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Abstract—Software development is a knowledge-intensive ac-
tivity, which requires mastering several languages, frameworks,
technology trends (among other aspects) under the pressure
of ever-increasing arrays of external libraries and resources.
Recommender systems are gaining high relevance in software
engineering since they aim at providing developers with real-
time recommendations, which can reduce the time spent on
discovering and understanding reusable artifacts from software
repositories, and thus inducing productivity and quality gains.

In this paper, we focus on the problem of mining open source
software repositories to identify similar projects, which can be
evaluated and eventually reused by developers. To this end,
CROSSSIM is proposed as a novel approach to model open
source software projects and related artifacts and to compute
similarities among them. An evaluation on a dataset containing
580 GitHub projects shows that CROSSSIM outperforms an
existing technique, which has been proven to have a good
performance in detecting similar GitHub repositories.

Index Terms—mining software repositories, software similari-
ties, SimRank

I. INTRODUCTION

Software development is a challenging and knowledge-

intensive activity. It requires mastering several programming

languages, frameworks, design patterns, technology trends

(among other aspects) under the pressure of ever-increasing ar-

rays of external resources [19]. Consequently, software devel-

opers are continuously spending time and effort to understand

existing code, new third-party libraries, or how to properly

implement a new feature. The time spent on discovering useful

information can have a dramatic impact on productivity [6].

Over the last few years, a lot of effort has been spent on

data mining and knowledge inference techniques to develop

methods and tools able to provide automated assistance to

developers in navigating large information spaces and giving

recommendations that might be helpful to solve the partic-

ular development problem at hand. The main intuition is to

bring to the domain of software development the notion of

recommendation systems that are typically used for popular

e-commerce systems to present users with interesting items

previously unknown to them [18]. By setting the focus on

contexts characterized by the availability of large repositories

The research described in this paper has been carried out as part of
the CROSSMINER Project, EU Horizon 2020 Research and Innovation
Programme, grant agreement No. 732223.

of reusable open source software (OSS) like GitHub1, Bit-

bucket2, and SourceForge3 (just to mention a few), it is of

paramount importance to conceive techniques and tools able

to help software engineers identify reusable and similar open

source projects, which can be re-used instead of implementing

in-house proprietary solutions with similar functionalities.

Two applications are deemed to be similar if they implement

some features being described by the same abstraction, even

though they may contain various functionalities for different

domains [14]. Understanding the similarities between open

source software projects allows for reusing of source code

and prototyping, or choosing alternative implementations [21],

[25]. Meanwhile measuring the similarities between develop-

ers and software projects is a critical phase for most types of

recommender systems [17], [20]. Failing to compute precise

similarities means concurrently adding a decline in the overall

performance of these systems. Measuring similarities between

software systems has been identified as a daunting task in

previous work [3], [14]. Furthermore, considering the miscel-

laneousness of artifacts in open source software repositories,

similarity computation becomes more complicated as many

artifacts and several cross relationships prevail. Currently

available techniques for calculating OSS project similarities

can be categorized in two different groups depending on

the abstract layers they work on, i.e., low-level and high-

level. The former considers source code, function calls, API

references, etc., whereas the latter considers project metadata,

e.g. textual description, readme files to calculate software

system similarities.

In this paper we propose CROSSSIM, an approach that per-

mits to represent in a homogeneous manner different project

characteristics belonging to different abstraction layers. In

particular, a graph-based model has been devised to enable

both the representation of different open source software

projects and the calculation of their similarity. Thus, the main

contributions of this paper are the following: (i) proposing a

novel approach to represent the open source software ecosys-

tem exploiting its mutual relationships; (ii) developing an

extensible and flexible framework for computing similarities

1GitHub: https://github.com/
2Bitbucket: https://bitbucket.org/
3SourceForge: https://sourceforge.net/
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among open source software projects; and (iii) evaluating the

performance of the proposed framework with regards to a well-

established baseline.

The rest of the paper is organized as follows: Section II

presents an overview of the most notable approaches for de-

tecting similar software applications and open source projects.

Section III brings in our proposed approach for computing

similarities between OSS projects. An initial evaluation on

a real GitHub dataset is described in Section IV. Section

V presents the experimental results. Finally, Section VI con-

cludes the paper and draws some perspective work.

II. BACKGROUND

In this section, we introduce the problem of detecting

similar software projects by referring to existing techniques

and tools that have been developed over the last few years.

