
execution time. As a PRC close to the upper right corner represents
a better precision/call [15], Fig. 8 demonstrates that by considering
a dataset with more topics for each repository, TopFilter yields a
better prediction performance. In particular, the worst precision/re-
call relationship is seen by Dy, while the best one is obtained by
Dgyg. Overall, these results are consistent with those presented in

ESEM 20, October 8-9, 2020, Bari, Italy

Fig. 7(a) and Fig. 7(b): using projects consisting of more input topics
helps TopFilter enhance its performance substantially.

We investigate if TopFilter can recommend a wide range of
topics to repositories by considering catalog coverage. The metric
measures the percentage of recommended topic in the training
data that the model is able to suggest to a test set, and a higher
value corresponds to a better coverage. Table 4 reports the average
coverage value for the datasets, i.e., D1, Ds, D1g, D15, D2g.

Table 4: Catalog Coverage.

N D, Ds Dy Dis Dy

2 2.313 1.433 1.075 0.886 0.715
4 3.925 2.362 1.753 1.440 1.143
6 5.494 3.232 2.346 1.858 1.478
8 7.075 4.035 2.835 2.185 1.737
10 8.720 4.788 3.239 2.458 1.920
12 10.385 5.472 3.615 2.702 2.082
14 12.073 6.120 3.934 2915 2.223
16 13.872 6.729 4.216 3.088 2.339
18 15.753 7.252 4.475 3.244 2.442
20 17.746 7.770 4.699 3.369 2.521

From the table, we see that by considering a longer list of items,
i.e., increasing N, a better coverage is gained. Furthermore, using a
higher cut-off value t has a negative impact on the global catalog
coverage. For instance, with D; and N=2, we obtain 2.313 as cover-
age, and this score gradually decreases along ¢, and shrinks to 0.715
with Dyg. Similarly, by other values of N, catalog coverage is large
for a low t and small for a high t. This can be explained as follows:
setting a high value of t means that a large amount of training data
is discarded, and thus removing also topics. Altogether, we see that
using a denser dataset for training, i.e., projects with more topics,
is beneficial to success rate, accuracy, but not to catalog coverage.

0.75

Issuccess rate@5msuccess rate@10]
0.7]
6 0.66

065 063 0.65 0.66

0.6) L

= . O

0.55 0.5 0.54]

0.5 0.48
0.45}0.44]

0.4 ’—‘

Number of input topics

Figure 9: Success rates for 7={1,2,3,4,5} on Dy.

We are also interested to understanding how 7 impacts on the
prediction performance by performing a cross validation with
={1,2,3,4,5}. Moreover, to simplify the evaluation, we fixed the
number neighbors k to 25 and the number of topics ¢ to 20 and
applied TopFilter on the dataset Dyg. Figure 9 reports the average
success rate obtained for two values of N, i.e., N={5, 10}. The fig-
ure demonstrates an evident outcome: by using more input topics
as input data, we get a better prediction performance. Take as an
example, for 7=1, we get a success rate of 0.44 and 0.61 for N=5
and N=10, respectively. When we use 5 topics to feed TopFilter,
the corresponding success rate is 0.56 and 0.66 for N=5 and N=10,
respectively. This happens due to the fact that by considering more

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei

input topics, TopFilter is able to better determine the similarity
between the testing project and those in the training data, as shown
in Eq. 2, which eventually allows it to mine more relevant topics.

Answer to RQ;. Given a project, TopFilter achieves a better
success rate and accuracy when more similar projects are con-
sidered for recommendation. A higher cut-off value ¢ negatively
impacts on the coverage; and using more topics as input data
helps the system improve its performance.

5.2 RQ,: To what extent can the accuracy of
MNBN be improved by means of TopFilter?

As already reasoned in Section 4.4, it is not feasible to directly com-
pare TopFilter with MNBN, as they are based on different recom-
mendation mechanisms. TopFilter relies on a supervised learning
technique, requiring an initial set of assigned topics for the training.
Meanwhile, MNBN works on the basis of an unsupervised learn-
ing system, which needs only data mined from README files to
recommend, without being fed with any input topics.