According to [3], depending on the set of input features, there

are two main types of software similarity computation, i.e.

low-level and high-level as discussed below.

Low-level similarity. It is calculated by considering low-

level data, e.g., source code, byte code, function calls, API

reference, etc. The authors in [7] propose MUDABlue, an

approach for computing similarity between software projects

using source code. To compute similarities between software

systems, MUDABlue first extracts identifiers from source code

and removes unrelated content. It then creates an identifier-

software matrix where each row corresponds to one iden-

tifier and each column corresponds to a software system.

Afterwards, it removes too rare or too popular identifiers.

Finally, latent semantic analysis (LSA) [10] is performed on

the identifier-software matrix to compute similarity on the re-

duced matrix using cosine similarity. CLAN (Closely reLated

ApplicatioNs) [14] is an approach for automatically detecting

similar Java applications by exploiting the semantic layers

corresponding to packages class hierarchies. CLAN represents

source code files as a term document matrix (TDM), in which

a row contains a unique class or package and a column

corresponds to an application. Singular value decomposition

is then applied to reduce the matrix dimensionality. Similarity

between applications is computed as the cosine similarity

between vectors in the reduced matrix.

MUDABlue and CLAN are comparably similar in the

way they represent software and identifiers/API in a term-

document matrix and then apply LSA to compute similarities.

CLAN includes API calls for computing similarity, whereas

MUDABlue integrates every word in source code files into

the term-document matrix. As a result, the similarity scores

of CLAN reflect better the perception of humans of similarity

than those of MUDABlue [14].

High-level similarity. It is calculated by considering project

metadata, such as topic distribution, README files, textual

descriptions, star events (if available e.g., in GitHub), etc. In

[23] authors propose LibRec, a library recommendation tech-

nique to help developers leverage existing libraries. LibRec

employs association rule mining and collaborative filtering

techniques to search for top most similar projects and rec-

ommends libraries used by these projects to a given project.

A project is characterized by a feature vector where each entry

corresponds to the occurrence of a library and the similarity

between two projects is computed as the similarity between

their feature vectors.

In [13] tags are leveraged to characterize applications

and then to compute similarity between them. The proposed

approach can be used to detect similar applications written

in different languages. Based on the hypothesis that tags

capture better the intrinsic features of applications compared to

textual descriptions, the approach extracts tags attached to an

application and computes their weights [13]. This information

forms the features of a given software system and is used to

distinguish it from others. An application is characterized by

a feature vector with each entry corresponding to the weight

of a tag. Eventually, the similarity between two applications

is computed using cosine similarity.

In [25], RepoPal is proposed to detect similar GitHub

repositories. In this approach, two repositories are considered

to be similar if: (i) they contain similar README.md files;

(ii) they are starred by users of similar interests; (iii) they

are starred together by the same users within a short period

of time. Thus, the similarities between GitHub repositories

are computed by using: the README.md file and the stars

of each repository, and the time gap between two subsequent

star events from the same user. RepoPal has been evaluated

against CLAN and the experimental results [25] show that

RepoPal has a better performance compared to that of CLAN

with regards to two quality metrics.

In summary, by reviewing other additional similarity metrics

[4], [11], [12], [24] which cannot be presented here due to

space limitation, we have seen that they normally deal with

either low-level or high-level similarity. We are convinced that

combining various input information in computing similarities

is highly beneficial to the context of OSS repositories. We aim

to design a representation model that integrates semantic rela-

tionships among various artifacts and the model is expected to

improve the overall performance of the similarity computation.

III. A NOVEL APPROACH FOR COMPUTING SIMILARITIES

AMONG OSS PROJECTS

In Linked Data [1], an RDF4 graph is made up of an

enormous number of nodes and oriented links with semantic

relationships. Thanks to this feature, the representation paves

the way for various computations [5]. By considering the

analogy of typical applications of RDF graphs and the problem

of detecting the similarity of open source projects, in this

section we propose CROSSSIM (Cross Project Relationships

for Computing Open Source Software Similarity), an ap-

proach that makes use of graphs for representing different

kinds of relationships in the OSS ecosystem. Specifically,

the graph model has been chosen since it allows for flexible

data integration and facilitates numerous similarity metrics

4https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Fig. 1. Overview of the CROSSSIM approach

[2]. We consider the community of developers together with

OSS projects, libraries and their mutual interactions as an

ecosystem. In this system, either humans or non-human factors

have mutual dependency and implication on the others. There,

several connections and interactions prevail, such as develop-

ers commit to repositories, users star repositories, or projects

contain source code files, just to name a few.