In this research question, we aim to show that combining MNBN
with TopFilter (referred with MNBN+TopFilter hereafter) helps boost
up the recommendation outcomes provided by MNBN. In particular,
we run TopFilter on the outputs produced by MNBN, attempting to
generate a more relevant list of items.

We conducted experiments on two of the selected datasets, i.e.,
D; and Dy, as they correspond to two distinct levels of data com-
pleteness: D1 has more projects but with a lower quality, while
D3y has fewer data but with a higher quality. In the experiment, ¢
was set to 5 since through RQ;, we realized that this value fosters
the best performance, among others (see Fig. 9). The success rate,
precision, recall and coverage scores obtained for D1 and Dy are
reported in Table 5 and Table 6, respectively.

The results in Table 5 demonstrate that compared to TopFilter,
MNBN obtains a better prediction performance in terms of success
rate, recall and precision for a ranked list with a low number of
items, i.e., N < 4. In particular, with N=2, MNBN gets 0.240 as
success rate, while the corresponding score by MNBN+TopFilter
is 0.148. The same trend can be seen with recall and precision.
This is understandable as MNBN relies on only README file(s)
to function, and its performance is not affected by the number
of considered topics. In contrast, TopFilter needs input topics to
provide recommendation, that is the reason why for a dataset with a
low quality dataset (with respect to the number of topics), TopFilter
gets a moderate performance.

Table 5 also shows that the combined use of MNBN and TopFilter
outperforms MNBN when we consider a longer list of recommended
items. To be concrete, starting from N=6 (i.e., the row marked with
gray), all the metrics computed with MNBN+TopFilter are supe-
rior to those computed with MNBN. For example, MNBN+TopFilter
gets 0.675 as the maximum success rate, while the corresponding
score by MNBN is 0.662. More importantly, MNBN+TopFilter always
achieves a much better coverage than that of MNBN: By the best
configuration, MNBN+TopFilter reaches a coverage of 3.544, which
is much higher than 0.768 obtained by MNBN. In other words, our
proposed approach is able to recommend a wider range of topics
than MNBN. This can be explained by the fact that TopFilter takes

TopFilter: An Approach to Recommend Relevant GitHub Topics

ESEM 20, October 8-9, 2020, Bari, Italy

Table 5: Comparison between MNBN and MNBN+TopFilter using Dataset D;.

Success rate Recall Precision Catalog coverage
N | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter
2 0.240 0.148 0.026 0.017 0.137 0.077 0.175 0.411
4 0.383 0.287 0.042 0.035 0.123 0.081 0.314 0.617
6 0.441 0.449 0.049 0.064 0.104 0.098 0.398 0.919
8 0.499 0.531 0.055 0.085 0.093 0.098 0.474 1.272
10 0.550 0.572 0.061 0.100 0.087 0.092 0.557 1.626
12 0.584 0.603 0.066 0.111 0.081 0.086 0.620 2.008
14 0.601 0.624 0.067 0.120 0.074 0.080 0.658 2.431
16 0.616 0.643 0.068 0.128 0.067 0.074 0.687 2.825
18 0.632 0.660 0.069 0.136 0.062 0.070 0.718 3.169
20 0.662 0.675 0.073 0.143 0.060 0.066 0.768 3.544
Table 6: Comparison between MNBN and MNBN+TopFilter using Dataset Dy.
Success rate Recall Precision Catalog coverage
N | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter | MNBN | MNBN+TopFilter
2 0.363 0.217 0.035 0.031 0.206 0.118 0.263 0.249
4 0.600 0.389 0.075 0.063 0.221 0.119 0.562 0.444
6 0.635 0.601 0.094 0.121 0.187 0.153 0.715 0.612
8 0.680 0.704 0.106 0.171 0.159 0.162 0.810 0.848
10 0.701 0.754 0.116 0.204 0.140 0.156 0.890 1.022
12 0.719 0.788 0.124 0.230 0.124 0.146 0.950 1.178
14 0.733 0.808 0.130 0.254 0.111 0.138 0.994 1.330
16 0.745 0.829 0.135 0.274 0.101 0.131 1.035 1.463
18 0.759 0.840 0.143 0.290 0.095 0.123 1.090 1.582
20 0.772 0.855 0.150 0.306 0.090 0.117 1.148 1.701

into consideration a set of topics as input, and the more data it has,
the larger the set of topics it can recommend.