The architecture of CROSSSIM is depicted in Fig. 1: the

rectangles represent artifacts, whereas the ovals represent

activities that are automatically performed by the developed

CROSSSIM tooling. In particular, the approach imports project

data from existing OSS repositories and represents them

into a graph-based representation by means of the OSS
Ecosystem Representation module. Depending on the

considered repository (and thus to the information that is

available for each project) the graph structure to be generated

has to be properly configured. For instance in case of GitHub,

specific configurations have to be specified in order to enable

the representation in the target graphs of the stars assigned

to each project. Such a configuration is “forge” specific and

specified once, e.g., SourceForge does not provide the star

based system available in GitHub. The Graph similarity
module implements the similarity algorithm that is applied on

the source graph-based representation of the input ecosystems

generates matrices representing the similarity value for each

pair of input projects.

A detailed description of the proposed graph-based repre-

sentation of open source projects is given in Sec. III-A. Details

about the implemented similarity algorithm are given in Sec.

III-B.

A. Representation of the OSS Ecosystem

With the adoption of the graph-based representation, we are

able to transform the relationships among various artifacts in

the OSS ecosystem into a mathematically computable format.

The representation model considers different artifacts in a

united fashion by taking into account their mutual, both direct

and indirect, relationships as well as their co-occurrence as a

whole. The following relationships are used to build graphs

representing the OSS ecosystems and eventually to calculate

similarity by means of the algorithm presented in the next

section.

• isUsedBy ⊆ Dependency×Project: this relationship de-

picts the reliance of a project on a dependency (e.g.,

a third-party library). The project needs to include the

dependency in order to function. According to [14], [23]

the similarity between two considered projects relies on

the dependencies they have in common because they aim

at implementing similar functionalities;

• develops ⊆ Developer × Project: we suppose that there

is a certain level of similarity between two projects if

they are built by same developers [3];

• stars ⊆ User × Project: this relationship is inspired

by the star event in RepoPal [25] to represent GitHub

projects that a given user has starred. However, we

consider the star event in a broader scope in the sense

that not only direct but also indirect connections between

two developers is taken into account;

• develops ⊆ User × Project: this relationship is used to

represent the projects that a given user contributes in

terms of source code development;

• implements ⊆ File × File: it represents a specific relation

that can occur between the source code given in two dif-

ferent files, e.g. a class specified in one file implementing

an interface given in another file;

• hasSourceCode ⊆ Project × File: it represents the source

files contained in a given project.

Fig. 2 shows a graph representing an explanatory example

consisting of two projects project#1 and project#2.

The former contains HttpSocket.java and the latter con-

tains FtpSocket.java with the corresponding semantic

predicate hasSourceCode. Both source code files imple-

ment interface#1 marked by implements. In practice,

an OSS graph is much larger with numerous nodes and edges,

and the relationship between two projects can be thought as a

sub-graph.

Based on the graph structure, one can exploit nodes, links,

and the mutual relationships to compute similarity using

existing graph similarity algorithms. To the best of our knowl-

edge, there exist several metrics for computing similarity in

graph [2], [16]. In Fig. 2, we can compute the similarity be-

tween project#1 and project#2 using related semantic
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Fig. 2. Similarity between OSS projects w.r.t their implementation
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paths, e.g. the one-hop path isUsedBy, or the two-hop path

hasSourceCode and implements as already highlighted

in the figure. The hypothesis is based on the fact that the

projects are aiming at creating common functionalities by

using common libraries [14], [23]. Using the graph, it is

also possible to compute the similarity between developers

dev#1 and dev#2 since they are indirectly connected by the

develops and implements relationships.

The currently available implementation of CROSSSIM [15]

is able to manage the isUsedBy, develops, and stars relation-

ships as discussed in Sec. IV.