By examining Table 6, we encounter a similar outcome compared
to that of Table 5: MNBN+TopFilter outperforms MNBN by all the
quality metrics, i.e., success rate, recall, precision and coverage. Es-
pecially, using D as the training data, MNBN+TopFilter improves
the overall success rate considerably, with respect to using D;. This
further confirms our findings in RQj: A denser dataset facilitates
the capability of recommending a more relevant set of topics.

Answer to RQ;. Compared to MNBN, the combined used of
MNBN and TopFilter substantially improves the prediction per-
formance with respect to success rate, precision and recall.
While MNBN suffers a low catalog coverage, MNBN+TopFilter
is able to recommend a wide range of topics to repositories.

6 THREATS TO VALIDITY

This section discusses the threats that may affect the results of the
evaluation. We also list the countermeasures taken to minimize
these issues.

The internal validity could be compromised by the dataset fea-
tures, i.e., the number of projects for each topic, the number of
results. We tackle this issue by varying the aforementioned pa-
rameters to build datasets with different characteristics. In this
way, several settings have been used to evaluate TopFilter’s overall
performances.

External validity concerns the rationale behind the selection
of the GitHub repositories used in the assessment. As stated in
Section 4, we randomly downloaded repositories by imposing a
quality filter on the number stars. Nevertheless, some repositories
could be tagged with topics that can affect the quality of the graph
computed in the data extraction phase. To be concrete, a user can
label a repository using terms that are not descriptive enough, i.e.,
using infrequent or duplicated terms in the topic list. To deal with
this issue, we applied the topic filter as described in Section 4.2 to
reduce any possible noise during the graph construction phase.

Threats to construction validity are related to the choice of MNBN
as the baseline in the conducted experiments. First, the availability
of the replication package allows us to perform a comprehensive
evaluation. As we claimed before, the two approaches are strongly
different from the construction point of view including the recom-
mendation engine and data extraction components. To make the
comparison as fair as possible, we ran MNBN on the same datasets
by adapting the overall structure for the ten-fold cross-validation
evaluations.

7 RELATED WORK

Immediately after the introduction of topics in the GitHub platform,
the Repo-Topix tool was presented [10]. Such a tool relies on pars-
ing the README files and the textual content of a given GitHub
repository to suggest topics automatically. As a first step, the tool
applies standard NLP techniques on the input artifacts. Then, it
filters an initial set of topics by exploiting the TF-IDF scheme and
a regression model to exclude “bad” topics. As the final step, Repo-
Topix computes a custom version of the Jaccard distance to discover

ESEM 20, October 8-9, 2020, Bari, Italy

additional similar topics. A rough evaluation based on the n-gram
ROUGE-1 metrics has been conducted by counting the number
of overlapping units between the recommended topics and the
repository description. Nevertheless, a replication package with the
complete dataset and the source code of the tool is not available,
and this hampers further investigations and comparisons.

A collaborative topic regression (CTR) model has been proposed
to extract topics from a given GitHub repository [16]. The final aim
is to recommend other similar projects given the input one. For
a pair of user-repository, the approach uses a Gaussian model to
compute matrix factorization and extract the latent vectors given
a pre-computed matrix rating. Additionally, a probabilistic topic
modeling is applied to find topics from the repositories by analyzing
high frequent terms. The approach was evaluated by conducting
five-fold cross-validation on a dataset composed of 120,867 reposi-
tories. Such evaluation considers user-repository pairs that have
at least 3 watches. Differently from TopFilter, this approach can
recommend GitHub repositories that are relevant with respect to
the topics of the input repository.