B. Similarity Computation

To evaluate the similarity of two nodes in a graph, their

intrinsic characteristics like neighbour nodes, links, and their

mutual interactions are incorporated into the similarity cal-

culation [5], [16]. In [8], SimRank has been developed to

calculate similarities based on mutual relationships between

graph nodes. Considering two nodes, the more similar nodes

point to them, the more similar the two nodes are. In this sense,

the similarity between two nodes α, β is computed by using

a fixed-point function. Given k ≥ 0 we have R(k)(α, β) = 1
with α = β and R(k)(α, β) = 0 with k = 0 and α �= β,

SimRank is computed as follows:

R(k+1)(α, β) =
Δ

|I(α)| · |I(β)|
|I(α)|∑

i=1

|I(β)|∑

j=1

R(k)(Ii(α), Ij(β))

(1)

where Δ is a damping factor (0 ≤ Δ < 1); I(α) and I(β)
are the set of incoming neighbors of α and β, respectively.

|I(α)| · |I(β)| is the factor used to normalize the sum, thus

forcing R(k)(α, β) ∈ [0, 1].
For the first implementation of CROSSSIM we adopt Sim-

Rank as the mechanism for computing similarities among OSS

graph nodes. For future work, other similarity algorithms can

also be flexibly integrated into CROSSSIM, as long as they are

designed for graph.

To study the performance of CROSSSIM we conducted

a comprehensive evaluation using a dataset collected from

GitHub. To aim for an unbiased comparison, we opted for

existing evaluation methodologies from other studies of the

same type [13], [14], [25]. Together with other metrics typi-

cally used for evaluations, i.e. Success rate, Confidence, and

Precision, we decided to use also Ranking to measure the

sensitivity of the similarity tools to ranking results. The details

of our evaluation are given in the next section.

IV. EVALUATION

In this section we discuss the process that has been con-

ceived and applied to evaluate the performance of CROSSSIM

in comparison with RepoPal. The rationale behind the selec-

tion of RepoPal is that according to Zhang et al. [25], RepoPal

outperforms CLAN in terms of Confidence and Precision,

and CLAN is deemed to be a well-established baseline [14].

Intuitively, we consider RepoPal as a good starting point

for a performance comparison. Research questions that we

wanted to answer by means of the performed evaluation are

the following:

• RQ1: Which similarity metric yields a better perfor-

mance: RepoPal or CROSSSIM?

• RQ2: How does the graph structure affect the perfor-

mance of CROSSSIM?

To this end, the evaluation process that has been applied is

shown in Fig. 3 and consists of activities and artifacts that are

detailed below.

Data Collection We collected a dataset consisting of GitHub

Java projects that serve as inputs for the similarity computation

and satisfy the following requirements: (i) being GitHub Java

projects; (ii) providing the specification of their dependencies

by means of pom.xml or .gradle files5; (iii) having at least

9 dependencies; (iv) having the README.md file available;

(v) possessing at least 20 stars [25]. We realized that the

final outcomes of a similarity algorithm are to be validated

by human beings, and in case the projects are irrelevant by

their very nature, the perception given by human evaluators

would also be dissimilar in the end. This is valueless for the

evaluation of similarity. Thus, to facilitate the analysis, instead

of crawling projects in a random manner, we first observed

projects in some specific categories (e.g., PDF processors,

JSON parsers, Object Relational Mapping projects, and Spring

MVC related tools). Once a certain number of projects for

each category had been obtained, we also started collecting

randomly to get projects from various categories.

Using the GitHub API6, we crawled projects to provide

input for the evaluation. Though the number of projects that

fulfill the requirements of a single approach, i.e. either RepoPal

or CROSSSIM, is high, the number of projects that meet the

requirements of both approaches is considerably lower. For

example, a project contains both pom.xml and README.md,

albeit having only 5 dependencies, thus it does not meet

the constraints and must be discarded. The crawling is time

consuming as for each project, at least 6 queries must be sent

to get the relevant data. GitHub already sets a rate limit for

an ordinary account7, with a total number of 5.000 API calls

per hour being allowed. And for the search operation, the rate

is limited to 30 queries per minute. Due to these reasons, we

ended up getting a dataset of 580 projects that are eligible for

the evaluation. The dataset we collected and the CROSSSIM

tool are already published online for public usage [15].

Application of RepoPal and CROSSSIM Both RepoPal and

CROSSSIM have been applied on the collected dataset. For

explanatory purposes about the graph based representation,

Fig. 4 sketches the sub-graph for representing the relation-

ships between two projects AskNowQA/AutoSPARQL and

AKSW/SPARQL2NL. The orange nodes are dependencies and

their real names are depicted in Table I. The turquoise nodes

5The files pom.xml and with the extension .gradle are related to
management of dependencies by means of Maven (https://maven.apache.org/)
and Gradle (https://gradle.org/), respectively.

6GitHub API: https://developer.github.com/v3/
7GitHub Rate Limit: https://developer.github.com/v3/rate limit/
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Fig. 3. Evaluation process

are developers who already starred the repositories. Every node

is encoded using a unique number across the whole graph.

In order to address RQ2, we investigated the implication

of graph structure on the performance of CROSSSIM by

considering various types of graphs. By the first configuration,

only star events and dependencies were used to build the graph

and hereafter this is named as CROSSSIM1. In the second

configuration we extended CROSSSIM1 by representing also

committers and such a configuration is named as CROSSSIM2.

Next, we studied the influence of the most frequent depen-

dencies (shown in Table II) on the computation. To this end,

from the graph in the configuration CROSSSIM1, all the nodes

and edges derived from these dependencies are removed, and

this configuration is denoted as CROSSSIM3. Finally, the most

frequent dependencies are also removed from CROSSSIM2,

resulting in CROSSSIM4.

Query definition Among 580 projects in the dataset, 50 have

been selected as queries. Due to space limitation, the list of

the 50 queries is omitted from the paper, interested readers

are referred to the dataset we published online [15] for more

detail. To aim for variety, the queries have been chosen to

equally cover all the categories of the projects in the dataset.

Retrieval of similarity scores Our evaluation has been con-

ducted in line with some other existing studies [13], [14],

[25]. In particular, for each query in the set of the 50 projects

524AKSW/SPARQL2NL 84 AskNowQA/AutoSPARQL

133

130 125

124

117

92... ×12 nodes

(139; 151; 153; 155; 163; 164; 171; 173; 176; 196; 201; 210)

992

eclipse/rdf4j

548

Legend

isUsedBy
stars

Fig. 4. Sub-graph showing a fragment of the AskNowQA/AutoSPARQL,
AKSW/SPARQL2NL, and eclipse/rdf4j project representation

defined in the previous step, similarity is computed against

all the remaining projects in the dataset using the SimRank

algorithm discussed in Sec. III-B. From the retrieved projects,

only top 5 are selected for the subsequent evaluation steps.

For each query, similarity is also computed using RepoPal to

get the top-5 most similar retrieved projects.

Mix and shuffle of the results and Human Labeling In

order to have a fair evaluation, for each query we mix and

shuffle the top-5 results generated from the computation by all

similarity metrics in a single file and present them to human

evaluators. This helps eliminate any bias or prejudice against

a specific similarity metric. In particular, given a query, a user

study is performed to evaluate the similarity between the query

and the corresponding retrieved projects. Three postgraduate

students participated in the user study with two of them

being skilful Java programmers. The participants are asked

to label the similarity for each pair of projects (i.e., <query,

TABLE I
SHARED DEPENDENCIES IN THE CONSIDERED DATASET

ID Name
139 org.apache.jena:jena-arq
151 org.dllearner:components-core
153 net.didion.jwnl:jwnl
155 net.sourceforge.owlapi:owlapi-distribution
163 net.sf.jopt-simple:jopt-simple
164 jaws:core
171 com.aliasi:lingpipe
173 org.dllearner:components-ext
176 org.apache.opennlp:opennlp-tools
196 org.apache.solr:solr-solrj
201 org.apache.commons:commons-lang3
210 javax.servlet:servlet-api
548 org.slf4j:log4j-over-slf4j

TABLE II
MOST FREQUENT DEPENDENCIES IN THE CONSIDERED DATASET

Dependency Frequency
junit:junit 447
org.slf4j:slf4j-api 217
com.google.guava:guava 171
log4j:log4j 156
commons-io:commons-io 151
org.slf4j:slf4j-log4j12 129
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TABLE III
SIMILARITY SCALES

Scale Description Score
Dissimilar The functionalities of the retrieved project are completely different

from those of the query project
1

Neutral The query and the retrieved projects share a few functionalities in
common

2

Similar The two projects share a large number of tasks and functionalities in
common

3

Highly similar The two projects share many tasks and functionalities in common and
can be considered the same

4

retrieved project>) with regards to their application domains

and functionalities using the scales listed in Table III [14].
Calculation of metrics To evaluate the outcomes of the

algorithms with respect to the user study, the following metrics

have been considered as typically done in some related work

[13], [14], [25]:

• Success rate: if at least one of the top-5 retrieved projects

is labelled Similar or Highly similar, the query

is considered to be successful. Success rate is the ratio

of successful queries to the total number of queries;

• Confidence: Given a pair of <query, retrieved project>
the confidence of an evaluator is the score she assigns to

the similarity between the projects;

• Precision: The precision for each query is the proportion

of projects in the top-5 list that are labelled as Similar
or Highly similar by humans.