Lia et al. [12] propose a user-oriented portrait model to recom-
mend a set of GitHub projects that can be of interest for a given user.
An initial set of labels is obtained by running the LDA algorithm
on the textual elements of a repository, i.e., issues, commits, and
pull requests. Then, the approach exploits a project familiarity tech-
nique that relies on the user’s behavior, considering the different
repositories operation. Such a strategy enables the collaborative fil-
tering technique that exploits two kinds of similarity, i.e., attribute
and social similarity. The former takes into account personal user
information such as company, geographical information and the
time when the account has been created. The latter computes simi-
larity scores considering the proportion of items contributed by the
user. The approach was evaluated by considering 80 users with an
average of 1,894 different behaviors for each one. By considering
the first two months of activity in 2016 as a test set, the assessment
shows that the approach improves the performances in terms of
precision, recall, and success rate. Though both TopFilter and the
presented work [12] make use of collaborative-filtering techniques,
the former is designed to recommend topics to be assigned to an
input GitHub repository, whereas the latter recommends GitHub
repositories that can be of interest for a given user.

A model-based fuzzy C-means for collaborative filtering (MFCCF)
has been proposed [1] to recommend relevant human resources
during the GitHub project development. Similarly to our approach,
the proposed model encodes relevant information about reposito-
ries in a graph structure and extracts from it a sparse test sub-graph.
This is a preparatory phase to enable the fuzzy C-means clustering
technique. Using the computed sparse sub-graph as the centre of
the cluster, the model can handle the sparsity issue that generally
arises in the CF domain. Then, MFCCF computes the Pearson Cor-
relation for each pair user-item belonging to a cluster and retrieves
the top-N results. The evaluation was performed using the GHTor-
rent dump to collect the necessary information. Using ten projects
as the testing dataset, the results of MFCCF are compared with the
ones chosen by the human resource department of the considered
company. The results demonstrate the effectiveness of the approach
with an accuracy of 80% on average.

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, Riccardo Rubei

The REPERSP tool [22] recommends GitHub projects by exploit-
ing users’ behaviour. As the first step, the tool computes the similar-
ities between projects using the TF-IDF weighting scheme to obtain
the content similarity matrix. Additionally, REPERSP captures the
developer’s behaviour by considering her activity on GitHub, i.e.,
create, star, and fork actions over projects. A different value is as-
signed for each type of action to create a user-project matrix. Finally,
the tool combines the two similarity matrices to deliver the recom-
mended projects. To assess the quality of the work, REPERSP was
compared with the traditional collaborative filtering techniques,
i.e., user-based and item-based. The study was conducted over two
groups with different users, projects, and purposes. The results
show that the proposed tool outperforms the considered baseline
in terms of accuracy, precision, and recall.

Besides GitHub projects, tags and topics are successfully used in
different contexts, i.e., in social networks. Purushotham et al. [18]
propose a hierarchical Bayesian model that relies on a topic model to
provide final users with relevant items. By combining LDA and ma-
trix factorization techniques, the proposed model is able to reduce
the sparsity problem that typically occurs when the collaborative
filtering is employed. After this preprocessing phase, the hierarchi-
cal Bayesian model is tuned with several parameters to maximize
the prediction performances. The models were evaluated by using
two large real-world datasets tailored for music and bookmark rec-
ommendations. The experimental results show that the proposed
model outperforms the classical CTR model with respect to recall.

8 CONCLUSIONS AND FUTURE WORK

GitHub is nowadays among the most popular platforms to handle
and maintain OSS projects. Topics have been introduced in 2017
to promote projects’ visibility on the platform. In this work, we
presented TopFilter, a collaborative filtering-based recommender
system to suggest GitHub topics. By encoding repositories and
related topics in a graph-based representation, we built a project-
topic matrix and applied a syntactic-based similarity function to
predict missing topics. To assess the prediction performances, we
combined our approach with a well-founded system based on an
ML algorithm, i.e., MNBN. In particular, by taking as input in Top-
Filter, the output produced by MNBN, we showed that by means
of a combined usage of such approaches, it is possible to obtain a
significant boost in topic predictions. Nevertheless, the accuracy
did not reach higher values in all the experimental settings. To our
best knowledge, this depends very much on the similarity function
used in the recommendation engine as well as on the heterogeneity
of the dataset. Thus, we plan to extend TopFilter by adding different
degrees of similarity, e.g., semantic analysis on topics. Moreover, we
can enlarge the evaluation by considering other common metrics
in the collaborative filtering domain such as sales diversity and
novelty. All of this is planned as future work.