Further than the previous metrics, we introduce an addi-

tional one to measure the ranking produced by the similarity

tools. For a query, a similarity tool is deemed to be good if all

top-5 retrieved projects are relevant. In case there are false pos-

itives, i.e. those that are labeled Dissimilar and Neutral,

it is expected that these will be ranked lower than the true

positives. In case an irrelevant project has a higher rank than

that of a relevant project, we suppose that the similarity tool is

generating an improper recommendation. The Ranking metric

presented below is a means to evaluate whether a similarity

metric produces properly ranked recommendations.

• Ranking: The obtained human evaluation has been an-

alyzed to check the correlations among the ranking

calculated by the similarity tools and the scores given

by the human evaluation. To this end the Spearman’s

rank correlation coefficient rs [22] is used to measure

how well a similarity metric ranks the retrieved projects

given a query. Considering two ranked variables r1 =
(ρ1, ρ2, .., ρn) and r2 = (σ1, σ2, .., σn), rs is defined

as: rs = 1 − 6
∑n

i=1(ρi−σi)
2

n(n2−1) . Because of the large

number of ties, we also used Kendall’s tau [9] coefficient,

which is used to measure the ordinal association between

two considered quantities. Both rs and τ range from -

1 (perfect negative correlation) to +1 (perfect positive

correlation); rs = 0 or τ = 0 implies that the two

variables are not correlated.

Finally, we consider also the execution time related to the

application of RepoPal and CROSSSIM on the dataset to obtain

the corresponding similarity matrices.

V. EXPERIMENTAL RESULTS

In this section the data that has been obtained as discussed

in the previous section is analyzed to answer the research

questions RQ1 and RQ2 (see Sec. V-A). Threats to validity

of our evaluation are also discussed in Sec. V-B.

A. Data analysis

RQ1: Which similarity metric yields a better performance:
RepoPal or CROSSSIM? The experimental results suggest that

RepoPal is a good choice for computing similarity among

OSS projects. This indeed confirms the claim made by the

authors of RepoPal in [25]. In comparison with RepoPal, three

CROSSSIM configurations gain a superior performance, with

CROSSSIM3 overtaking all.

As can be seen in and Fig. 5(a), CROSSSIM3 outperforms

RepoPal with respect to Precision. Both gain a success rate
of 100%, however CROSSSIM3 has a better precision. CROSS-

SIM3 obtains a precision of 0.78 and RepoPal gets 0.71. The

Confidence for both metrics is shown in Fig. 5(b). Also by

this index, CROSSSIM3 yields a better outcome as it has more

scores that are either 3 or 4 and less scores that are 1 or 2.

In addition to the conventional quality indexes, we inves-

tigated the ranking produced by the two metrics using the

Spearman’s (rs) and Kendall’s tau (τ ) correlation indexes. The

aim is to see how good is the correlation between the rank

generated by each metric and the scores given by the users,

which are already sorted in descending order. In this way, a

lower rs (τ ) means a better ranking. rs and τ are computed

for all 50 queries and related first five results. The value of rs
is 0.250 for CROSSSIM3 and −0.193 for RepoPal. The value

of τ is −0.214 for CROSSSIM3 and −0.163 for RepoPal. By

this quality index, CROSSSIM3 performs slightly better than

RepoPal.
The execution time related to the application of RepoPal

and CROSSSIM3 is shown in Fig. 5(c). For the experiments

on the dataset using a laptop with Intel Core i5-7200U CPU @

2.50GHz × 4, 8GB RAM, Ubuntu 16.04, RepoPal takes ≈4

hours to generate the similarity matrix, whereas the execution

of CROSSSIM3, including both the time for generating the

input graph and that for generating the similarity matrix, takes

≈16 minutes. Such an important time difference is due to the

time needed to calculate the similarity between README.md
files, on which RepoPal relies.

The results obtained by CROSSSIM confirm our hypothesis

that the incorporation of various features, e.g. dependen-
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Fig. 5. Outcomes of the considered metrics

cies and star events into graph is beneficial to similarity

computation. To compute similarity between two projects,

RepoPal considers the relationship between the projects per se,

whereas CROSSSIM takes also the cross relationships among

other projects into account by means of graphs. Furthermore,

CROSSSIM is more flexible as it can include other artifacts

in similarity computation, on the fly, without affecting the

internal design. Last but not least, the ratio between the overall

performance of CROSSSIM and its execution time is very

encouraging.

RQ2: How does the graph structure affect the performance of
CROSSSIM? When we consider CROSSSIM1 in combination

with CROSSSIM2, the effect of the adoption of committers

can be observed. CROSSSIM1 gains a success rate of 100%,

with a precision of 0.748. Whereas, the number of false pos-

itives by CROSSSIM2 goes up, thereby worsening the overall

performance considerably with 0.696 being as the precision.

The precision of CROSSSIM2 is lower than those of RepoPal
and all of its CROSSSIM counterparts. The performance

degradation is further witnessed by considering CROSSSIM3

and CROSSSIM4 together. With respect to CROSSSIM3, the

number of false positives by CROSSSIM4 increases by 5
projects. We come to the conclusion that the inclusion of all

developers who have committed updates at least once to a

project in the graph is counterproductive as it adds a decline

in precision. In this sense, we make an assumption that the

deployment of a weighting scheme for developers may help

counteract the degradation in performance. We consider the

issue as our future work.

We consider CROSSSIM1 and CROSSSIM3 together to an-

alyze the effect of the removal of the most frequent depen-

dencies. CROSSSIM3 outperforms CROSSSIM1 as it gains a

precision of 0.78, the highest value among all, compared to

0.75 by CROSSSIM1. The removal of the most frequent depen-

dencies helps also improve the performance of CROSSSIM4

in comparison to CROSSSIM2. Together, this implies that the

elimination of too popular dependencies in the original graph

is a profitable amendment. This is understandable once we

get a deeper insight into the design of SimRank presented in

Section III-B. There, two projects are deemed to be similar

if they share a same dependency, or in other words their

corresponding nodes in the graph are pointed by a common

node. However, with frequent dependencies as in Table II

this characteristic may not hold anymore. For example, two

projects are pointed by junit:junit because they use JUnit8

for testing. Since testing is a common functionality of many

software projects, it does not help contribute towards the

characterization of a project and thus, needs to be removed

from graph.

In summary, it can be seen that the graph structure consid-

erably affects the outcome of the similarity computation. In

this sense, finding a graph structure that nourishes similarity

computation is of particular importance. This is considered as

an open research problem.

B. Threats to Validity

In this section, we investigate the threats that may affect the

validity of the experiments as well as how we have tried to

minimize them. In particular, we focus on internal and external

threats to validity as discussed below.

8JUnit: http://junit.org/junit5/
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Internal validity concerns any confounding factor that could

influence our results. We attempted to avoid any bias in

the evaluation and assessment phases: (i) by involving three

participants in the user study. In particular, the labeling results

by one user were then double-checked by other two users to

make sure that the outcomes were sound; (ii) by completely

automating the evaluation of the defined metrics without any

manual intervention. Indeed, the implemented tools could be

defective. To contrast and mitigate this threat, we have run

several manual assessments and counter-checks.

External validity refers to the generalizability of obtained

results and findings. Concerning the generalizability of our

approach, we were able to consider only a dataset of 580
projects, due to the fact that the number of projects that meet

the requirements of both RepoPal and CROSSSIM is low and

thus required a prolonged crawling. During the data collection,

we crawled both projects in some specific categories as well as

random projects. The random projects served as a means to test

the generalizability of our algorithm. If the algorithm works

well, it will not perceive newly added random projects as sim-

ilar to projects of the specific categories. For future work, we

are going to validate our proposed approach by incorporating

other similarity metrics and more GitHub projects.

VI. CONCLUSIONS

In this paper, we presented an approach to detect similar

open source software projects. We proposed a graph-based

representation of various features and semantic relationships

of open source projects. By means of the proposed graph

representation, we were able to transform the relationships

among various artifacts, e.g. developers, API utilizations,

source code, interactions, into a mathematically computable

format.

An evaluation was conducted to study the performance of

our approach on a dataset of 580 GitHub Java projects. The

obtained results are promising: by considering RepoPal as

baseline, we demonstrated that CROSSSIM can be considered

as a good candidate for computing similarities among open

source software projects. For future work, we are going to

investigate which graph structure can help obtain a better

similarity outcome as well as to define a threshold so that

a project dependency is considered to be frequent.
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