ACKNOWLEDGEMENTS
The research described in this paper has been carried out as part of
the CROSSMINER Project, which has received funding from the Eu-

ropean Union’s Horizon 2020 Research and Innovation Programme
under Grant 732223.

TopFilter: An Approach to Recommend Relevant GitHub Topics

REFERENCES

(1]

A

N
fluat

[9

=

[10

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18

[19]

[20

[21

Shohreh Ajoudanian and Maryam Nooraei Abadeh. 2019. Recommending human
resources to project leaders using a collaborative filtering-based recommender
system: Case study of gitHub. IET Software 13, 5 (2019), 379-385. https://doi.
org/10.1049/iet-sen.2018.5261 Conference Name: IET Software.

P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm. 2017. Towards Better
Understanding of Software Quality Evolution through Commit-Impact Analysis.
In 2017 IEEE International Conference on Software Quality, Reliability and Security
(ORS). 251-262. https://doi.org/10.1109/QRS.2017.36

Hudson Borges, André C. Hora, and Marco Tulio Valente. 2016. Understanding
the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society, 334-344. https:
//doi.org/10.1109/ICSME.2016.31

Cristian E. Briguez, Maximiliano C.D. Budan, Cristhian A.D. Deagustini, Ana G.
Maguitman, Marcela Capobianco, and Guillermo R. Simari. 2014. Argument-
based mixed recommenders and their application to movie suggestion. Expert
Systems with Applications 41, 14 (2014), 6467 — 6482. https://doi.org/10.1016/j.
eswa.2014.03.046

V. Cosentino, J. L. C. Izquierdo, and J. Cabot. 2016. Findings from GitHub: Methods,
Datasets and Limitations. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). 137-141.

Paolo Cremonesi, Roberto Turrin, Eugenio Lentini, and Matteo Matteucci. 2008.
An Evaluation Methodology for Collaborative Recommender Systems. In Proceed-
ings of the 2008 International Conference on Automated Solutions for Cross Media
Content and Multi-channel Distribution (AXMEDIS "08). IEEE Computer Society,
Washington, DC, USA, 224-231. https://doi.org/10.1109/AXMEDIS.2008.13
Jesse Davis and Mark Goadrich. 2006. The Relationship Between Precision-Recall
and ROC Curves. In Proceedings of the 23rd International Conference on Machine
Learning (Pittsburgh, Pennsylvania, USA) (ICML '06). ACM, New York, NY, USA,
233-240. https://doi.org/10.1145/1143844.1143874

Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Phuong T. Nguyen. 2020.
A Multinomial Naive Bayesian (MNB) Network to Automatically Recommend
Topics for GitHub Repositories. In Proceedings of the Evaluation and Assessment
in Software Engineering (Trondheim, Norway) (EASE °20). Association for Com-
puting Machinery, New York, NY, USA, 71-80. https://doi.org/10.1145/3383219.
3383227

Ganesan. 2019. Topic Suggestions for Millions of Repositories - The GitHub Blog.
https://github.blog/2017-07-31-topics/

Kavita Ganesan. 2017. Topic Suggestions for Millions of Repositories - The
GitHub Blog. https://github.blog/2017-07-31-topics/

Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In [jcai, Vol. 14. Montreal, Canada, 1137-1145.
Zhifang Liao, Tianhui Song, Yan Wang, Xiaoping Fan, and Yan Zhang. 2018.
User personalized label set extraction algorithm based on LDA and collaborative
filtering in open source software community. In 2018 International Conference
on Computer, Information and Telecommunication Systems (CITS). 1-5. https:
//doi.org/10.1109/CITS.2018.8440167

Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.Com Recommenda-
tions: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7, 1 (Jan.
2003), 76-80. https://doi.org/10.1109/MIC.2003.1167344

Catarina Miranda and Alipio M. Jorge. 2008. Incremental Collaborative Fil-
tering for Binary Ratings. In Proceedings of the 2008 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology - Vol-
ume 01 (WI-IAT °08). IEEE Computer Society, Washington, DC, USA, 389-392.
https://doi.org/10.1109/WIIAT.2008.263

Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
2020. CrossRec: Supporting software developers by recommending third-party
libraries. Journal of Systems and Software 161 (2020), 110460. https://doi.org/10.
1016/j.j55.2019.110460

Naoki Orii. 2012. Collaborative topic modeling for recommending GitHub repos-
itories. Inf. Softw. Technol. 83, 2 (2012), 110-121.

Michael J. Pazzani and Daniel Billsus. 2007. Content-Based Recommendation
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 325-341. https://doi.
org/10.1007/978-3-540-72079-9_10

Sanjay Purushotham and Yan Liu. [n.d.]. Collaborative Topic Regression with
Social Matrix Factorization for Recommendation Systems. ([n. d.]), 8.

Martin Robillard, Robert Walker, and Thomas Zimmermann. 2010. Recommen-
dation Systems for Software Engineering. IEEE Softw. 27, 4 (July 2010), 80-86.
https://doi.org/10.1109/MS.2009.161

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th
International Conference on World Wide Web (Hong Kong, Hong Kong) (WWW
’01). ACM, New York, NY, USA, 285-295. https://doi.org/10.1145/371920.372071
J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. The Adaptive
Web. Springer-Verlag, Berlin, Heidelberg, Chapter Collaborative Filtering Recom-
mender Systems, 291-324. http://dl.acm.org/citation.cfm?id=1768197.1768208

[22] Wenyuan Xu, Xiaobing Sun, Jiajun Hu, and Bin Li. 2017.

[23

ESEM 20, October 8-9, 2020, Bari, Italy

REPERSP: Rec-
ommending Personalized Software Projects on GitHub. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). 648-652.
https://doi.org/10.1109/ICSME.2017.20

Zhi-Dan Zhao and Ming-sheng Shang. 2010. User-Based Collaborative-Filtering
Recommendation Algorithms on Hadoop. In Proceedings of the 2010 Third In-
ternational Conference on Knowledge Discovery and Data Mining (WKDD ’10).
IEEE Computer Society, Washington, DC, USA, 478-481. https://doi.org/10.1109/
WKDD.2010.54

https://doi.org/10.1049/iet-sen.2018.5261
https://doi.org/10.1049/iet-sen.2018.5261
https://doi.org/10.1109/QRS.2017.36
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1016/j.eswa.2014.03.046
https://doi.org/10.1016/j.eswa.2014.03.046
https://doi.org/10.1109/AXMEDIS.2008.13
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1145/3383219.3383227
https://github.blog/2017-07-31-topics/
https://github.blog/2017-07-31-topics/
https://doi.org/10.1109/CITS.2018.8440167
https://doi.org/10.1109/CITS.2018.8440167
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/WIIAT.2008.263
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1109/MS.2009.161
https://doi.org/10.1145/371920.372071
http://dl.acm.org/citation.cfm?id=1768197.1768208
https://doi.org/10.1109/ICSME.2017.20
https://doi.org/10.1109/WKDD.2010.54
https://doi.org/10.1109/WKDD.2010.54

	Abstract
	1 Introduction
	2 Motivation and background
	3 Proposed approach
	3.1 Recommending topics using a collaborative-filtering technique
	3.2 Combined use of MNBN and TopFilter

	4 Evaluation Materials and Methods
	4.1 Research Questions
	4.2 Data Extraction
	4.3 Metrics
	4.4 Evaluation process

	5 Experimental Results
	5.1 RQ1: Which TopFilter configuration yields the best performance?
	5.2 RQ2: To what extent can the accuracy of MNBN be improved by means of TopFilter?

	6 Threats to validity
	7 Related Work
	8 Conclusions and Future Work
	References

